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1. INTRODUCTION,

Let @ be an open regular set of RN and consider the following nonlinear parabolic boundary
value problem

u, - 8u = f(t,x) in (0,=) xa=0Q
(4 -:}‘,’;w‘ b(u)= g(t,x)  on  (0,=) x 30 = I
u(0,.) = ug in Q

where 1 is the outward normal to3fand b is a continuous nondecreasing function such that b(0} = 0.
Many different results are well-known about the existence and uniqueness of solutions u under several
kind of regularity assumptions of f, us and g (see, for instance, Friedman |8|, and Amann Izland Alika-
kos |1]). It is also well-known that if £ %0, uo>0 and > 0 then u>0in Q. In fact, by the strong maximum
principle, if u is non negative and uft..) # 0 for every Lt > 0, thenu>0on Q. A natural question arise. For
which functions b, the behaviour of u near I becomes pathological, in the sense that ult, )] 7 vanishes on
some subregion of T7. A first answer is casy becagse, again by the maximum principle, if u(t,x) = 0 on
(to,=) xTolhen we arrvive Lo the contradiction 0> —E(t.x) = g{t,x) - b(o}>0on (t;, =) xl So, this beha-
viour is excluded for any nondecreasing continuous function b such thal b(o) = 0 and for which u{t,.) #0
for any L > 0.

The situation changes strongly if we take b in the class of the multivalued maximal monotone
graphs of R2 (that we shall denote by g). That general formulation is of interest in applications (see
Duvaut-Lions | 7 |} and now the problem is

Up - oau = ft,x) in Q
(2) ng—ﬁ+ g{t,x) e s{u} on I

u(0,.) = ue in
where 8 is given by

3y gl(r) =0 if r >0, g{o) = (-=,0] and g(r) = empty setif r < 0.
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This problem known as the Signorini parabolic problem, Note that in this case the boundary condi-
tions are of “‘unilteral type'’.

3u 3u -
(4) uz0,-57%+92<0 and u(-ﬁﬂ‘g) 0 oni,
and that the coincidence set, defined by
{5) Lo = {{t,x)€ 1 : ult,x) = 0},

1

(i.e. the “obstacle” '“z 0, = cf. Diaz-Jiménez |6 | for eliptic case), plays an important role in the un-
derstanding of the problem. Our question now is the study of the assumpticns on f, uo and g allow the for-
mation of the coincidence set Io.

2. STATEMENT OF THE PROBLEM AND PREVIOUS RESULTS.

We consider the following evolution Signorini problem: (ESP) “‘Let @ be a regular open set in RN
with boundary 82 =T. Given f, g, wo and the obstacle ¥ in suitable functional spaces, find u(t.x) such that

u, - du = ft,x) » (t,x) €Qq
(6) u>w,—§—,‘j+9<0
» (t,e)E X

u(0,x} = uo{x) , XE Q.

If u(t) € H2(q) for all t > 0, then the (ESP) can be written in the following complementary form:

uy - au = f , Q
(7} -3%+9€8(u-w) v L
u(0,x) = U, , 0

Now we give some trivial lermmas that allow us to consider null obstacles ¥. Also we consider some
homogeneous situations.

Lemma 1. Let u be the solution of the linear problem

=
.
C||J
-
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with u satisfying (7). Then u* = u - U satisfies

-
R

:-i
*
up - arr = f, .Q
a*
u
P) -5t gt e glu*), ¢
u*(0,x)  =u, , Q.

ut-Au = f, Q
(P) U= 0, =
w0,x) = u., n

with u satisfying (P*), then {i = u - {i satisfies

where

(8) g(t.) = glt,e) - & (t,5) a.e. on L.

Remark. If uo=0in (P) and [{t.x) is such that £, Vi €Cp(Q). then 1 € Cp(Q) is the classical solution of (F)

and in that case il can be written in the form

(9) a(t,x) = | G{t-s;x,g)f(s,£,deds , xe€aq,
Q

where G(t,1;x,£) is the Green's function associated to the heat equation on ﬂ#.

The following formulation of the (ESP) will be used:
Let T>0,

1
(10) ‘ wt(w—u)dxdt + [ alu,w-u}dt > {f(w-u)dxdt + {g(w—u)dedt

O N O Iy
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for all w € L2(0,T; HL(2)), w¢ € L2(0,T; (HL())")

(11) u(0,x) = uo(x), X € R

where QT = (0,T) x @and Ip=(0,T) x an, and a(.,.): HI@)x HL{Q)=R is the bilinear form associated
to -A.
All of these are necessary for the next comparison result (cf. Brezis !3[ ).

