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ABSTRACT

We give a survey of some recent results concerning the existence, loca-
tion and time evolution of free boundaries for a class of nonlinear para-
bolic reaction-diffusion systems arising in applicatiaons.

The case of degenerate parabolic problems is also considered. The main
tool in the proofs is the use of local comparison techniques.

1. INTRODUCTION _ ‘

We give a brief survey of some recent results obtained by the authors
concerning the existence of free boundaries in scme parabolic systems ari
sing in applications, especially in combustion theary. The corresponding
elliptic problem was treated by the authors in |5] and applications to
combustion theory were also included. An extended version of these re-
sults, including full proofs and applications will appear in 16].

Now we consider the model system

lv-1}
Up - Ut WiFlu)e Y = 0 in N =0x{0,=)
y{v-1)
MWy - bv- wFlue Y =0 in q
(1.1)
usvs=l on | =302 x (0,%)

u(x,0) = uo{x),v{x,0} = vo(x) én 0

where Q is a smooth bounded domain 1nIRN s u is the Thiele number, v the
Prater temparature, y the Arrhenius nuuber, A“I the Lewis number, and u
and v are, respectively, the concentration and temperature of the raac-
tant. The systen (1.1} is a model for a single irreversible nonisother-

mic reaction (cf. the book by Aris [I]). F is a non-decreasing function

such that F{0)=0, F(1) =1 and F{s)~0 for s> 0. The most comnon instance
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of F s F{s)=sP, where p>0 is the reaction order. If p=0, then F is gi-
ven by F(0)=0 and F(s) if 5>0, and this means that in this case F is

discontinuous.

A general formulation which contains (1.1) is the following

U, - au + alu)f(v) =0 in Q
Ve - av - Blulglv) =0 in Q {1.2)
ulxat) =vp, vixt) =y, on J

u(x,0) = uo{x)rv(x,0) = vo(x) in

where o and 8 are non-decreasing continuous functions, f and g are C1

and f{s) >0, g(s)>0 for s >0 and the boundary and initfal data are

snooth. The case p=0 can‘a1sn be handled by using maximal monotone graphs.
The main interest in this paper is to study the existence of a dead

core Qa(t) = {x e plu(x,t)=0} and to get additional information about

its size and location. The boundary of the subset uft.{t) is a free boun-
t>0

dary which is a priori unknown and plays an important rale in applications,

‘le obtain some different kinds of results about Q.(t)}. Some of them
seem ta be new in the literature and there are also extensions ta the
case F(x,t) nonconstant and, more important, N >1, of known results. {A
systenatic treatment of these qualitative properties for nonlinear ellip
tic and pérabo1ic problems will appear in the book |3}). Our main toal
are Jocal camparison techniques introduced in Dfaz |4| and Dfaz-Herndn
dez |5|;

Some of our results can be collected in the following
Theorem 1.1: Suppose that as) = nzlslpmls, P20, sty 20, UoyVoe > 0.

i) If {u,v) is a solution of (1.2), then v >0 on Q. If p> 1, then
u >0 on 1,

ii) For 0<o<1 and {u,v) solution of (1.2) suppose that for x>0
there exists @, € Q such that

0x(0m) € ((x,t) € 0 [F(x)) >h ) .
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Then we have the estimate

1-p
1- 2 2
0 culxyt) <|( |;u°;|1_m?m- MW oyt s ()
2
for any t >0 and a.a. x ¢ Q, such that d(x,anl)_z o, (t) where
sy - U (1) 2
y(x,s) -
p,(t) = max (sup [ 'l 2
A s€|0,t] Ky ? » O (if BQA C ),
xeaﬂAn 30 ”%“ )
M-U A%ﬁ(t) _%R
sy N
se?o,q [ Kapz (17 ag N (R" -a0) # 9))

2
with M = max [uu°ﬂLm(g) vy "Lm(z)]

2[1+p+
all-

‘ Ka =

1
(N-l)(P%)llﬁTI
p

)2

In particular, if ¥ 20, u(x,t) = 0 for x e QA and t >Ta, T, given by
1-
2 fluol 3,
will-p) -

