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JIDIiAZ
Applications of symmetric rearrangement to
certain nonlinear elliptic equations with a

free boundary
1. INTRODUCTION

In this article we present several qualitative properiies of solutions of
nonlinear elliptic equations of the type

-Llu + f(u) = g in @, (1)
u=nh on 5, (2)

where @ is a regular bounded opeit set of RN, L is a linear elliptic second
order operator, ‘

Ly = g =2 (a..(x) Yy g 22 (b (x)u) + elx)u (3)
i,3=1 axj ij axi j=1 ij J
where we assume
1, = '
agp by € W7(a), c e (), (4)
9
€+ I —b{x)s0, . {(5)
j ¥

2 2 N
Alx) [ & 2 I a, . (x)E.E. 2 alx) vE € R'-{0}, for
Ax) [ el R TR &l ve )

some A, A € L7(%) with a{x) » 0.

Finally, f will represent a continuous nondecreasing function such that
{0} = 0,

Equation (1) appears in many different contexts such as, for instance, in
the study of isothermal chemical Feactions [2]). There, u 3 0, L = A (the
Laplacian operator) and, usually, g =0, h = 1 and #{u) = au™ with A > 0 and
q > 0. When 0 < q < 1, it turns out that the null set of u

NMu) = {x € 2 1 u(x) = 0},

(there called the dead core) may be a positively measured set according to
the value of A and the size of Q. In this way a free boundary F(u) may be
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i
generated, being F(u) = aN(u) n 3s(u), where S{u) repre§/ 5 the support of u,

S(u) = {¥ € qr u(x] # 0},

Equation (1) also appears in the study of stationary solutions of many non-
linear evolution equations such as semilinear parabolic equations or quasi-
linear equations (the porous media equation with absorption). Many precise
references can be found, for instance, in [16], [22] and [11].

In the last few years many authors have considered the existence and pro-
perties of this free boundary F(u) for solutions of (1), (2) or other formu-
tations. The main purpose of this work is to obtain some qualitative pro-
perties on F{u) by using the symmetric rearrangement of a function in the
sense of Hardy and Littlewood.

We start, in Section 2, by recalling some results on the existence and
Jocation of the free boundary, Essentially, the existence of F(u) is derived
from the simultaneous fulfilling of the two following conditiens: (i) a
diffusion-absorption balance, given by the integral condition

@ ds s
J0+ S Fle) - JO f(t)dt, (7)
and (i) a balance between the size of the null set N{g) and the "size" of
the solution, which, in the particular formulation of chemical reactions,
reads

p e K (8)

where p is the radius of the largest ball contained in @, and K is a positive
constant dependent only on A and the dimension N. (For a more precise condi-
tion see Theorem 1.) Some location estimates on F(u} are also given, In
particular it is shown that, under some suitable assumptions on the data g
and h, a more pathological property may occur: there is nondiffusion of the
support of the solution u with respect to the supports of the data g and h.
More precisely, if f(u) = uq, ux0,0<qg< 1, and we take h = 0 and g such
that, for some K > 0,

0s alx) 5 K d0x,28(g) Y " near as(9), (9)

then S{u) = S{g). This conclusion may be understood as an elliptic version
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of the welj-kne watting-time propehty in nonlinear parabolic equations

(see, e.g., [171).

7 In Section 3 we use rearrangement techniques to obtain an igoperimetric
tnequality for the null set N(u) of solutions of (1}, (2) when g = 0 and h=1:
ameng all the linear operators satisfying (4), (5) and (6) with A(x) =A > 0
and bi = 0, and among all the domains @ with a prescribed measure, the measure
of N{u) is the greatest for the choice ai.(x) = A8, (6.. the Kronecker delta)
c =0, and @ is a ball centered at the orggin. wewglso1show that this iso-
perimetric inequality fails, in general, for the exterior problem

-lu + flu) = 0 in -G (10)
u=10on36,u=2>_0o0n2, (11)

where G is an open set strictly contained in @, and that when one compares
the solutions corresponding to all the domains p* - G* with g* g 0F,
|6 = |6] and |o*| = |of .

These results are proved by means of a general comparison argument of

interest in itself, Indeed, we consider v, the solution of the symmetric
problem

- A8V o+ f{v) = g* in q* : ‘ (12)

vz=20-. on an* (13)
or, respectively,

=Apv o+ F{v) = 0 dino* - G* (14)

v =1o0n 36* and v = 0 on ap*, {1%)

where g* is the symmetric decreasing rearrangement of g € L'(Q) (i.e., the
unique nonnegative function in LI(Q*) that is radially symmetric, nonincreas-
ing and has equimeasurable level sets with g) and 9*, G* represent balls

centered at the origin, of measure [Q] and [G]| respectively. Then, we show
that

JBr(O) flux)dx 3 JBr(U) f(v)dx, for every r > 0,
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g

for u solution of (1), (2) with h = 0, and v satisfyiﬁf_ 12), (13). Moreover,
we show that

JBF(O) flu*) “'Cu s JBr(U) flv)dx - €, for every r > 0
when u and v satisfy the exterior problems (10), (11) and (14), (15), respect-
ively. Here

c =

v
y JBG T a1J ax n do and C J = 30

3G* EL]

with n = (nj) the normal exterior vector te a(Q-G) n 3G or a(Q*-G*) n aG*,
respectively, Several bibliographical remarks are given at the end of this
section as well as an interpretation of the above comparison in terms of its
effectiveness in chemical reactions and of electrostatic capacity in the study
of the electrostatic potential of a capacitor. Finally, the case of the
muitivalued equation

-Lu + glu) 3 g

where 8 is a maximal menotone graph of RZ, is also considered,

We end this introduction by noting that it is possible to offer an alter-
native version of all the results given here, for elliptic quasilinear equa-
tions of the type

~div ([Vulp-ZVu) +flu) =g, 1<pece.

This kind of equation appears, for instance, in the study of non-Newtonian
fluids, and the null set of its solutions N(u}, there called quasi-solid
zones, plays a significant role (for a mathematical treétment of this problem
see [11] and the references therein).