Theorem 3, Given uo, o€ L2(q), f, f €L2(0,T; (HL(@ "), g, gel2(Lp) and u, GeL2(0,T: Hhan (YO0, TE
1L.2(Q)) such that ue, f, g and u satisfying (10)- (11) while Go, f. & and 0 satisly

.
(12) [ wt(w-ﬁ)dxdt + { a(u,w-u)dt 1[ f(w-u)dxdt + J g(w-u)dgdt
L

O ° Gy T
for all w € L2(0,T; HL(q)), wy € L2(0,T; (Hl(a)".
(13) u(0,x) = Us(x), X € 1.
Ifu:»g_ﬁo,f;_f and g > ¢ then
(14) u(x,t) > 4(x,t) a.e. on Q; for al1 T > 0.

Proof. Let up, un€ L2(0,T; HL(0)), fn. T, € L200,T; (HY(a))"), gn. By € L2(27) and uop, lopy € L2C 1)
such that

(15) du, du )
T ety

du
(16) j a?ﬂ (w-up )dx + alu, weu ) > an(w-un)dx + [ g, (W-u )de
n ) T

for all w € HI( Q).

Py

du . . . .
(17) Ja—fﬂ (w-Gn)dx + a(un,w-u ) 1[ %n(w-u Ydx + { §n(w-u yde

it f T

for all w € HL(®)

(18) u (04x) = uop Gn(oix) = 0
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and up— u, g~ & in L2¢0,T; Hl(@)) N C((0,T]; L2q))
' e f, fp i in L2O,T; (HLQ) )
gn—+ 8 Bn—+&  in L20,T; L2(r)
Uop—- Uo, o —Uo  in L2(Q).

Let w = max {up: Gn} =up + (Up-up) T and w = min{un,ﬁn} = Gn - (Up-up+

in (16) and (17) respectively. We obtain.

du_ du
(19) J Cqet - qe (8, - u) e+ a(@ -y (G- u) s [(Fo- F (0, - u )T s

Integrating on (0,T) and taking limit n - « we observe that (- w+ < 0. Thusus 1 a.e. on Q-

3. A NECESSARY CONDITION.

After these trivial considerations, it seems natural that the existence or nonexistence of the coinci-
dence set Lo will depend on the behaviour of such function,

- - a-
§(t.e) = g(tye) - 5 (t,e).

We start with a necessary condition but we consider now the forcing term f(t,x).

Let 11 be the solution of (13) with we(x)= 0 ae in iz . We define

p _ ou _ 3G .
(20)  f{t,e) = == o (t-s3 x,6) f(s,g)dxds, ce T.

3
Qr

Theorem 4. Let u be a (weak) solution of (ESF) and assume that

(21)  u(t,e) = 0 a.e. on £, = (0,T)x re

where To is a ““smooth” part of I = 30. Then necessarily

—

(22)  g(t,e) - Flt,e) - Uo(0,6) <O  a.e. on Lo,

where
(23)  Uo(0,8) = 3 (0,8), cer

and i be a solution of (P) with f =0 and [ given by (20).
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The proof is based on the following lemma

Lemma 5. Every weak solutions u(t,x) of the (ESP) satisfies.

(24) - [Uo(X)V(O,x)dx + {u -:—;-ds;dt > ' fvdxdt + ngdgdt

R - R Q I

for all v € W1.2(0,T;H1(Q)) such that v{ + av = 0 on Q, v(T,x) = O on Q.

Proof (Jemma 5)

15t part. We suppose that the data f, g and uo are sufficiently regular such that exists u(t,x), strong solu-
tion, satisfying.

(25) ut(w-—u)dxdt + |ouv(w-u}dxdt > |fvdxdt + Igvd&;dt.

T T T I

Therefore

'
(26) | {u(T.x)v(T,x)-u(0,x)v(0,x)]dx - Ju(vt+Av)dxdt +
! Q

T

’

+ |u % dedt > [ fvdxdt + ngdgdt.

4

Iy O Iy

Let v(t,x) = V(T-t,x) where V(t,x) be a solution of the linear problem

Vy -8V = Q, QT
(P~) v(tie) =oltig), Iy
v(0,x) =0 , R

with 5 (t,£) € L2(zp), t>0, £€l , being as arbitrary function. Using the Green’s function
G{t,r ;x, ) related to (P 5 ), we can write

(27)  v(t,x) = - [%% (t -t; x,€) olr,£)ded; , x€n
13

Ly

So v(t,x) satisfies the retrogress problem.

vy tav = 0 » QT
(Py) v(t,e) =o(t,e)s Iy
L v(Tx) =0 » 0
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where

(28) ol(tg) =a{T - t, €}, ce€rT

From (27) we obtain

T-t
(29)  v(t,x) = - { J% (T-t-tix,£)o(,E)dedr.
£

0 r

2nd part. Let f € L2(QT), g € L2(Z 1) and u» € L2(§)), by Brezis |31, then up € L2(0,T; HI(Q)),
fn€ L2(0,T:(HL(Q))"), gy € L2(L 1) and usp € HI(§) such that

dun

(B0 g ELZ(QT)

and up is strong solution of (ESP}p:

du
J H’E‘l(w-un) dxdt + [VUnV (W'Un)dxdt Z_ J fn(W-Undth -+ J gn(W-UH)dE dt

T
forall w e HI’Z(O,T; Hl(ﬂ)),

un(O) = Uon:

Taking the limit, we obtain (24).

