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On two nonlinear parabolic equatlons in
duality arising in thermal control: the L~
and L' semigroup approach and the

asymptotic behaviour
1. INTRODUCTION

~Let © be a smooth bounded domain in RN.
up € Hé(ﬂ), we consider the problem

u min {p,Aul on (0,=) x Q

t

u=20 on (0,») x 30 ' m

u(0,x) = uD(x) on- Q.

Such problems arise in heat ‘control theory when the temporal temperature
variation of a body or fluid @ is not allowed to be greater than a given
positive function y (called the ‘obstacle'). See [10, Chapter 2].

problem (1) can be expressed in a weak form by means of the following
evolution variational inequality:

u, €K, K=1{ve H1 Qv <y a.e.onQ}

. (2)
u,(v-u,)dx + | grad u-grad {v-u.) dx>0 vveK and t > 0.
Q t t Q t

The existence and uniqueness of a solution of (2), for each ug € Hé(ﬂ),
was proved by Brézis in [5] (see also [31). Also the asymptotic behaviour
is considered in [5] by means of the abstract resuit on asymptotic behaviour
of solutions of evolution equations. It is shown there that u{t,x) con-
verges weakly in Hé(ﬂ), when t - e , to a function u_(x) € Hé(g) satisfying

min {au_,y}- =0 on @ (3)
in the sense that
J grad u_ - grad v dx >0 vv € K.
Q ‘

Nevertheless it is neither known how the solution selects an equilibrium
point among all of them nor if the convergence alsa holds in the strong

Given ¢ € Lz(ﬂ) with ¢ > 0 a.e, ang

'a1ogy:0f‘H8(n). Both questions were proposed in [5] and they are, essen-

: Because of this we will first cons1der some regularity results.
not difficult to see that if the solution u of (2) is such that
) € L1(Q), for t > 0, then u is a strong solution. Nevertheless nat

%én_éfﬂ in D'(Q), then u -is a strong solution iff tug € L1(Q)).
For the strong solutions, problem (1) can be equivalently formulated by

ut(t,x) + Blx,~au(t,x)) = 0on (0,») x Q

Pd ou(t,x) =0 on {(0,») x 3Q.
u{0,x) = uU(x) on Q
Yhere
g(x,r) = -min {y(x),-r} -a.e. x€Q, vr €R (4)

gp‘prove the existence of strong solutions we shall consider the ‘dual
probiem '
v (t.x) - a8(x,v(t,x)) = 0 on (0,=) x
o B(x,v(t,x)) =0 on (0,=) x 3Q
. v{0,x} = vﬂ(x) on §.
itis clear, at least formally, that the existence of solutions v of P* in

(Q)'(i.e. such that v(t,-) € L1(ﬂ) for t > 0) implies the existence of
rong solutions of {1) by using the relation v = -Au.

i

&L

The existence of solutions of P* has been very much studied recently but
the term g(x,r) (a maximal monotone graph of RZ a.e. x € Q) is always taken
he following two cases: '

;:;'B(x,r) is independent of x
“g{x.vr) is onto a.e. X € Q

Netice that the p(x,r), given in (4), is neither in case (a) nor
). Nevertheless, we shall show that P* is a 'well-posed' problem-



in L1(q) (in the semigroup sense) when y € H'(q) and (-a0) € L2(q).

‘If the obstacle y is assumed such that y € Cz(ﬁ), then we shall prove
that P is 'well posed’ on L7(p} and then the solution u of (2) satisfies
ault,-) € L7(q) for t > 0.

Finally, using an abstract comparison result given in [1] we obtain some
useful estimates allowing us to prove our main result on the asymptotic
behaviour of the so]ut1ons of (1): if v > 0 and Ap > 0 a.e. on @, then u(t,.)
If, in addition,
p(x) =& >0 a.e. xeQ (for some §) then the asymptotic behaviour is com-
pletely described in the sense that we show the solution verifies the linear

converges strangly in H (Q) to the equilibrium point zero.

heat equation ut = AU ON (To,m) x q for an adequate finite time TO For
other answers on the strong convergence and the selection of the equilibrium
point we refer to [9].