2. EXISTENCE AND LOCATION OF THE FREE BOUNDARY

Concerning the existence of the free boundary F{u), our main result is the
following:

Theorem 1 Let L be the elliptic operator given by (3), (4}, (5) and (6}.
Let f be a continuous nondecreasing function with f(0) = 0, and consider
g€ Ll(n) and h € w1’1(n) such that Lh € LI(Q). Then there exists a unique
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wsuch that ( 4'*9(q) for every 1 s q < MN-1), with F(u) € L'(0), weak

solution of {1), (2). Moreover u € LTOQ(N(Q)). In addition, if f satisfies
the assumption

j ds_ . F(s) = Js f(t)dt (16
then the null set N(u) contains, at least, the set of x € N(g) u Nth,,)
such that o

dze+ wuo(M(e)), for some ¢ 2 0 and Mo > 0, (17}
where d = d(x,5(g) u S(hlag))' M(e) is a positive constant such that

fall ., s M(e) 18

L (anBy__(x)) ()

and, for y > 0 and r € R, wu(r) is given by

1 172 ds
( )= {5 ) . 19
0 i-'(s)“2 )
In particular, if u € L™{q), the following estimate holds:

N(u) = {x € N(g) u N(hlaQ) d(x,$(g) u S(hlaﬂ)) 2 K} (20)

with K=y (M), M=|u]
o L

In order to show this result, we start by considering the main contri-
bution, i.e., the existence of F(u) under assumptions {16) and (17). This
assertion w111 be proved by using suitable barrier functions G{x: Xo ) =
n fx-x j defined on balls B (x ) for points x, of the set N{g) u N hI
We sha1i try to find a funct1on u {i.e., n) such that u is a superso]ut1on
{resp. subsolution) of the equation, and from this we shall derive our con-

clusion, To do this, we note that if, for simplicity, we take Xy = 0 and
call r = |x|, then

- 5%, ') i
Ln{r) = n"(r) i% aij(x) —;EJ.+ n rr [12 a4 ——Z— - {E a; ( )
> 52—-a (% )Xi 1 bj(x)xj]] ¢ (elx) + T =2 bj(x))n(r).

. i .
i, %% 1Y i oy
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Using assumptions {4), (5), (6), we have
-Ltn(r) 2 = Ap n"(r) - % n'(r), (21)
where

= || A | (22)
I ) ’

and C is a positive constant dependent only on N and the coefficients aij and
bj of L. We note that, in the particular case of L = A, we arrive at the
famiTiar expression

“Ln(r) =-n*(r) = ) ey, (23)
As we shall see later, the existence of F{u) is related to the existence
of nontrivial solutions of the homogeneous Cauchy problem

4
+ Ut = Cof(u), (24)

u

u(0) = u'(0) =0, (25)

where C1 and C2 are given positive constants, Note that, obviously, u =z 0 is
always a solution and so functions f leading to uniqueness theorems, (e.g.,
f Lipschitz continuous) will not a]]gw us to obtain the reguired conclusion.
When 51 =0 {i.e., when ¥ =1 in (23)), it is not difficult to show (see,
e.g., Lemma 1.3 and Theorem 1.4 of [11]) that the existence of nontrivial
{and nonnegative) solutions of (24), (25) is in fact equivalent to the inte-
gral condition {16) or, more precisely, to condition (16) at 0" (i.e. (7.
Here, such conditions are understood as that the integrandiF(sTVZbe1ungs to

Li(~g,s) (condition (16) or L1(U,s) (condition (7)), respeétive1y, for some ™

£ » 0, We also remark that, if ¢, = 0, equation (24) 1is autonomous, so a
uniparameter family of solutions uT(r) can be constructed, assumed that (7)
holds, Indeed, given 1 2 0, the function

uT(r) =

0 iflgr<t. (26)
s

nlr-1) ift s rs wu(m) + 1

]

is a solution of (24) with CI = 0 and (25), where in this case p = C2 and
-1
N

The non-autonomous case C1 > 0 is considerably more complicated. We first
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show the existy 2 of super and subsolutions.

Lemma 1 Let C, and C; be positive constants, and assume that (7) holds. Let
£ be the noniinear o.d. operator given by

C
slu) = - - Lt v g, (27)

and for u > 0 and r € {0,¢u(+ =)), define

n(r,p) = ¢;1(r). (28)
Then we have:
(i) Ifupz C, then tin{r,u)) <0 for r > 0,

(i) If 0 << Hgs Mg = Cp/(Cy+1), then £(n(r.u)) > 0, and £in(r,u)) 2 0,
for r > 0.

(111) For every T > 0 the function n (r,u) = n([r-t]",u) satisfies
£ln (ryu)) < 0 (resp. £n_(r,u)) > 0) if p 2 C, (resp. u>ug) for
ro> T, ‘

Proof By differentiating in (28) we find that n' = y?ﬁ'F(nf/z,we deduce
that n'(0,1) = 0, n'(rou) > 0 if v > 0, and n(1,p) i5 a convex bijection
from [O,wu(+ »)) onto [0,=). Moreover,

n" = uf(n)

and then

Vo
£ln) = (Cmu)fln) = — f(m) /2,

So £(h(r,u)) < 0 if ¥ 2 C,. On the other hand, if we introduce the function
alr) = /2§ F(n(r,u)ﬁe, it is easy to see that ¢ is convex and then ¢(r} g
¢\ (r}r. 1In consequence,

£(n) z (C,-u)fln) - Cyp'lr) = (Cz-u(C1+1))f(n),
which proves (ii). Finally, let ¢ > 0 and r 2 7. Letting s = r-1, we have

2 c
f(n([r"1]+,u)) = - di'z' !’](S,Ll) - ﬁ% n(ssl-') + sz(n(ssu))
< .
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and again the conclusion fallows from the convexity of the auxiliary function
[ o

An existence result for solutions of (24), (25) can be obtained from the
above lemma.

lemma 2 Assume that C1 and C2 are positive constants and that condition (7)

holds, Then, for every R € (O,wIJ (+=)), Mg = CZ/(CI+1), there exists a .
4]
solution uT(r) of (24), (25) such that uT(R)

n

n{R,u ). Moreover,
0 5 u (r) ¢ n(r,u,) for every r € (0,R)
and uT(r) >0 vr € [1,R], with 1 ¢ R(1—1//T:ET).
Proof Let uT(r) be the unique solution of the two-point prablem
Lu =90 on (O,R)
u'{0) = 0, u(R) = nlR,u ).
Using part (i1) of Lemma 1 and the comparison principle, we obtain that
0% uT(r) s n(r,uo) for r € (0,R).

