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Elliptic and Parabolic Quasilinear Equations
Giving Rise to a Free Boundary:
The Boundary of the Support of the Solutions

JESUS ILDEFONSO DIAZ

Abstract. In this survey we review some results and methods concerning the study of the
support of the solutions of elliptic and parabolic quasilinear equations. In many of these
equations and in contrast with the linear case, the support of the solutions does not
coincide with the whole domain and thus a free boundary is generated by the boundary of
that support.

1. Introduction. Let us consider the nonlinear Dirichlet problem

(1) —div(|vu|p_ZVu) + ]u{qﬁlu =f onQ,
(2) u=g onoil,

where £ is an open set of RY, N> 1, p > 1, ¢ > 0, and f, g are given functions.
Equation (1) appears in many different contexts: When p = 2 equation (1)
coincides with the semilinear equation

(3) —Au + |u!qW1u =/,

largely studied in the literature. For instance, it is well known that (3) arises in the
study of a single, irreversible, isothermic reaction (see [3]). The parameter g is
called the order of the reaction and its range of values determines the behaviour
of the solutions. When p = 1, (1) is a quasilinear equation which becomes
degenerated for p > 2. In that case the equation is not uniformly elliptic, losing
its elliptic character on the set {x € @: vu(x) = 0}. This type of equation
appears, for instance, in the study of non-Newtonian fluids with a rheclogical

1980 Mathematics Subject Classification. Primary 35J60, 35K60, 35R35.
Key words and phrases. Quasilinear equations, free boundary, support of the solutions, obstacle
problem, comparison principle, energy methods, porous media equation,

(© 1986 American Mathematical Society’
0082-0717/86 $1.00 + 3.25 per page

381



382 1. 1. DIAZ

power law. When p > 2 the fluids are called dilatants and for 1 < p < 2 pseudo-
plastics. The case p = 2 corresponds to Newtonian fluids (see exact references in
(37D.

Existence, uniqueness and regularity results for the Dirichlet problem (1), (2)
are already well known after the important works of Ladyzhenskaya-Ural'tseva,
Stampacchia, Serrin and many others (see e.g. the survey [71]). Here we are
interested in putting out some qualitative properties satisfied by the solutions of
such problems, which exhibit very different behaviour according to the values of p
and g. More concretely, we shall fix our attention on the behaviour of the support
of the solution.

A well-known fact is that when (1) is linear (i.e. p = 2, ¢ = 1) the solution « of
(1) corresponding to data, say f = 0 and ¢ > 0, is such that w > 0 on Q. This is a
trivial consequence of the strong maximum principle and can also be obtained by
many other arguments, e.g. the Harnack inequality.

When (1) is nonlinear, entirely different behaviour may appear. Roughly
speaking, the effective power of the diffusion term div(|vu|? *vu) and of the
absorption term |u|?" 'u vary with p and ¢, generating new phenomena. Thus,
letting £ be an unbounded open set and f and g with compact support, the
support of the solution contains the whole domain & if ¢ > p — 1, but otherwise
(i.e. when g < p — 1) the solution u has compact support and so ¥ = 0 on an
unbounded region of £. This was first shown in [13] for equation (3) and more
generally in |36, 37] for (1). The main idea in order to prove the compactness of
the support, assuming g < p — 1, lies in the construction of adequate super and
subsolutions # and u of the problem (1), (2). Such functions can be chosen with
compact support and so, by a comparison argument, u < v < # on §, which
implies that supp u is also a compact subset.

This kind of vanishing property has, in fact, a local character and this also
happens even for bounded domains §, in the sense that the set

N(u) = {x € Q:u(x) =0} (N(u) = —supp u)

may have a positive measure. The first result in that direction seems to be the
author’s memoir [32], in which a general local method is proposed, and later
developed in [33], [34] and [35] (see also [72, 10, 47] and [1]}.

THEOREM 1. Assume g < p — 1 and let u be the solution of (1), (2). Then
@ N(u) > {x & N(/) U N(glsg)
such that d(x, Q-|N(f)u N(g|a9)|) > (M/C)W"lﬁq)/"}

with C some positive constant (explicitly known) only depending on N, p, and q, and
M = Jlul| .