2. THE SEMIGROUP APPROACH TQ P* AND P

Problem P* can be formulated as an abstract Cauchy problem on the L1(Q) space

%% + Av 30 in L1(Q), on (0,)
{5)

v(0) = vp,
A being the operator in L1(g) given by

D(A) = w e L'(e): plxow(x)) € H)*T{) and ag(x,n(x)) € Lan

Aw = -Ag(-,w(-)) if w € D(A). (g given in (4)).

In order to prove that (5) is ‘well posed' on L1(Q) we shall apply the
results on evolution equations governed by accretive operators (see e.g.
[7]1). Me have ‘

THEOREM 1. (a) The operator A is T accretive in LMy, (b)) Let p € h' (o)
be such that y >0 a.e. and Aw is a measure with (- w)— € LZ(Q)' Then the
operator A is m -accretive in L (Q) (c¢) Assume y as in part {b)}. Then
(@ = ),

Proof. (a) Let [u,v1, [(,V] € A and consider the operator - defined in

; (@) by D(-3) = {w € "‘0 @) !Aw e L'(@)}. Then u* = 8(-,u) - 8(-,0)
slongs to D(-A), and taking

1 9f (u-0){x) > 0 and u*(x) = 0
0 if (u-0)(x) < 0 and u*(x) < O
or (u-0)(x) < 0 and u*(x) =
jis have that a*(x) € sign (u(x)-u(x)) n sign®u*(x) and that
J (Au-AU)a* dx > 0
Q

secause -A is a strongly T-accretive operator in L1(Q) (see [7]1). (b) Given

fL1(Q) it is easy to see that u satisfies u + AAu = f if and only if the
function h(x) = g{x,u(x)) satisfies h € w’ 1(Q), Ah el (Q) and

-Aah{x) + h(x +y(h{x) + p{x)) 3 f{x) a.e. x €0

(7)
h =20 : on o0
being y(r) the maximal monotone graph of R% defined by
v(r) = 0 if r > 0, y(0) = (-=,0] and (8)
v(r) = @ (the empty set) if r < 0.

ﬁrgu1ng as in [6] to prove the existence of solutions of (7) it suffices to
sider f in a dense set of L (Q) Actually, when f € L (Q) we can choose
h as the unique sotution of the variational dnequality

h(x) > - y(x) a.e. x €Q
-xth + h > f a.e. on 4 (Q)
(h+w) (~Aah+h-f)=0 a.e.on @
h=20o0n an
dnd by the regularity result of [3] ve know that h € H (Q) 0o o(2). Then
hﬂ§o1ves (7) and equivalently R(I + M) L (ﬂ) for every i > 0 (c) Take

ﬂ:E L”(@) and for each A > 0 Tet z, € H (Q) nH (Q) be the so]ut1on of (7).
By Theorem 1.1 of [3] we get



|l Aaz . ‘<]|f|[ +C n(-Aaw)']i (c iﬁdep. of A). (10
ezl 2 ) 2 L) - -0

Lo(Q)
Then [Azx}'converges weakly in HZ(Q) and by the comparison results it is
shown that {XZA} - 0 in LZ(Q). Setting yk(x) = f{x) + kAzl(x) it ig clear
that ¥y € D(A) and ¥y converges (weakly) to f in La(ﬂ). Finally from (10)
we deduce that

Tim |y, |l = || f]|
0 A L2 (@) L2(a)

and then Yy, converges strongly in LZ(Q).

Remark. Problem P* is also well posed on the- space H—1(Q). Indeed, from
“the result of [5] it 1s'easy to see that for every ¥ € Lz(ﬂ), Y =0a.e. on
Q, P* is governed by a maximal monotone operator on the Hilbert space H-1
Such an operator can be characterized as the subdifferential of an adequate
convex, l.s.c., functional on H-i(ﬂ) in the following cases: (a) W{x) =8
{see [41), (b) ¢ € Hi(ﬂ) {unpublished result of A. Damlamian). Finally, we
refer to the lecture of M.F. Bidaut-Véron for a very complete discussion
about nonlinear equations with terms depending on x (such as (7)).