Finally, it is easy to see that by choosing Ty = R(1—!//1+c1), n(R-TO,CZ) =
an,TO). Then, by part (iii) of Lemma 1 and comparison results, we deduce
that

+
nllr-t,1°,C,) = u(r) for r € (0,R),
and so the function uT(r) satisfies all the requirements. o

Remark 1 In the special case of L = 4 (i.e., i = (N-1), C2 = 1) and

fr) = Alrlq'1r with g > 0, conditions (7) (and (16)) hold if and only if

q < 1. In this case Lemma 2 can be improved, and an explicit solution uo(r)
of the associated Cauchy problem can be given, More precisely, it is shown
(see (123,0r Lemma 1.5 of [11]) that for C > 0 the function

u(r) = crd/1-d

is such that £{u) =0 if C = Ky 5\,1:(!.1) >0 if C <« KN \ and £(u) < 0 if C>K
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where

2 1/01-
) ]/“Q) o (29)

K = }\(1-q
N, [2(2q+N(1-q))

Now we return to the proof of Theorem 1. The existence and unigueness of
the weak solution v is a direct consequence of the important work of Brezis
and Strauss [9]. We give below these and some others of their conclusions
that we shall need later.

Theorem 2 ({9]} Assume that L, f, g and h are as in Theorem 1. Then we
have:

(a) There exists a unique function u with f{u-h) € L1(Q) and u-h € N1’q(ﬂ)
for every 1 g g < N/(N-1), such that

J {L . LN éﬂi-+ £ b.u é%L - cuvldx + J flu-h)vdx = J {g+Lh)vdx
TN S T T A 2 2
for every v € w;'”(n).

(b) If, in addition, g € LP(q) and Lh € LP(q) for some 1 < psw, then

f(u-h} € LP(n) and, in fact, u-h € Ng’p(ﬂ) if1<p<e=

(e} 1f gy €9y d.e. 0nQ and h1 s h2 on 3%, then the corresponding solutions
u, and Uy satisfy u; § Uy, 3.2, 0N Q.

{d) Let fn(r) be a seguence of Liﬁschitz continuouszand nondecreaéing
functions (fn = n{I-{I + ﬁf) ), and let g, € LI(Q) and hn, with
Lhn € LZ(Q), such that g  +g and Lh_ -~ Lh in L (). Then U, > u
and f(un-hn) + flu-h) in Li(ﬂ).

Remark 2  Theorem 2 is, in fact, formulated in [9] (only for homogeneous
boundary conditions h = 0) as a particular application of an abstract result.
Nevertheless, some easy modifications lead to the same conclusions for the
general case h £ 0. We refer the reader to Chapter 4 of [11] for details.
Also, several local L™ -estimates for the solution u are collected there,

including the regularity u € LTOC(N(g)).

Proof of Theorem ?  After the comments above, we only need to show that y
vanishes at the points x € N{g) v N(hlaﬂ) satisfying (17). Let e > 0,
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d = d(x,S{g) U S(hlaﬂ)) and R = d-e, By Lemma 1 and (21) the function
G(x) = n(!x-x0|,§) with g = 1/{ag + C) (AR and C given by (21) satisfies

-Lu + f{u) 2 0 in BR(XU).

On the other hand, let D_ = o n B (x_) and |jul| £ M{e). Then, if R is
£ R'" 0 . Lm(DE)
such that R z y_{Mf)), by the definition of 4 and R we conclude that
H

-Llu + F(u) 2 0 = ~Lu + f(u) in D_»
Gzu on 30 .
[

Thus, by (c) of Theorem 2 we conclude that u $ U a.e. in Ds' In an analogous
way, letting u=-u if f is an odd function, ar alternatively by finding non-
negative subsojutions of the corresponding homogeneous Cauchy problem, we
arrive at the comparisan U s u (with g(xo) = 0) and so u vanishes (in an
obvious weak sense) at Ko We note that, if u ¢ Lm(Q), then we can take
directly R = d = d(xO,S(g) u S(h]ag)) and M = M(e) = |lul] _ , which proves
the estimate (20). o L)

As pointed out in the introduction, the existence of the free boundary
Flu) is assured, in Theorem 1, under two kinds of conditions, both of them
being optimal. The integral condition (16) represents a balance between the
diffusion (here related to its homogeneity number ) = 2) and the absorption
{given by f or F). On the other hand, if the null set N(u) is not empty
there must exist peints x € N(g) u N(hlan) where inequality (17) is fulfilled.
If, for instance, u € L™(Q), the set of the right~hand side of (20) is not
empty when condition (8) (giving the balance between the "sizes" of N(g) and
u) holds with K = wu (M), The optimality of (16) is proved in [20] and that
of the balance (8) iz [81. |

A sharper estimate on the location of the null set N{u) may be given in
some cases. For instance, if we know that u ¢ w1’“(9), using L"-estimates for
Vu we can obtain estimates (in the reverse semse of that given in Theorem 1)
of the type

N(u) = {x € N(g) u N(n]|

) d(x,5(g) U S(h|..)) 2 K*}

a6 3l

for some K* > 0 (see [13]),
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A finer estimate of the location of F(y) is also possible when some inform-
ation on the decay of g or h near the boundary of its supports is known. The )

following result is only a particular statement for the case of g 2 0, h = 0,
L=a and f(s) = x]s{q'1s. For a more general formulation, see [11].

Theorem 3 Assume L =4, 0 < g < 1 and suppose g € L™(q) such that
0 < g(x) s Kd(x,35(g))?%/ (1-a} (30)

a.e. x € S(g) with d(x,as{g)) s R, for some suitable constants K and R. Then
ifue w;’p(g), 15 p < N/(N-1) satisfies (1) then S(u) = S(g), i.e., support
of u = support of g.

H

Proof First we claim that u = 0 on 3S(g). Indeed, let X, € a5(g) - an -
(recall that u = 0 on 3n), and consider the set g n BR(xo). Given
XeEqoQn BR(xo), it is clear th;t d{x,s5(g)) g |x—x0|, because X, € 3S{qg).
Then, by (30), we have that

0 s glx) s K|x—x0|2qﬂi-q) a.e. X €N BR(xo)

(note that g = 0 in BR(XO) n N{g). Now, assume K such that there exists
Ce (0,kN A)' with £(Cr Zq/(lmq)) 2 Kr2q/(1—q). By Remark 1 (or Lemma 1)
we conclude that the function ulx) = C[x-xolz/“_Q) satisfies

a0 + F{0) 2 g = - au + F(u) ace. in g n Bplx,).