Here N( /) (resp. N(g|,q)) represents the set { x € €: f(x} = 0} (resp. {x € 08
g(x) = 0}). Let us remark that conclusion (4) is not empty if £ is unbounded and
fand g have compact support (in fact the constant M in (4) can be substituted for
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some bound of the ess. supremum of u in the interior of the set N{ /). Otherwise,
e.g. if @ is bounded, Theorem 1 has implicitly the following assumpticn:

(5) meas{xEN(f)UN(g|m):
d(x, @ =N(fYUN(glag)) = (M/C)"7 "7} >0,

The main idea in proving Theorem 1 is to use the functions

U:t(.x) — iClx _ inlJ/(P_l“ff)

as local super and subsolutions of (1) when x is adequately chosen. Then, by
comparison arguments, one obtains v _(x)} < u(x) < v (x) on some neighbour-
hood of x, and so u(x,) = 0. (For details, see the paper of J. Hernandez in these
Proceedings.) By a (not difficult) modification of that argument it is possible to
show that, if for instance, g = 0, then under the assumptions of Theorem 1 a
stronger conclusion holds:
{6) N(f)=N(u), ie. {x€Q: f(x)=0}={x<€Q: u(x)=0},
if f(x) decays to zero on supp f as d(x, N(f))?94?~1~@ in a tubular neighbor-
hood of AN(f) (see [33]).

Results such as Theorem 1 can be obtained for nonlinear equations under
formulations more general than (1). That is the case of symmetric invariant
equations such as

. {a(lvu
~d1v( —(l 2|) vu
|vul
where a and ¢ are assumed to be nondecreasing and satisfying some balance
condition (now given by the boundedness of an improper integral) substituting
the assumption ¢ < p — 1. Also nonisotropic equations
N
d du
— —a.l— 1|1+ c B
L o)+ clu) =7

i=1

+clu)=f,

and fully nonlinear elliptic equations can be considered [37, 28, 33]. To finish this
section, we remark that also for Variational Inequalities, e.g. the obstacle problem
(u = ¢ on Q), the method of local super and subsolutions can be applied in order
to estimate the coincidence set

{(reu(x)=v(x)) (=Nu-y))
(see [24, 6, 77, 7, 27), and [33]). A systematic development of these results,
including many others, is the subject of the book [33].

2. An energy method. An important limitation of the scope of the method
commented on in §1 is its constructive character. Recently, a new method has
been introduced in Antoncev [2] and developed by the author and L. Véron in
[41, 42], in order io study the behaviour of the support of the solution of the
general class of second order quasilinear elliptic equations

(7) ~divA(x, u,vu) + B(x,u, vu) + C(x,u)=/.
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It also has a local character and it is based on certain estimates of some energy
terms associated to the solutions of (7). The structural assumptions for the
treatment of (7) are the following:

(8) lA(x, r, £)| < C ¢~ forsomep > 1and C, > 0,

(9) A(x, 1, 8) - E2 Gl forsome ¢, > 0,

(10)  [B(x,r. &)< Gl l&" forsome €, > 0,0 > 0, and 8 > 0,
(11) Clx,r)rz C4|r|q+1 for some ¢ > 0 and C, > 0.

Functions 4, B and C are assumed to be Caratheodory functions on its argu-
ments, x € @ C RY, r € R, and £ € R". As in the method of local super and
subsolutions, it is enough to work on the subset N( /) where f = 0.

DEFINITION. Given an open set G C RY, a function u € L} (G) is called a
local weak solution of

(12) ~divA(x, u,vu) + B(x,u,vu) + C(x,u) =0
on G if (i) Vu € L{.(G), B(x, u,vu) € L (G), and C(x,u) € L', .(G), and
(ii) for any ¢ € C§°(G) we have
f (A(x,u, vu) - o +{B(x,u,vu) + C(x, u)) ¢} dx = 0.
G

Given x, € G such that Bp,(x,) C G and u is a local weak solution u of (12)
on &, we introduce the diffusion energy on Bp(x,),0 < p < p,, by

(13) E(p)=f A(x, u,Vu) - Vudx
B,(xy)
as well as the absorption energy on Bp(x,) by

(14) ble)={ |u

B, (xp)

|q+i

dx.