The existence of strong'solutions of (1) is now a consequence of Theorem
1. '

_PROPOSITION 1; Assume § € H1(Q) such that v > 0 on @ and (-0p) € LZ(Q).

T . . s
Let ug € HO(Q) with A.uU € L1(Q). Then the weak solution of (1) satisfies
Au € C{[0,=): L1(n)). '

Proof. From Theorem 1 it is enough to show that -Au(t,.) coincides with
v(t), the unique LI(Q)-semigroup solution of P* corresponding to the initial
datum Vg = —AuD. Using the continuity in L1(Q) of the semigroup generated
by A, we can suppose up € H’(Q) n HZ(Q). On the other hand, we recall that
u is given by the solution of ‘

du | o -

IE Bu >0 in HU(Q), on (0,%)

U(D) = UO,

1

where B is the maximal monotone gperator on H0

(R) defined by

(2).

Bu = ~3¢*(-u) ' ' (12)

shere ¢* is the conjugate convex function of

| %-j 12)% dx if z.€ X
¢(z) = Y (13)

e ifzEK
fsee [51). Then if v(t) = lim v (t) with vp(t) = 52 for ky, <t < (k+1) 2,
g . e e no_ 2
finere aE = (1 + a0 K (-aup) and A + 0, it is easy to see that a € L (o)

e ] _ . n -K
and that the functions bE = ()" aE satisfy bk = {I «+ A.B) Tug Then

~auf(t,-) = lim vn(t) = v(t).

(The details can be found in [91).

ﬁTo prove a further regularity result to (1), consider P formulated as the
?6110wing abstract Cauchy problem:

" du - _—
+C030in L (n), on (0,=)
t
* {14)
u(0) = ug,
Eﬁbeing the operator on L7(g) given by
HC) = (we L) n Hé(n): € L7(0), min (y,Aw) € L™(R)1 15)

Cw = -min {y,aw} if w € D(C).
= . . =] .y 2,=
THEOREM 2. (i) The operator C is T-accretive in L7(n). (i) If y € C°(Q)
%ith p >0 on {, C satisfies the range condition R(I + AC) 2 D(C), vA > 0.

Proof. (1) Follows from the maximum principle and (ii) is shown by means of
ihe Brézis-Kinderlehrer regularity result for stationary variational inequa-
Yities (see [97).

PROPOSITION 2. Assume y € C2(3), y> 0 on g, Let ug € Hé(n) be such that
lun'e 1®(q). Then the weak solution u of (1) satisfies



u e WP((0,0) & 2) 0 L2(0,: HA())

and aul(t,-) € L7(q) a.e. t > 0.

Proof. It is easy to show that up € D(C). Then the L{q)-semigroup solutign

u satisfies

u(t) € D(C)
and
T e W T([0,m) x 2) 0 L%(0,=:H2(0))
(see [2]). Finally if b€ D(B) n D(C), then (I + AC)"'b = (I + AB) b for

any % > 0 and in consequence u = U.

Remark. The equation of (1) can obviously be written as

‘ u, + max {-au, ~p} =0 (16)

and then it is similar to the so-called Bellman's equation of dynamic pro-
gramming

2

U, + max {L1u-f1, L u—fz} =

t

where Lk is a second order, uniformly elliptic oberator {k = 1,2). Interest-
ing regularity results for (17) can be found in [11], [12] and [13].

theless, in (16) L2 =z 0 and the above works do not apply.

Never-

3. THE ASYMPTOTIC BEHAVIOQUR

We fix our attention on the convergence of the weak solution to an equilibrium
point of (1). We shall limit our attention to the case y > 0 a.e. on g (then
it is obvious that u_ = Tim u(t,) isu_ = 0).
[ol. Lo |

If w(x)
P* (results of Bénilan, Veron, Evans,...) it is easy to see that the weak

Other cases are discussed in
= g > 0, by using the regularizing effects for the dual equation
solution u satisfies the linear heat equation after a finite time (see [8]).