On the other hand, if R is large enough, so that cid/1-9 M, with

M= | , then G zuon 3(an BR(XO)) and, by the comparison principle,

lull o
L (n) .
Dgugidingn BR(XO). This proves that u = 0 on 3aS{g) if K and R are

adequate. Finally, consider the region Q@ = {x € N(g): d(x,S(g) s wu (M)}
0
with Mo given in Theorem 1. On this set, u verifies that =-au + f{u) = 0,

On the other hand, aQl = 2,2 U 3,8 U a4fl, where 3,{t = a2 n 30, 3, = 25(g) nfi

and 335 = {x € N{g) : x € afl-an and d(x,35(g)) = v, (M)}. Then, u =0 on
a
915 U 925 and, by Thecrem 1, u = 0 on a35. In consequence, from the unigue-

ness results applied to {i we deduce that u = 0 in @, which ends the proof. o

Remark 3 The results of this section may be extended to many other situations:

quasilinear equations; non-monotone absarption terms f{u) or terms depending

eventually on x, f(x,u); external data g belonging merely to a measure space
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(M(2)) or a distribution space (H_l(n)), etc., On the other hand, further
studies of the free boundary F(u) concerning its regularity, behaviour of u
near F{u), convexity and other topics are already available in the literaturs
for the semilinear problem (1), (2) when simplified by taking for instance,
L=4a,9g=z0and h =1, For details and references we refer the reader to
the monagraph [11]. ]

3. REARRANGEMENT AND THE INTERIDR AND EXTERIOR PROBLEMS

One of the main purposes of this section is to show the following result on
the geometry of the free boundary F(u), or, more precisely, on the null set
N(u).

<

Theorem 4 Let g = 0, h = 1 and let y be the salution of the problem (1),
{2). Then, among a1l the linear operators L satisfying the assumptions (4),
+(5) and {6) with x(x) = A > D and bj = 0 and among all the open domains @
with same measure, the measure of the null set of the corresponding solution
is the greatest for the choice aij = Xaij (5ij the Kronecker deita),¢ = 0, and
Q a ball centered at the origin. Moreover, if the solution of this last pro-
blem is stricttly positive, the same happens for the solution corresponding

to any other choice of aij’ A and &, Finally, the above results are not true,
in general, when the comparison is made for exterior problems such as (10),

(11}, when the measure of the open subset G is also prescribed.

The proof of this theorem will be obtained as one of the many conseguences
of a more general result involving rearrangement techniques. We first recall
some definitions. Let u be a measurabie function defined in a bounded open
set 0 c:RN, Nz 1, with measure meas{n) = |n| . Then, the distribution fune~
tton of u (or [u]) is the function y:[0,w) +R* defineq by

u(t) = meas {x € : {u(x)|>t},
The decreasing rearrangement of u, U, is defined by
u(s) = inf {t2 0 :u(t) <s), Ossslof .

Finally, the symmetrie decreasing rearrangement of u is given by

u*(x) = i(mN[x|N). if x € %,
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where wy is the volume of the unit ball in R\ and g* is the ball, centered
at the crigin, of measure |o| . It will also be useful to introduce a com-
parison argument between two given functions ¢ and p of L’(Q): we say that
the concentration of ¢ is less than or equal to that of y (¢ ¢ ¥) if

t t
J p(s)ds ¢ J P{s)ds  vs € [0, meas(p)],
0 ]

or, equivalently, if

$*(x)dx g J p*(x)dx  vr e [0, meas(n}].

JBr(U) Br(O)

Many basic properties of those functions are well known in the Titerature
{see, e.g., [15], [23], [6] and [21]). Here we only recall a few that will
be used later. If F is a Borel-measurable real function then

| rnaxcs [ rwnes
Q

if, moreover, F is positive and nondecreasing, F(u*) = F{u)*. If u and v
belong to LZ(Q), then

J uvdx g J u*y*dx
2 ar
(Hardy-Littlewood inequality}. In particular,

JD |u] dx SJJDE U(s)ds

1

»P
o (p*) and

for every measurable D <= . Finally, if u € w;’p(ﬂ) then u* € W
J |ou*|P dx s J [vu|P dx
Q Q

for every 1 ¢ p < = .

The proof of Theorem 4 will follow from the two general comparison theorems
in which, for the sake of simplicity in the statements, we limit ourselves to
the case of operators L with bi z 0 and a(x) =1 > 0.

Theorem 5 Let f be a continuous nondecreasing func?i?n with £(0) = 0 and Tet
g, € LI(Q) and 9, € L’(Q*) with g5 = 9y Let u € WO’ {a) such that -Lu + f(u)
=g in g, and Jet v € W;’1(Q) satisfying ~aav + F(v) = 9, in @*. Then, if
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g; < 9p we have flu*) ¢ f{v). In particular,
J flulx))dx = f F{v(x))dx. (31)
Q aQ*

Finally, if w € . *'(q) satisfies -naw = g, in g%, then

U* S W a.e. on O, (32)
With respect to the exterior problem we have

Theorem 6 Let f be a continuous nondacreasing function with £(0) = 0. Let
G be an open set strictly contained in g. Let gl(x) =g, € [D,m)zand

9, € L"(a*-G*), being a radial nonincreasing function. Let u € W'P(g-G) n
L*(g-6), ¥1 5 p < =, such that

~Lu + flu) = g9y on Q-G , (33)

u=1on 3G, u=10on 3. (34}
Let v € Nz‘p(n*-ﬁ*) n L™(q*-G*) satisfying

-aav + F(v) = g, ing* - G* (35)

v =1o0n36* v =20 o0nan* - {36)
Then, if 9y 2 52 {g = extension to Q* by supfg| on @), we have that

Flur) - ¢, < Fv) - ¢ (37)
where

Cu = JaG b aij é%% njdu and CV = A J = do,
where n = (nj) is the normal unit outwar? vector to 3(p-G) nzGor 3(n* - G*)
n 36*, respectively., Moreover, if w € H (Q*-G*) satisfies -\Aw = 95 in
Q% - G* with w = 1 on 3g* and w = 0 on ag*, then

(u)*

u

<

a.e, on Q* {38)

zfﬂil

with
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= L)
Cw = A JBG* 5 do.