The main conclusion of the energy method is

THEOREM 2. Assume g<p—1, B<p, a=¢q~— B(g+ V/p, and C, small
enough. Then for every x, € G such that Bpy(x,) C G and for every local weak
sotution u of (12) on G, there exists a positive constant

C* = C*(N, p, 9E(po), b(py))
such that u(x) = 0 a.e. on Bp,(x,) where
(15) pr=po~ C*.
Before referring to the proof of Theorem 2, we shall make some remarks about
its applications. First of all we point out that no monotonicity assumptions are
made on the dependence of A(x, », £) and C(x, r) on § and r respectively. Hence

Theorem 2 can be applied even in the absence of comparison principles, in
contrast with the method in §1. In order to obtain some global consequences,
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consider, for instance, equation (7) on an open set § € RY with Dirichlet
condition ¥ = 0 on 0§. Assume the hypotheses of Theorem 2 and let f €
L+ D/9Q). Then is not difficult to show that if « € WlP(Q) N L7"YQ) is any
weak solution of (7), one has

(16) '/S;A(x, u,vu) - Vudx +j;l |Lt[qﬂdx < Cfﬂ |f|w+l)/qu

for some structural constant C. Therefore we can apply Theorem 2 on the set
G = N(f) and then, if x, € N(f) and p, = d(x,, & —N([)), by (16) we have
E(py) + b(py) < ClIS 114514, which allows to us to conclude the existence of a
constant C** = C**(N, p, ¢, || f|l(,+1y,4) such that
(17) Nu)o {xeN( ) d(x, 2 =N(f)) = C™}.
As in Theorem 1, conclusion (17) is not empty if & is unbounded and f has
compact support. Otherwise, we need the assumption
(18) meas{x € N(f):d(x,2 =N(f)) = C**} > 0.
Hypothesis (18) has the same nature as (5) but with the important difference that
no bound on ||u|| ;- is now needed. It is also interesting to remark that, when both
methods may be applied, sharper estimates are obtained by using the methoed of
local super and subsolutions. The main reason for that is the fact that comparison
functions v, used in the proof of Theorem 1 are, in fact, exact solutions of the
homogeneous equation associated to (1) and so the estimate (4) cannot be
improved in some particular cases.

We now return to the proof of Theorem 2. The main ingredients in the proof
are the following technical lemmas.

LemMA 1. Under the hypotheses of Theorem 2, A(:,u,Vu)- Vu, |ul?t!,
|A(, u, Vu)|u, and B(-, u, Vu)u belong to LY Bpy(xy)) and, for almost every
p € (0, py), we have

f A(x, u, Vu) - Vudx + C4f |u}q“dx -kf B(x,u,vu)udx
(19) B, Bp Bp

<f A(x, u,vu) - vuds,
Sp

where Bp = Bp(x,), Sp = 0Bp, and ¥ = ¥(x) is the outward normal vector at
x € Sp.

LEMMA 2. Let D be a bounded open set of RY, N > 1, with a C' boundary 9D.
Assume 0 < g < p — 1 < oo, Then there exists a constant C = C(p,q, D) such
that for any v € W"?(D) we have

ol ooy < CUIT0leremy + lollionnoy) ol oy
where
_ N(p-1-g)+gq+1
Nip-t—-g)+(g+1)p
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If in particular D = Bp(x,), then the inequality

|l~(’)
LAY Bp)

[
L) llo

(20) ”U!ELF(Sp) < C(“VUHU’(IJp) + Pﬂ%”Ul
holds, where

9=N(p_lwq)+(q+]')P and C=C(N,p,q).
plg+1)

Lemma 1 is proved by taking, in the definition of local weak solution, the test
functions ¢, ,,(x) =, (|x — x,}7,,(1(x)) and passing to the limit in n and m.
Here 4, [0, pp] — R* is such that ¢ (r)=1if re[0,p — 1/n}, 4, (r)=0if
rep, pyl. and Y, (r)= -n{p—ryif r€p —1/n, p). T, is a truncation func-
tion, such as, e.g., T,,(r) = sign{r) min(m, |r|). Lemma 2 is an interpolation-trace
result and is the key-stone of the proof of Theorem 2. It can be proved by using
the Gagliardo—-Niremberg interpolation inequalities and some trace results (see
the details in [42]).