Proof (Th. 4) We consider three cases

15t case: ue(x) = 0, x €q, f(L,x) = 0on QT (i.e. f=u =0

From Lemma 5,

(31){u 2 dedt > [gvdedt ,  EE€T
Iy iy
From (29} with 6(7,£) > 0 ae. ¢e€ r,»t>0and a(t,€) = 0
a.e. L€ =T 1> Owegelv(t,x)= 0on {T} x a; v(t,£) = 0on

I; - I, and v(t,g) > 0Oon Eo, and by the maximum principle, v(t,x) attains

its minimum on {{T} x R) U (ZT - Eo) and from this,

75



Therefore
0<- Jg(t.e)V(t.e)dEdt
Ey
28 case:  Uo(x) = 0, f(t,x) # 0.
From (24)
(32) [ u -g—rv—]- dedt > |fvdxdt + [ gvdedt.

i T b

Similarly, we obtain

(33) fvdxdt + [gvdgdt < 0.

T

In the first integralin (33 we replace v(t,x) by its form given in (28) and in the Second integral in
(33) we replace v({,x) by@(T-t.g) > 0 a.e. (L,g} € (0,T) x Iy, then, we obtain,

T 0 T

+ |g{t.e) a(T-t,£) dedt < 0,

L
T

¢ T-t
(34)  |f(tx) [ [ J 36 (T-t-1;x,8) o(x.E) dng] dxdt +

Considereing the Fubini theorem and taking T-{ = v in the second integral in (34), we oblain.

T-t
(35) = J [ [ J f(t,)() g_ﬁ(T-t-T;X,E)a(T.E)dXd

ZT o] 0

+ [ g(T-1,£)a(x,.£)dedr < 0,

Ly

then

T-t
- JG(T :E)[ [ J f(t,)() g—&(T—t-T;X,E

)ZT fl

+ [ o{1,£)g(T-7,£)deds < 0,
Iy

76

)dxdt] dedr +



that is

t
- [ J fs,x) -g—ﬁ- (t-s:x,&)dxds + g(t,g) <O
o
and from (200 -f(t,5) + g{t,€) <0 a.e. (.)€ .

3" Case: u(x) # 0, f(t,x) #0

Let i(t,x} be the solution of

ﬁt - 8= 0 . Q
(Po) i=0 I
G(O.X) 2 g s 8

that is
u(t,x}) = | 6(t,0;x,£)uole)de.
f

Let u be the solution of (ESP) then u* = u - u satisfies

u
Up - aur = f, Qr

u* 3l
(P*) “ete- ‘EGB(U*), It

ut(0,x) = 0 , @

3

3y
3

Defining g*(t,£) = g{t,£) - —n(t,g), £ € T we go back to the 2nd case.

4. A SUFFICIENT CONDITION.

As in the eliptic case (see Diaz-Jiménez |6]) the condition

g(t,8) - F(t,6) - Ua(0,6) < 0

on a part of L is not enough to the formation of the coincidence set. Nevertheless, such a condition is “‘al-

most sufficient’’ as the following theorem shows.

Theorem 6. Assume, for simplicity, 0 to be convex and let f, g. and u, be such that exist € >0 such that

(36)  g(t,€) - F(t.6) - To(0,8) < - ¢ a.e. (t,6) € (0,0) x T = .
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then there exists R = R(g) » 0 such that.

(37) I, DU (t.e) € [0,=) x r_: dlg,rer.) > R},
where
( 172 if K> 0
R =
( 217z ifH=0

and full Lm(Q) < M, H is the (non negative) mean curvature of Q.

Remark. The bound u € L® (QT) can be obtained under the assumptions f € LQ(QT) , Uo € L“(QT)
such that

g*(t,g) = g(t,e) - f(t,g), ¢er, t>0
be the trace on It of a function

6*(t,x) € BV(0,T;L™(a)) N L%(0,T;H}(n)) for all T > 0.In this case

(cf Damlamian | 4|, Diaz | 5|, Brezis | 3|) we get

u(t,x) € C([0,7]5 H™H(2)) N L7(ap).