This kind of result is far frem being so easy when y is a non-constant func-
tion. Indeed,due to the non-surjectivity of the graph g(-,r) given in (4),

gularizing effect is known for the problem P*.  Instead we have the
lowing result which is, with slight modifications, a particular applica-
n of the abstract result of [1]: '

iMA 1. Let p € H'(Q) with ¢ > 0 a.e. on @ and ()" € L2(Q).

€ HO(Q) such that

Assume

L1 + .
~bug € D T(a)-, (DT(A) = {w € D(A) | Aw > 0}).

Ch{t,x; VO) < -min {p(x), ault,x)} a.e. (t,x) € (0,=) x @

= -min {w,AuO} and h(t,x:z) denotes the solution of the heat eqda-

h, = Ah on {0,=) x Q

h=20 on {0,o) x 3Q

h(0,x) = z(x) on Q.

HHEOREM 3. Assume ¢ € HZ(Q) with y > 0,ap > 0 a.e. on Q and let uj € Hé(ﬂ).
en if p(x) >0 a.e. x € Q, u(t) ~0 {strongly) in Hé(ﬂ) when t + + o, If
“addition yp(x) = & for some § > 0, then Uy = AU on (To,w) x i where )
= {c/8f|w il K )2/N and C is a positive constant depending only on |Qf.

Efggf Step 1. Assume y € C (Q), =0, &y >0 and up € H () such that

b= -pug € L®(p). Set ug,+ and ug - belonging to H (Q) such that ~Au0’+ = h
i d -Auo =-h . Let u, and u_ be the weak so]ut1ons of (1) corresponding
i bthe 1n1t1a1 data UU,+ By Proposition 2 and the

ipaccretiveness of A we know that

+

and uy _ respectively.

D o-pu () < -au(t) < -au (E) dn L™(q), a.e. t > 0.

Mi is easy to see that -Au (t) >0 a.e. Then u, satisfies the linear heat
uation, and so -pu,(t) »—G in () when t - + =, On the other hand, it
15 possible to find a fg € HA() with Al € L™(q) and such that -Aue < -aug
'é. on Q as well as «Aue €D (A)L1( ), Indeed, we can choose v € L™(q)
iith v, < min {-y,-aug _} and then ig = (-A)—1VD (We remark in th1s case

0



min {w,AGO} = w; 50 A(-AGO) = Ay > 0). Therefore Lemma 1 shows that

hit,x:-p{x)) < —minfy(x),00(t,x)} < -min{¢(x),Au(t,x)} < 0,

where U is the weak solution of (1) corresponding to the initial datum GU'
From the results on the asymptotic behaviour for the Tinear heat equation it
is well known that there exists a positive constant C {only depending on
i2]) such that '

-C
Y < h(t,x; -0(x)) < 0 a.e. (t,x) € (0,@) x Q.
7z ol ey

Thus, the conclusion follows easily.
Step 2. Take ¥ € C2(Q) with 9 > 0 and Ay > 0 a.e. on Q. Let uy € Ha(9).
Consider Ug.n € H*( Q) with Au0 € L7(0) and U ™ Yg in Hé when n +

5
Then, if u (t) is the weak soiut1on of (1) of initial datum UD n? un(t) + u{t)
in H1(Q) when n + = and so the first assertion follows from the first step.
and the

The second assertion can be shown by using the exponent1a] formula'

first step (see [9]).

Step 3 3
’ w €C (Q) with w > 0, Aw =0,

lLet ¥ € HO( ) with ¢ > 0, &) > 0 a.e, on & and uy € H {R)., Consider

o Il 4 < lwll s and such that
L'(2) S T €93
wn +y in H (Q) when n ~ = . Thanks to some convergence results for varia-

tional inequalities it can be shown that

+ (1 +AB)" 'z when n >~ =, A >0,

(1 + 28, 2 z € D(B) n D(B)

(B designates the operator B corresponding to the obstacle w }. The con-
'c1us1on follows from the abstract results on convergence of max1ma1 monotone

operators.
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