We shall prove simultaneously both theorems by using some preliminary
lemmas,

Lemma 3 Llety € H;(Q), uz 0, with flu) € Ll(n) {resp. v ¢ H1(Q-G) n L™{n-G)),

with f(u) € L™(a-6)) satisfying -Lu + Flu) = g, (resp. u 2 0 satisfying (33),
(34)) with 9y € LZ(Q) (resp. 9, € L™(-G)). Then the function

o(t) = I R é%L
fust) i, ' ¥y 3%y

is a decreasing Lipschitz continuous function of t and we have tha inequality

i u(t) u(t)

0s-o' (s [ G- [ ite)ds, aetro (39)

0 0
{resp,

05 -o (1) s j a2l n.do+ J”(t 3, (s)ds

26 1 9% 0 1 (40)
u(t) ~
- jo F(u(s))ds = 161C gy Il - [ FGu)ll_)

a.e, te (01 1|u”m))|

where 1(t) is the distribution function of u (resp. of u),and ¢ denotes the
extension of ¢ to o by || 4]l _ on G of any function ¢ € L™(0-6)).

Proof Given t,h € R', let Tt h:R+ > R* be given by
Tt,h(S) =0if0s5s 5 t, Tt,h(S) = 5-L if t <'s < t+h,

h if 5 > t+h,

it

t’h(S)

Then, by well-known results (see, e.g., [141), Ty plu) € H;(&) n L%(n).
From the information on u we have
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_ i TR TR G
#lteh) + olt) f{t<u<t+h} %5 1 B g Jng1‘ DT plulex

(,-Fu)dx + b | (g4-F(u)) (= E)ex,

|
{u>t+h} {t<ust+h}

Hence,

~d'(t) s j (g,-flu))dx a.e, t >0,
fust} !

On the other hand,

" ) pmt) .
J{u>t}g1(X)dX = Jn g1(X)1[u>t}dX Y Jn 91 1{U*>t} = JO 91(5)d5.
Moreover,
” n{t) .
[ stwexs [ etoteamy = [ Gits)as,
{u=t} t 0

which ends the proof of (39). To prove (40) we note that now Tt h(u) €
H‘(Q-G) n L (0-8) with Tt h(u) = 0 on 92, and so, by the Green formula,

~3(t+h) + ®(t) = h J T a,, iﬂL n. +h

{g,-FlulIT, (u)dx.
O AT PR J{t<ust+h} ST e

Moreaver,
uit) =~
J gy (x)dx = J gy(s)ds - |lg )| .16l (41)
{u>t} 0
and
M(t) ~
ff(u)dx = f(ui{s))ds - ||F(u)]_ |Gl (42)
{u>t}
We conclude as before, ) —

Using the Fleming-Rishel formula and the De Giorgi isoperimetric theorem
(see details in [26] and an alternative proof,when p(t} is continuous,in
[18]), the following result is proved,

Lemma 4 tet z € H;(Q), z 2 0, Then one has

N ® () DM ¢ (et (- 8

£ jvz| 2ax)} (43)

J{z>t}

for a.e. t > 0, where u(t) is the distribution function of z.
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Lemma 5 Letu € H& s W20 and g (resp. ue H'(0-6) n L(2-6), u 2 0,
g1) be as in Lemma 3 (also let 9 be a radial on (0,[n|]) and satisfy

TR, A JZEJS 3,(6)de - JS f(i(e))de1? a.e. se(0,|0])
gt s NwN;Js(”");’ 0 ! 0 B ’

(44)
(resp,
- %%(S)
X 2 Ju Sz
g L 1°0] ra,. 2in.dg + (9)ds
IMILRUSRYY J . J g
NmN s T B ¢ 0 L
(45)

S o~
- jﬂ F(ute))do - 6| fla, |l 1wl )12

for a.e. s € (0,]2]1).

Proof  First we remark that, if z € H;(Q), then

d J 3z 92 d J 2
- ra.. == EEdx oz -a [vz|© a.e. t > 0,
dt (2>t} X axj at (25t}

where A is given in the ellipticity condition {6) (recall that we are assuming
Alx) = A > 0). Indeed, it suffices to integrate the inequality

Eaij g¥§-§%?-a A |Vz[2 on the set {t < z{(x) s t+h} and then take the 1imit as
1 J

h + 0. Then, using Lemmas 3 and 4, we obtain that

' (t) u(t)
Is A (" 5 (s)as - Flils))ds) ave. t > 0.
[Nw;/Nu(t)(N-l)/NJZ JO g] JO uis 5) a.e >

By integrating between t1 and t2' 0z t1s t2 $ ess,sup u, we get

t (t) He)
_ A 2 ~2(N=1 )N VL B ~ \
ty-ty s zﬁ;§7ﬂgg J u(t) [Jo g,(e)deJ ) fu(s))de]®y' (t)dt,

2 (46)
Now the formal idea is that y'(t)dt 3 du(t) and then, for every 0 g t1 < t2 <
ess sup u,

A Wt a1y (= L 3
t,-t, § [| g,{8)de-| flu(e)}daldr. (47)
T Ju(tz) ' Jo ‘ J0 T

171



K

A rigorous proof of this inequality needs some results of integration theory

and can be found in [21] and [11]. Finally, to prove (43), let 0 <5,55, 5|9
such that t,) < I(t,). We have that meas (6 €(0,[2]):u(8) > ufs,) - elzs,.
Then making t2 = u(sz) and t

| = G(sl) - ¢, and estimating the second member
of (46), we deduce

Ws,) - e - dls,) € —3 Jsz r_z(N_1)/N[Jr§1(B)de-Jrf(E(e))delédr-
(Nuwy' ™) 54 0 0

Since e is arbitrary, taking Sy, = 5+ h, multiplying by 1/h and letting
h + 0, we obtain (43), .

In the case of the exterior problem we note that u € L™(g-G) and that, in
fact, 0 s u s 1. Then, if U is the extension of u to p by taking U = 1 on
G, we have that u € H;(n) and so the proof of (45) is exactly as in the *
interior problem (note that now p(t) = uo(t) + |G| , where y and B, are the
distribution functions of U and u respectively)., o

Lemma 6 Let g, € LZ(Q) with g, = g (resp. g, € L”(g-6) with 52
Let v € H;(Q*). v 2 0 satisfying -aav + f{v) = g, in o {resp. v
nLT(2*-G%), v 2 0 satisfying (35), (36)). Then one has

= §,).
¢ Hl(a*-6*)

- gi(5) =T A JZEJSQ (a}de - jsf(G(a))deJé a.e. s € {0,]|Q)]
ds Nmé;”s(”_ W g2 0 o T
(48)
{resp.
- 5 .
- %(5) [WZ—WWJZUJ %ﬁ do + J QZ(S)dB .

