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The main goal of this paper is to present some uniqueness results for
the solutions of some second order quasilinear elliptic equations with a
possible source term, such as, for instance, the following problem:

(1) - Agu fix,u) =0 in Q.,u=0 on 3,

where ¢ 1is a bounded domain in 'RN and
Apu = div([vu]p'z Tu) l<p<ea (note that A,u = Au).

This kind of problems appears in many.different applications (see Diaz 14]).
If p=2, (1} 1is a semilinear prob]ém and, generally, there is not uniqueness
of solutions if f(x,u) 1{s non increasing in u (remenber the eigenvalue '
problem). However,‘fn the semilinear case it is well-known (Ke]]er—Cohen.]TI
Cohen-Laetsch |3[ , Amann [1], Lions [8] , Brezis-Oswald [2] etc) that the
~assumption f(x,u}/u strictly increasing in u {s sufficient for uniqueness.
If p# 2 the probiem (1) becomes gquasilinear and, as far as we know, the
only reference in the literature js Otani |[10| where the uniqueness is shown
in the presence of a source term in the equation. Otani's paper has two
important Timitations: it is valid only if N=1 and the perturbations are
necessarily powers functions f(x,u) = -u% (he uses in an essential way the

homogeneity of f{x,u)).

In this communication we present a preliminar version of the results
of Diaz-Saa |5| where we generalize for quasilinear problems the known results
for the semilinear case. Our main result assure the unigueness of nonnegative
solutions if the perturbation f(x,u} satisfies that ”f(x,u)/up_1 is strictly

increasing in u".
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(this assumption {s a generaljzation of the one used for p=2 and obviously
it include non increasing perturbations as, for instance, f{x,u) = - a9,

0<g<p-1)

Theorem 1. Assume the function f(_x,u) be such that?

(2) x +f(x,u) belongs o L (2},

(3) u »>f(x,u) 25 contirmuous in [0°) and u-—= f(x,u)/up-l is strictly

increasing in (0.2).

Then the problem (1) has a unique nonnegative solution.

A similar statement was proved for p=2 in the paper Brezis-Oswald |2|.
In fact, our proof has its origins in a remark rised in that paper. However,
the proof given there (always for semilinear case) follows a different way

(see Remark 1).

The main idea of our proof comes from monotone. operator theory. Indeed;
it is well-known (see e.g. Diaz |4]) that the uniqueness of sclutions for
nondecreasing terms f(<,u) 1is easily deduced from the fact that the reali
zation in L?(Q) of - Apu is a monotone operator. In a semilar way, if
we could prove that - apu/up—l is monotone in L%(Q) then the result would
follows from hypothesis (3). As in the standard case, one way to check the
monotonicity is by showing the convexity of a suitable l.s.c. functional.

It turns out that in our case, such a functional is given by

i

IORE XN 2o PP ax.
§

However some difficulties appear in contrast with the usual case: the conve
xity of J(p) 1is not trivial because there. s a concave expression in J ,
and,on the other hand, J is not Gateaux-differentiable in somedirections
but, at least in some of them valuables for our porpouses. Before to give
the proof of Theorem 1 we proof several auxiliary lemmas:

Lemma 1. 7The funcf’ianal Jd,J : LYa) + (~=+=] defined by
"H 9P ax ir e300 wad ofPe W P(R)
(4) d(p) = f |

L 4+ otherwise,

£s proper, conver and lower semicontinuous.



Proof: We know that the domain of J is D{J) ={p 20/ pl/p € W%’p(n)}~
Then, J is proper because D(J) # ¢ (for instance, if g = (0,1)CcR ,
p(x) = Xl(lﬂx)N o(x) e DI} 4if A >p-1 and N> p-1}. Now we prove
the convexity of J. First of all, assume that b1s¢, € D(J) and Tet ¢1=¢11
b2 = 6P, wem (b + (1°t)¢z)1/p with t €[0,1], Our goal is to prove that °

/p

(5)  |wes|P < t]upn P+ (1-t) | walPs

We can easily see that

-7 , 1 1-
Vs = %- w% P Vp; for i = 1,2 and vyz = E— w% p(tv¢1+(l-t)v¢2) and

w§_1V$3? (t(P-l)/PwIP‘l) (t 1/pv¢1 ) + ((1_t)(p-1)/p w?'l)((l-t)l/pvwz)-

Applying Holder's inequality

w?‘llvwal ¢ (tyf + (1-1t) wgﬁ(p°l)/p(tlv¢llp + (1 —t)]vwzlp)l/p;
and then (5) is proved., and as'wak.w%’?(ﬂ) we get

Jtor+ (1-t)ga) < t d{gy) + (1 -1t)3(¢2).