. H
iif) If O<p<land if we define for ts» 0

Ta =

P(t) = (x.& qlulxt) >0}

we obtain the uniform estimate

R(t)d(xeq - P(0)|d(x, ale, - P(0)) - (an -supp By xs 32, m)

for t >0 and the growth of P(t) is given by"

(P(t) N 2,) c(P(G}N 2,) + B(O,CNE 2 )

where C{%) 15 a constant,
iv) IF0<p <1 and Uy = 0, and if for %, € 0. we have
A

1-p

0 2u(x) < Kxuz [x = xq a.e. on Q
then ulx.,t) = 0 for t » 0.

A

a
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This theorem is especially meaningful if (s} 2m > 0 for s>0. In

this case n)\

tely explicit. le also point out that Ka ——+ 4 {f @3 — 4= and this

=ofor A e (0,m1| ‘and the above estimates become comple-

1mpHes"that the dependence of T, and the estimate for Q.(t) in iii1) on

the "geometry” and size of 1 can be analyzed in terms of the parameter y.

2. MATH RESULTS

In this section we state some theorems related with Theorem 1.1. De-
tailed proofs, complementary results, and applications can be found in |6l

Now we want to study the existence of a "dead core". i.e., we shall
show that under suitable assumptions the sat {{x,t} e Q| ulx,t) = 0} with
u solution bf (1.2) has a positive measura. Qur results follow easily
from the césé of a single equation. As we want to show the full power of
our comparison techniques, we‘consider the {possibly degenerate) parabo-

lic problem

u, = 86(u) + (6 thalu) = 0 in 0
ulx,t) = wix,t) ' on § (2.1)
u(x,0) = up(x) : on 2, where

¢: R — IR is a continuous and non-decreasing with ¢{0) = 0 and o is
a maximal monotone graph such that 0 e a(0).

It is clear that if {u,v} is a solution of (1.2}, then u satisfies
(2.1) for ¢(s) = s and F(x.t) = f{v(x,t)). Here we do not insist on exis
tence and we assume that (2.1) has a solution which is at lleast continu-
ous on Q.

Theorem 2.1: Letm > 1, O<p <1, and let u be a solution of (2.1) for
#(s) = |s|"sg s and als) - |s[? sg s. Suppose that for A > 0 and T >0
there exists Q)\’T {1 such that

a1 =(0.T) clhat) € ax (0,T)] Flx,t) 2 3)
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He define for t >0
+ _ 1- =
U_%}t) = [(:nuouux?n) + 3 (1))t

Then we get the estimate B
VALY) < ult) < uh(t)
5 - - 5 (2.3)
for any x e Q’\‘T such thazt d{x, BQA,T) 207 with

. L
PA,T =X {9y 1 0 0y 7} and

w"“(x’t)m . U+ (t)m kELm_

D+A 7= max {sup [ Al2 ] 2
) tEIO,T‘ . K)\/E £
*€3Q, n an
~ lep/m
ML -
swp [ 2 )
tel0,T| ‘a2

+ + - i‘
where M, = max {Jual,, Tl . (M_ and Py 1 are defined analogously).
Remark 2.1: If f
there exists my > O such thai‘t f(x,t)j_mi, then & =q for

0<Xx < my and the above estimates take a simpler form. If 0<p<] we ex

tend some very particular results of Kersner |8 concerning extinction

in finite tine. If ¥ 20 we obtain results due to Kalashnikoy 17
Veron |9

and

< If 1<p<m and #30 ve get an estimate included in |[2].
Theorem 2,2: Suppose 0<p < 1<m, For A > 0 and
| ol {= () B
¢y
N
£ With

let xo e @y _ be such that dlxos30y ) > ”A("’) +
1] . .'Xl —

1-2/m
o () = ( M3x C Quollanfol 17 - fusf” 2
. A Ky )

=z
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Then u(x.,t) = 0 for t > Talxese), where

ool (an, o))
(1-p)-3-

Tn(xoﬂ:'.} =

Theorem 2.3: Sunpose O<p<m If x>0, T>0. we have for t e 10,T|

n"(t) D(x & QA'T - P(O)E d()(' a(QA.T - P(O)) -
m=
W, 7
. - (30 - suppj ‘p(x")"LM(O,T))} > (.EA_)

with 1 = max {Jua] . [¢]_}-
Theorem 2,4: Suppose 0 < p < l=m, A >0, T > 0.