Y ~
JO f(v(e))de - |G|( ng|Ln— Hf(v)“m)]é a.e. s€(0,|9[]).
(49)
Proof By uniqueness, v{x} = v*(|x|) = ;(mN]x|N). On the other hand, it is
a routine matter to check that, after obvious changes of variable, v satisfies
(48). The proof of (49} is by analogy a direct consequence of the symmetry
of v. Note that, in fact, (18) and (19) can alsc be proved by means of the

proofs of Lemmas 3, 4 and 5 and noting that all the inegualities now become
equalities, o

Proof of Theorems 5 and 6 By comparison results (Theorem 2 part {c)) we
can 1imit ourselves to the case 9 2 o, g4, 2 0, and souz 0Oand vz 0. On
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2
the other hand, by Theorem 2 part (d), we can also assume g, € L-(s),
g9, € Lz(n*) (and then u € H;(ﬂ). vV E Hé(ﬂ*)) without loss of generality.
Now, let us consider the set

t t
J={te(0,je]]: JO fluls))ds > JU fv(s))ds}.

From (43), {47) and the assumption gT < g, we obtain that

- g% {u(s) - v(s)) < 0 a.e. on J.

Hence, if a = inf {t : t ¢ J}, it is clear that a > 0 and

d a
{ f(i(s))ds = j £(3(s))ds.
0 0

But f{u(s)) - f(v(s)) is a positive increasing function on J. Then

(a,|@|1 = J, which implies that 0 = i(|q|) > v(|a|) = 0, a contradiction,
This proves that f{u*) < f{v) which, by equimeasurability of u and u*, gives
(31). Moreover, if w € H;(n) satisfies AW = 95 in q* then, as in Lemma 6,

di ]ths 3,(8)dg? (50)
T ds O MUTINIRETIRS R 9 .
Nooy
Hence, from (43) and (49),
- é% (u(s) -w(s)) s 0a.e. t>0, (51)

and then, since U(|a{) = w(|q|), the conclusion u* 5 w* = w follows by
integrating from s to |2] in (51).
To show Theorem 6 we argue as before but now taking

t . t .
J = {t e (0,jql]: Jo fluls))ds - c, > Jo F(v(s))ds - C}

or integrating directly in the case of inequality (38). o

Now we return to the proof of Theorem 4. Me still need another auxiliary
result due to Hardy-Littlewood and Polya {14} (see also [61, [111).

Lemma 7 Let y,z € L1(D,M) be nonnegative functions and y(s) nonincreasing,
Assume that

t t
J y(s)ds g J z(5) for every t € [0,M].
0 0
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Then for every continuous convex function ¢ we have
t . t
JO o(y(s))ds s JU #{z(s))ds, for every t € [0,M].
Proof of Theorem 4 Let u be the solution of (1), (2) with g , h =1

{(and b, = 0). Then the function U(x) =1 - uy(x) belongs to H ( and satis~
fies

-LU + £(U) = £(1) in g
where f(r) = £(1) - f(1-r). By analogy, if v € H1(Q*) satisfies -aav + F(v)=0
in Q% v =1 on 3% then V=1 - v € H (0*) and verifies

-\aV + F(V) = £(1) in o~ ‘

Then, applying Theorem 5 to the choices f, 9, =9, = (1), Uand ¥, we get,
by Lemma 7, that

jﬁ s(F(U(x)) )dx < [m o(F(V(x)))dx. | (52)

We also remark that, by the comparison principle (Theorem 2(c}), we have

0zUs<1, 05V s 1. Now, givene > 0, let ¢E(t) be a convex function
satisfying

2 (r) =0if0srg (1) - ¢ and ¢E(%(1)) = 1.

Then, by (52),

1)-¢} Fzf(-er

Therefore

meas {U = 1} =J ¢€(f(1)) 5 J L (F(U))dx s meas {x:F(V(x)) 2 £(1)-c}.
(U=1} {F(U) 2 F(1)-e3
Letting e + 0, we obtain, in the limit, that (since £ '(0) = 0)
meas N(u) = meas {x € Q:U(x) =1} smeas{x €n*:V(x) =1} = meas N{v).
On the other hand, taking o(t) = tP with 1 < p <w, we deduce from (52) that
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zdx S JQ*¢E(%(V))dX s J = meas{x:?(V(x))a?(1)ngL

F(u) < ||F(v)
U] Pla) s ([T o

Making p + + = we conclude that

ess sup U g ess sup V.
2 a*

Then, if v > 0 on o* we have that 0 g V(x) < 1 a.e. x € g* and so U{x) < !
a.e. x €9, i.e. u>0onq. This, jointly with the next counterexamp1e,
completes the proof of Theorem 4. o

The fact that the null set N(u) of solutions of the exterior problem does
not satisfy, in general, an isoperimetric inequality, in contrast with the
interior problem, can be easily seen in the one-dimensional case. Indeed,
let T satisfy assumption (16) or {7), and let ¢(t) be the unique solution of

u'(t) = /2 F(u(t)y2
u(1) =

By (16}, it is easy to see that there exists T, > 1 such that o(t) > 0 49F
15teTpand ¢(t) =0 if t2 T (Note that in fact To-i wl(l),

o(t) = ]1(T0 t), see the proof of Theorem 1.) Now, take @ = (0,7, + §) and
6 = (g,1). From the above considerations we conclude that, if u{x) is the

[}

solution of
-u" + flu) = 0 in (0,e) U (*»,T0 +8)
u(0) = 0, uled = u(t) = 1, u(T, + 1) = 0

then u = ¢ on (1,TO + §) and so N{u) = [TO,T0 + &), assumed € small enough.
Nevertheless

T ) T o8
. e 1
Q* = ( _2"— ) G* = ( "'2—")
~and the corresponding v{x) satisfies
To 1+ 1~ T0+(S
o F(v) = 0 e (- G, - 1y o (BE, S,

T,-8 T, *8
- =) = vlg) = 0l

In particular, since the equation is autonomous, it is easy to see ([11],

1+E) - v(ljg) = 1.
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T +§
. 0 1-
Th. 1.4) that, if —— - (—EE) -1« ¢1(1), then v(x) > 0 in Q*-G* and so
N(v) is empty. In consequence, it suffices to take ¢ and § such that
gre-2 < 2w1(1) to show that meas N(u) § meas N{v). In fact, in the Tight of

the proof of Theorem 4, we can conclude that meas N(u) - Cu < meas N(v) - C ,
v

but the present counterexample shows that, in general, C 2 C . We shall
comnent later on this inequality. ’ )

It is a curious fact that if we invert the values of the boundary condi-
tions in the exterior problem, the same isoperimetric inequality as in the
jnterior problem,holds for N(u) in some cases.