Moreover, for u, solution of uy - au = 0, QT;

au

- 5 € g(u), Iy u(0,x} = u,, we have
C
”U(tt-)" Lm(ﬂ) f_'{W‘z— UuollLl(Q) for all < t < T.#
Proof (Th. 6) Let Xo € I, besuchthat d(xo, I‘-FE) = R and

D= 2N B(xa,R), 2,0 = 30N, 3,0 = D - 1. We consider D_ = (0,=) x D

andlet 3,0 = (04=) x 3yr and 3,0, = (0,=) x 3,T. By Lemma 2, it suffies

to exhibit the estimate (36) for u, u being the solution of (13). Following the same
way of the proof of the Theorem 5 on Diaz-Jimenez |6/, let U(x) € H2($) such that U 2 0in D, - aU
> ConD,U=0on 3D and

‘g“ﬁ = - g 0On alD. We consider the auxiliar function
(38) u{t,x) = U(x) + 7% |x—xu|2
where C = (N-1)He if H > 0and C = ﬁ- itH = 0,

We have

(39) Ut - AU = -pgu = -AU - C

fv

0 inD_,
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v C p2 - 2MN, 1/2
ap  HER 2 RO pult) iff R 5 (2
) a0, = & 2,0, T
(41) - < e
™ o, ~

this is because we also have

'%%“ --g—f, 'ﬁlx - Xo| cos (n{£), £-%o) < €.

Finally, in D we have

— - 2
By Theorem 3, u(t,x) < u{t,x) inD_; in particular 0 < u(t,x)< "%iﬁ"xol s
£ €T NB(xaR), t 20,

A stronger result is possible: the coincidence set may occur only after a finite time. More preci-
sely we have the following

Theorem 7. Assume ftbe convex and let g and f such that there exists

e >0, I‘EC 3N and t£ > 0 such that

(42) g(t.E) - -g—i(t,ﬁ) <-e on [t ,=) x T,

where F(t,x) satisfies F{- AF =fonQr, FZ0on Iyand F(0,.)=00n &.Then, for any given initial da.
ta ug, the solution u of (P*) satisfies the condition that there exists a finite time Ty 2. tg such that
(43) Lo DU(t,e) € [Toy=) x 1+ d{e,r-r ) > R}

for some R = R(e}. In particular if Ty =T, thenu=00n (To,= ) x I and u becomes the solution of the ho-
mogeneous Dirichlet problem after the time To.

Proof. Let u(t,x) be the solution of (P*) withf=0and g* =g(t.£) = g(t.£) - E(t,g) and let U the function of
the proof of the Theorem 6.

We consider now the local-supersolution

(44)  wW(t,x) = gﬁ x-xo | 24 k(Tomt)* + U(x), K » 0.

We have

E |

g- W=kl g - Ca0

if -8U > C + k = € hold, where

{(N-1)He ifH >0
T =

% if H = o0,
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Moreover

(45) - %"nii - %Ix-xolcos (n(g), g-%o) - -g%f_ -€
on 3D x (to,=) since A > € and
an|, o=
1
48 W > o RE 2 M 2 ulta,t)
3,0%(to o) 8,0x(to,=)

(remember, U (£) = 0 on 35D). Finally.

W(to,x) > k(To-te) > M > u(te,x), x €D, if To 3_% + to. Thaking suitable constants
k, C, To we obtain the result. 4

Remark. There is no dificulty in proving the following (cf. Damlamian ]4 I yif, by example, g=0andf, uo
be such that u°|rLO~Au°§_0 onfiand £#(t)<0 a.e.t>0, then uyX 0. In particular, under these conditions

Io(tl) CIo(tz) if ty < ty, where
To(te) = {E €T 1 U(to,E) = 0},

We conclude this paper by exhibiting an application of the above theorems to the study of the sign
of the trace u(t..)lzof solutions of the initial problem (1), when [, g and uo have no constant sign on their
respective domains. So, assume, for instance, that f=0, uo =0 but g(t,£) changes of signon L. Even for
the linear problem, b(u)= uor b(u) = 0 it is not an easy task to find regions of £ where u is non positive
o non negative) when only the region of I where g is non positive (or non negative) is known.

Nevertheles, by a variant of the comparison principle is not difficult to show that up<ug (see e.g.
Brezis |3]) where up represents the solution of (1) and ug satisfies (ESP) with £ = ue = 0, for B given by
(3). Then, from Theorem 2 we deduce that if there existse > 0 such that g(t,£) < -eon a part I‘eof rand any
t > 0, then the trace up(t,.) on T is such that up(t,.) < 0 at least on the set

{{t,e) € [0,) x 12 d(g, ror) > R}

for some R = T(e). The study of the regions of L where up(L,.) is non negative may be similarly estima-
ted by studying previously the problem (ESP) for B given by&(r) = ~gfr) with 8 defined in (3)g
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