Proor oF THEOREM 2. First step. If u is a local weak solution of (12) then

(21)  E(p) + C,b(p) +[BP B(x,u, vu)uds > C(E(p) + b(p))

for some constant Cs > 0. Indeed, by using Young’s inequality, for any & > 0 and
7 > 1 we have

; C _ B
« Fl| A < ET3|u"r(cx+ 1) + ‘(‘I“:’_—I)“Cﬁ_l/(f"l)!vulBT/(T 1)'

Gy vl

if we choose v = (g + 1)/(a + 1), then f7/(r — 1) = p. So, by (14),

- C
EC%(EL;_Q)b(p)4,§§§84PMBV€E(p)

f B(x,u, Vu)udx|<
Br

Hence, if

(r=B)/r 8/p
p P
Geal=Lz)" ek
PURp -8B ’B
then it is possible to find an & > 0 such that

sCJ(‘D;B) < C, and ?s‘“’“ﬁ)/”<1

2

and (21) holds.
END OF THE PROOF. By Lemma 1 and (21) we have

(22) CS(E(p)+b(p))<f A(x, u, vu) - Fuds.

So

By (8) and the Holder inequality,

J;

Alx,u,Tu)  vuds < Cl(f IVuip_l|u|dS)
Sp

’ (p—4/p , I/p
<ol vt | (L)
Sp Sp

0
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On the other hand, by using spherical coordinates (w, r) with center x, we have
I . N1 .
E(,o)u--[0 fSNilA(rw,u,Vu) vur™ ldwdr.
Hence £ is differentiable almost everywhere and
dE
— = Alrw, u, Vu)  Judw
% ()= [ o0
which, by (9), implies
dr p
23 —_— = C Tul ds.
(23) g (P> Cf Il
Then by (22), (23) and Lemma 2 we have

dE )(11—1)/1)

R (E(p)Q/pb(p)('l—Q)/(q+'l) + p-SQb(P)'i/(ti+l))

E(p) + b(p) <1<(

for sorne constant X. Then, by Young’s inequality

(p—1/p
(24) E(p) + b(p) < Kypo[

b (E(p) +b(p))",

where
K, = ZKmax(l, b{py) l)_L/”))rnax(pg”, 1),

w=8/p+(1—-8)/(qg+1).

Hence E satisfies the differential inequality
dE oA
(25) sz-pﬂp/(p—l)_;j;(p) > E(p)(l Yo/ (p 1)’

where K, = K#/?~D, But 0 < (1 — w)p/(p — 1) < 1 and integrating in (25) we
conclude that E(p,) = 0 if

KZE(pO)I*(l‘w)p/(p“i)
1-(1-w)p/(p—1)

Then, by (24), b{p,) = 0 and this implies u(x) = 0 a.e. on Bp,(x,).

Remarks. The constant C* appearing in the statement of Theorem 2 can be
explicitly estimated in terms of N, p, ¢, E{p,), and b{py) (see [42]). We also
remark that, by a careful revision of the technical lemmas and the proof of
Theorem 2, this remains true in the case ¢ = 0 (which arises in Varational
Inequalities), and even for -1 < ¢ < 0 when we consider the global Dirichlet
problem (see also [23]). Finally, we send the reader to Bernis [16] and the
communication of that author in this Congress for the consideration of higher
order elliptic equations via another energy method. (The support of the solutions
of a fourth order variational inequality is also studied in [69] and [15].)

1+88 —~1 1+58 -1
p1+ p/(p )=pof p/(p—1) _
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3. Parabolic quasilinear equations. The former energy method also applies to
parabolic quasilinear equations like

(26) %ﬁ(u) —divat (1. x, 0, 00) + B, x, 0,90) + (1, x,0) = [(1, %),

where

(27) B(r)= |f'|l/msign r forsomem > 0,

(28) Lo (¢, x,r, 8| < Clléfl‘pm1 for somep > 1 and C, > 0,
(29) (1, x,r £} £ ¢l forsome C, > 0,

(30)  |B(t,x,r &)l C'3]r|alé§!E for some C; 2 0, 2 0, and 8 = 0,

g+1

(31) E(t,x,r)r= Cr| for some ¢ > 0 and C, > 0.