Theorem 7 Let f be a continuous nondecreasing function with f{0) = ¢. Let
G be an open set strictly contained in Q. Llet u € Wz’p(ﬂ-G) nLo(eG),
1 5 p <=, such that

-Lu + f(u) =0 in g-G ,
u=00o0n3, u=1o0n 3.

Llet v € Nz'p(ﬂ*~G*) n L%(a*-g*) satisfying
-aby + f(v) = 0 in g* - g%,
v =0 on 3G*, v = 1 on 3aQ*.

Assume that d{G,S(u)) > 0. Then

meas N(u) < meas N(v).

Proof The functions U{x) =1 -~ u(x) and V{x) =1 - v(x) satisfy the exterior

problems (33), (34) and (35), (36) respectively, with ?(r) = f{1} ~ F{1-r)

instead of f(r} and g, = g, = f(1). Then, by (37) and remarking that ——
CU = -Cu. CV = - Cv, we have '

flu*) + C, % (V) + C,-

But note that, by the maximum principle, v 2 0 on @*-G* which implies C_ s 0
v .

On the other hand, by assumption, Cu = 0, Therefore, FU*) < %(V) and we
conclude as in the proof of Theorem 4. o v

Some bibliographical remarks on the results of this section are in order,
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Remark 4  An earlier different proof of the Theorem 4 for the interior pro-

blem and some additional assumptions (for instance, f Hdlder continuous) was
given in [8]. In fact, our proof gives at the same time useful information
on the guantity

1
e = Tal JQ flu(x))dx,

where u is as in Theorem 4, called effectiveness in chemical reaction theory.
Indeed, the proof of Theorem 4 shows that the ball is the domain with pre-
ccribed volume having the lowest effectiveness. This gives an answer to a
question raised by Aris and already considered in [1] and [8].

Remark It seems that the first application of rearrangement techniques to
obtain a priori estimates of solutions of PDEs was given in [31] for Tinear
equations. A sharper result, containing the comparison u* & w of Th. 5 was
proved in [26] and later in {271 for nonlinear equations (see also an alter-
native proof in [18]1). The general comparison flu*) < f(v) of Theorem 5 was
first shown in [10] and [18] for the linear case and later in [19], fﬁﬁﬁ and
[21] for nonlinear equations. CQur proof is inspired by earlier ones, only
making some delicate points rather more precise. It is important to remark
that (as already used in the proof of Theorem 4) Theorem 5, jointly with
Lemma 7, allows a priori estimates on u to be obtained, such as, for instance
s uv]|Lp( " for every 1 < p £ = (see finer estimates in the

1 ooy
quoted references). Other applications of rearrangement techniques to the
study of symmetry and even to the obtaining of an improvement of Theorem 1
for the existence of the free boundary F(u), are given in {111,

Remark 6 The results of this section may be gasily extended to the case of
guasilinear equations ({111). 0On the other hand, the simplifications

ax) =2 >0 and bi = 0 made throughout this section may be avoided by using
the approach of the works [33, (41, [5] and 28], for 1inear operators
involving first order terms and eventually degenerated.

pemark 7 In the particular case of f =0, and 9y =9 = 0 the solutions u,v
of the exterior problems (33), (34) and (35), (36) represent the electrostat
potential of a capacitor Q-G or Q*-G+, respectively. Note that, in this cast
3*(0) = w(0) = 1 and so (38) reminds one of the earliest applications of re-
arrangement technigues in mathematical physics: the electrostatic capacity
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of a capacitor in R3, given by 4nCu,is the Towest in the case of a spherical
ring, This isoperimetric inequality was first proved in [25] (see also [23]
and [21]). The rest of the results for the exterior problem seem to be new
in the literature.

Remark 8  Another interesting extension of the results of this section con-
cerns the multivalued equation

- Lu +8(u) 3ginag, (53)

where now B represents a maximal monotone graph of R2 with 0 € g(0). The
interest of this general formulation comes from the fact that equation (53)
includes the special cases of the obstacle problem (B{s) = @, the empty set,
ifs<0,8 (0) = (-=,0] and B(s) = {1}), zeroth-order reactions (R(s) = {0}
its £0, 8{0) = [0,1] and g{s) = {1} if s > 0), as well as equation (1)
(g{s) = (f(s)}). We recall that, with obvious changes, Theorem 2 was proved
in [9] for the general equation (53). On the other hand, it is a trivial fact
to extend Theorem 1 to that equation {now F needs to be replaced by the
adequate convex function j such that 3j = B). Moreover, if 8 is multivalued
at the origin (g{0) = [3+(0), B8 (0)1, the free boundary F(u) does exist even
for data g not necessarily vanishing on a subset of q. If, for instance, we
know that u z 0, then a sufficient condition for the existence of F(u) is

g(x) s 8%(0) - ¢, (54)

for some ¢ > 0 and x belonging to a targe encugh subset of n (see e.g., [111).
With respect to the application of rearrangement to these problems, we point
out that all the theorems remain true by replacing f{u) by bu =g+ Lu and

f(v) by by = 9, + Aav. Moreover, another interesting result is availabie when
we take, in the proofs of Theorems 5 and 6, the signed decreasing rearrangement

of the data 9, and P respectively. In this definition,
u(s) = %nf {t €Rimeas {x € 0 : u(x) > t} > s}
and, finally,
ur(s) = Gluylx|™)
for a given function u € LI(Q). How the version similar to Theorem 5 is
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; ) o
Theorem 8 Let R be a maximal monotone graph of R% with p(0) = [g"(0),8%(0’

1 1 that
-w 5 (0)s0sB(0) 2w Let 9y € L () and g, € L'(2%), g, Sud;, o
its signed decreasing rearrangement g% coincides with P let u € WU
withuz O0Oong, Lu € L1(Q) satisfying (53). Then, if the signed rearrange
ment of 9, is such that gT 5 9y, we conclude that

u* < v,
with v € w;"(n*), vz 0 onatand -Aav € L' (0%) satisfying
~AAV + B#(v) 3 gy on a*,
where B# is the maximal monotone graph of R2 given by
gl (r) = 18001 iF r > 0, 8'(0) = (-=,8"(0)1, BF(r) = 0 iF v <,

Note that, if g(r) = {f{r)} where f is a continuous nondecreasing funct
with £(0) = 0, then B”(r) = {0} for r > 0 and thus Theorem 8 give% the com
parison u* s w of Theorem 5, assumed g, 2 0. +Neverthe1ess, ?f B is a mult
valued graph at the origin, i.e., if g8 (0) < g (0), then the important hypo-
thesis u 2 0 (or v 2 0) may be compatible, with data 9, (or 92) eventually
taking negative values, (This is the usual case in the obstacle prob1?mt)
Repeating the proof of Theorem 4, it is easy to see that, if u 2 0 verifie
(43), then the condition.