If u is a solution such that u, e L™(7), then for 0 < t < T
1=~
plting cc(plohng, ;) + B(O,CONE 2 )y C{}) constant,

Remark 2.2: This last result seems to be new for 0 < p < |,
The following theorem is related with work by Kersner |8| concerning

the time evolution of the subsets P(t).

Theorem 2.5: Let p < m and let x, €8 o such that us(xe) = 0. We assume

that {ugl, = , - y 1= /im
! Ao 3y ) 2 e e (2 ”Lkin) I, g5} =%

and that for any x & B(xo,€)
2
0 < uolx) < Ky|x = xo|TFP7/M
Then u(xe,t) = 0 for t ¢ |0,7].
Remark 2.3: If QA T°" {and ¥ 2 0 the assuaption can be written
3

2
-p ;m

for any x e Q. This extends Theorem 11 1n {21 which s only valid for

0 2 uolx) < Ky|x - %o

l<p<m, =0 and f

it

1.

To give an idea of our methods we sketch the proof of Theorem 2.1,
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Sketch of the proof: We define the function

A
_ m
U (at) = (h )+ (U (™)
Zz T
1-p/m +
“whara hy{x) = KAIx-xol N UA/;_. is given by (2‘.2), and K

15 abtained by replacing p by p/m in the Ka of Theorem 1.1. By using
Tenma 2.1 in |5] , the explicit expression of U}t/z. and the monotoni-
city and concavity properties of the function ¢(s) - s™ and a(¢'1(s))=
= sp/m we get

T, - 0T +ha(@) 2 0.

On the other hand 1t 1s clear that

“Ulx,0) > UI/Z(D) = luglo 204 (x)

Now, for to >0 fixed, let x.en, be such that [x-x, EMI(t;), where

M;(tg) =DI t It is clear that u <™ on g and
U - a(u) + dala) > oy - ae(u) + aalu) i o, %{0,tq)
u>u on 34, x {0,to)

u(x,0) > uo{x) . on 0,

This implies, by the Maxiﬁaun Principle (more precisely, by the
T-accretivity in Ll(n) of the operator formally defined by

- ad(u) + a(u)), that u(x,t) < T(x,t)on QAx]G,tgi and for x = %,
this yields u(xq,t) < U;/z(t). The ather inequality is proved in

the same way.
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ABSTRACT

The two-body problem of classical electrodynamics can be modeled with
a system of functional differential equations of neutral typa. The delavs
arise from the finite speed of propagation of electromagnetic effects, and
hence depend on the {(unknown) trajectoriss. A satisfactory existence amd
uniqueness theorem is obtained, The proof will appear elsewhere.

NATURE OF THE MODEL

Tmagine two charged particles, each méving under the sole inEluence of
the retarded flelds of the other. Delays occur in the equations of motian
because of the finite speed of propagation& c, of electromagnetic effects.

Specifically, let the two particles bg located, with respect to some
inertial reference frame, at positions xl(t) and xz(t) in R3 at time ¢,
Then the electromagnetic effects reaching particle 1 at instant t must
have been produced by particle ] at an earlier instant t -ri(t), whare

er () = |x (&) - kj(t-ri(t))l (4 # 1),

Here, |“] s the Euclidean norm in RJ.

Introduce vl(t) = xi(t)/c and, for economy qE notation, write L
vi' and Ty instead of xi(t), vi(t), and ri(t) whenever the argument is
t. Then the equations of motion for particle 1 wunder the sole influence

of particle 1 have the form

x] = evy, (1)

vi = (eiej/ml)g(xL—xJ(t~ri), v vj(t-ri)) )
+ (elEJ/mL)G(xl~xj(t—rL), Vi vj(t~rl))v36t-ri),

e, = x - xj(t‘fL)l' (3}