Finally, we have to prove J is Tower semicontinuous in L!{n). so we are
going to.prove that if ¢, + ¢, in Li(q) and J(¢n) < A then J(p) < A.
As pi/p is bounded in Hl’p(ﬂ) there is a subseguence of pi/p , that we
still will call p%/p , such that pé/p converges weakly in Hl’p(ﬂ). Then
Vpé/p converges weakly to Vpl/p in LP(Q) and since the norm is lower

semicontinuous we obtain 1im inf J(p,) > J(p) , and hence i > d(p).
n

Now we shall study the Gateaux-differential of J at the point p

and direction £:

(o) = lin HetElole)
t+0

Lemma 2., Let J be the functional defined by (4) and let ﬂi:ﬁ +~R , with

i=1,2, be nomnazgatives functions such that;

oo 1/}3 Alt’p(
(6) pyelTR) Loyt e¥ta) s ape "t ¢y,



o P Lbroy 27 4 £ 1
(7} pi/pj e L (Q) and Wpe Wo P {R) 1f 1 #3-

Then ©f & = p1=pz we have
- A p%/p :

o i £ for
G-17p = 7

(8) J'(p;-E) = J i=1 and 2.

Qpp-i

Proof. For the sake of the notation, let us denote by p to P for i =1
and 2. Define

+]

19(p+tg) /PP
a(t) = f dx ,
¢! p

then J'(pii) is the right derivative of ¢ at 0 . Using assumptfons (6)
and (7) we have )
p-1
J'(Pa€)=fﬂ l§91Vp1/pJp£/o+JQIVp1(pIp'2Vpl/pvzlfp(a/p) P~
-1 '
[ 1eet/PiP? wol? (7 /PLero) P+ 12 wet (/o))

Due to the regularity on p; we may apply Green's equality and get

' 1 1
3'(p5,E)= 5‘[ = b, P L
Q - p-1
r p P
which proves the result.

dx

Lemma 3. [t Uand Vbe two nomegative solutions of (1) with T satisfying
(2) and (3) . Then there is an € > 0 such that u{x) 3 ev(x) ¥xeQ.
(the proof of this lemma is not difficult and usesthe fact that the
solutions of (1) are C!, as well as the maximum principle: see Diaz-Saa {5|

for details).

Proof of theorem 1. Suppose there are two nonnegative solutions u; and
u, of problem (1). The assumption (2) and the equations allow us to write

- uy AU ~F(x,up)  fx,uy)

P P p_.Py = . p_ P

(9) f ( D-1 + -1 ) uf-uz) n( ™ U, {u} ujz ).
Q uj Us it



From assumption (3) the left term is not positiye. Then if £ = uf—ug and

Py = ug .and 1f we are in.conditions to apply lemma 2 we would gét

AU A Us =
JQ ( P+ g-l )(U? - Ug) & P(J’(Dl;ﬁl "pz)‘d'(pz"m'pz))*
Ul usz ‘

p-1

But this term would be not negative because J {s convex. So

) =0

-f(xsup)  f(X,Uz)
‘ 1l - B
Q Uy u,

and we would obtain that u,= u, in @ from assumption (3) . Finally in
order to show that (9) has a senss and that the conditions of lemma Z are
fullyfuled it is enough to use the fact that u,/u, € t®(q) and

u,/u;, € L7(n) ,which is a consequence of lemma 3.

Remark 1.

Under the special assumption “f{x,u)/u strictly in u" instead of
assumption (3), we get an easier proof of the uniqueness. Indeed, in this
case the monotonicity of &p u/u can be shown by elementary éigebra (note
that if p # 2 this assumption is different from (3)). The proof of this
fact is a generalizationof the proof for p = 2 made in Brezis-Oswald |2].
Suppose there two ncnnegative colutions u, and u, of {1), we know that

2a
T Uy Jug- Ui Us

0 f | 1

Applying Breen's equality

A Uz =D Uy -2 -2 2
[ (lvu, P (wu,- ﬁ;VU1)2+1VUzF (vu, - E;vu2)2+[vul;p—{vulf Tz | 2-|7uf 7" |uat
0 :

duufy = [ (il fethd )

“

As  f(x,y) = xp—xp"2 y -y p-ZX + yp is positive in x> 0,y > 0 , we obtain
that the first term of the egquality is positive and since f(x,u)/u 1is
strictly increasing the second term is negative . In consequence Up= Uz.
Using other kind of ideas,Theorem 1 is generalized in Diaz-3aa | 51
to twé more general contexis:
(a) case of perturbation terms satisfying that "there isae[0,p-1)

cuch that f{x,u)/u® is strictly increasing"(this assumption



involve new functions even in the semilineal case, for instance,
flx,u) = uNnu , g e[0,p-1)}.

(b) Case of nonlinear differential operators not necessarily in
divergence form.

The proofs are by means of a transformation of the equation in another
one given in terms of an accretive operator 1n the space X =1 “(q) and an

increasing perturbation.
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