J (9,00 - 6"0x < 0
Q

implies that the null set N{u) has a positive measure, and that, in addi-
+ ; istence of the free
tion, meas {x : g1(x) - g7 (0) > 0} >.0, Fhen the existe the free
boundary F{u) is assured (compare this with (54)). These resu P
in {7} for the obstacle problem (see also {201} and in {11] for a general

maximal monotone graph.

References
[1]1 Amundson N.R. and Luss, D., On a conjecture of Aris: proof and
, MN.R.

remarks, A.I.Ch.E.H. 13 (1967}, 759.
[2] Aris, R., The Mathematical Theory of Diffusion and Reaction in Perm-
eable Catalysts, Clarendon Press, Oxford‘(1975).

179



31

4]

[51

(6]

[71

(8]

[9]

{10]

[11]

[12]

0131

(14]

[15]

£16]

(173

180

Alvino A. and Trombetti, G., Sulle migliori costanti di maggiorazione
per una classe di equazions ellittiche degeneri. Richerche di Mat, 27
(1978} 193-212,

Alvino, A. and Trombetti, G., Equazioni ellitiche con termini di
ordine inferiore e riordinamenti. Rgend. Acc. Naz. Lincei (8) 66 (1979),
1-7.

Alvino, A, and Trombetti, G., Sulle migliori constanti di maggiorazione
per una classe di equazioni ellittiche degeneri e non. Rie. di Mat.
30 (1981), 15-33.

Bandle, C. Isoperimetric Inequalities and Applications, Pitman,
Londen (1980).

Bandle, C. and Mossino, J., Application du rearrangement 3 une
inéquation variationelle. c.R, Aead. Se. Paris, 296 {1983), 501-504.
Bandle, C., Sperb, R.P. and Stakgold, I., Diffusion and reaction with
monatone kinetics. Wonlinear Ansiysie Th., Meth. and Appl. & {1984)
321-333,

Brezis, H. and Strauss, W, Semilinear second-order elliptic equations
in L', 7. Math. Soe. Japan, 25 (1973), 565-590.

Chiti, G., Norme di Ovlicz delle soluzioni di una classe di equazioni
ellittiche, B.v.M.I. {5) 18 (1979), 178-185.

Diaz, J.1., WNoniinear Partial Equations and Free Boundaries. Vol.l1.
Elliptic Equations. Research Notes in Mathematics No. 106, Pitman,
Londen (to be published).

Diaz, J.1. and Hernandez, J., On the existence of a free boundary for -

a class of reaction-diffusion systems, SIAM J. Math. Anal. 5 (1984),
670-685.

Friedman, A. and Phillips, D., The free boundary of a:semilinear -—
elliptic equation, Trans. Amer. Math. Soe. 282 (1984}, 153-182.
Hardy, G.H,, Littlewood, J.E. and Polya, G., Some simple inequalities
satisfied by convex functions, Messenger Math., 58 {1929), 145-152.
Hardy, G.H., Littlewood, J.E. and Polya, G. Inequalities, Cambridge
Univ. Press (1964). )

Henry, D., Geometric Theory of Semilinear Parabolie Equations, Lecture
Notes in Math. No. 840, Springer-Verlag, Berlin (1981).

Knerr, B., The porous medium equation in one dimension, Trans. Amer.
Math. Soe. 234 (1977), 381-41s,

[i8]

[19]

[20]

[213

r22]

(23]

[24]

{251

[26]

[27]

283

[29]

[301]

[31]

J. I,

Lions, P.L., Quelgues remarques sur 1a symétrisation de Schwarz, in
Nonlinear FDE and their Applications, College de France Seminar, Vol.I
H. Brezis and J.L. Lions (editors). Research Notes in Mathematics No.
53 Pitman, London (1981).

Maderna, C., Optimal problems for a certain class of nonlinear
Dirichlet problems. Supp. B.U.M.I. I. (1980), 31-34,

Maderna, C. and Salsa, S., Some special properties of solutions to
Obstacle Problems. Rend. Sem. Mat. Univ. Padova, 71 (1984), 121-129.
Mossino, J. Inegalités isopérimétriques et applications en physique,
Hermann, Paris (1984),

Peletier, L.A., The porous media equation, in Applications of Non-
tinear Analysis in Physical Seiances. H. Amann et al. (editors),
Pitman, London (1981).

Polya, G. and Szegl, C., Isoperimetric Inequalities in Mathematical
Physics. Princeton Univ. Press (1951),

Stampacchia, G., Egquations elliptiques du second ordre & coefficients
discontinues. Sem. de Math. Sup. No. 16, Les Press de L'Univ, de
Montreal {1966). ’

Szegd, C., Ueber einige Extremalavfgaten der Potentialtheorie, Math.
Z., 31 (1930), 583-593.

Talenti, G., Elliptic equations and rearrangements, Ann. Scuola Norm.
Sup, Risa (4) 3 (1976), 697-718. .
Talenti, G., Nonlinear elliptic equations, rearrangements of functions
and Orlicz spaces, Annali Mat. Pura Appl. (IV) 120 {1979), 159-184.
Talenti, G., Linear elliptic PDEs, level sets, rearrangements, B.U.M.T
(to appear),

Vazquez, J.L., Symétrisation pour ug = Ad{u) et applications, C.R.
Acad. Sei. Paris, 295 (1982), 71-74,

Vazquez, d.lL., A strong maximum principle for some quasilinear
elliptic equations (to appear).

Weinberger, H., Symmetrization in uniformly elliptic problems, Studies
in Math. Anal, Stanford Univ. Press {1962), 424-428,

Diaz

Facultad de Matematicas
Universidad Complutense de Madrid
28040 Madrid,

Spain

181