Equation (26) contains as main particular cases the generic porous media equa-
tion [12], which, for simplicity, in one dimension reads

(32) u, = (U)o by (U)o +cpu? =0,

where we are assuming u > 0, by €ER, ¢ 0, m > 1, A 2 1, and g > 0. Obwvi-
ously (26) appears taking v = u™ and &7, & and % adequately. Equation (26} also
contains the equation

(33) u, — div(|va|p_2vu) =0, p>1,

which, again, appears in non-Newtonian fluids [37]. As for the elliptic case, the
energy method can be applied locally to show the following local version property
referred to as the finite speed of propagation property:

(P) Let v be a weak local solution of (26) with f = 0 on the set (0, ec) X Bpy(xy)-
Assume that v(0, x) = 0 for x € Bpy(x,). Then for every ¢+ > 0 there exists p(¢),
0 < p(1) < pg, such that v(¢, x) = 0 on B, ,,(x,). The main answer given in [41],
[9] (see also [2]) is that in order to have such a property it suffices to have

(34) m(p—1)>1
and no other assumption on g (about the term % we assume 0 < 8 < p,

a={(p— B(m+1)/mp and in fact the conclusion holds only on a finite
interval of time [0, T*] if & # 0 and 8 # p). Now the energies are defined by

1 !
E(typ)zf f W(S,X,U’VU).dede
0 Y Belxg)
and
b(t, P) = ESSSUp[ |U(S, x)l('”‘"l)/m dx_
Ogs<e 7 Bplxg)

(Here the local weak solutions are supposed to satisfy, in particular, Vo €
L0, 50) X Bpy(xy)) and v € L=(0, 00t L™ (Bp,(x))).) As in the elliptic
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case, it is not difficult to find global consequences. Thus, for instance, if we
consider the Dirichlet problem

Bﬁa(tv) — diveZ (¢, x,0,V0) + €(t,x,0) =0 on(0,00) x &,
(35) U(I,X)=O on (0,00)XE}Q‘
v(0, x) = vy(x) on 9,

where © is an open set of RY, N > 1, and v, € L”"*1/"(Q), assuming the
structural hypotheses as well as m(p — 1) > 1, then the quantity p(7) can be
estimated independently of x, € N(v,) and we find that p(z) < Ci* for some
= (N, m, p) > 0. As a consequence, we have

(36) N(v(z,-)}) D {x € N(vy): d(x,Q —N(vy)) = Ct“}.

In particular, if £ is unbounded and v, has compact support, we find that for
every ¢+ > O the support of v(s, ) is also compact. If in addition N = 1, then
supp v(t, -) = [$,(), §,(¢)] for some monotone real functions .

Naturally, much more precise information is available for concrete formu-
lations of (26). For instance, for the porous media equation

(37) u, — Ap{u) =0
with ¢ a continuous nondecreasing function such that ¢(0) = ¢(0) =0, it is

known that the solution u of the Cauchy problem has compact support for each
t > 0 (assuming (0, x) with compact support} if and only if

1 ds

(38) fo i +oo
(see [67, 4, 68, 30, 74, 75]). In fact for the homogeneous Dirichlet problem, and
even under (38), there always exists a finite time T* such that u(#, x) > 0 on { for
every T » T* [18]. The exponent p in estimate (15) can also be optimally
estimated if, for instance, ¢(s) = |s|™ - sign s [5, 73]. For other results concerning
the boundary of the support of the solution of (36), we refer to the recent survey
of Berstch—Peletier [17]. For the particular equation (33) some references are [9,
36, 37, 7, 8] and [53, 56]. The former property of finite speed ol propagation is
essentially due to the assumption m(p — 1) > 1, which expresses when the
diffusion is “slow”. Nevertheless, other different behaviours appear when the
action of the absorption term (1, x, v) or of the convection term #(¢, x, v, Vv )
is taken into account.

Thus, when the absorption is large with respect to the diffusion, the support of
o(t, +) remains in a compact region for every ¢ € [0, 00). That property, usually
referred to as localization, appears, for instance, for the equation

(39) u,— Au" +u’ =0

when m > s (see [54, 61, 19, 20, 63]). This can be proven by global comparison
functions when the domain is unbounded and more generally for the method of
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local super and subsolutions [35]. Also, the energy method allows us to find such
a behaviour (even locally) for the solutions of the general equation (26) assuming
max(g,1/m) < p — 1[42].

A stronger property appears when the absorption is larger. For instance, if we
assume 0 < s < 1 in (39), then there exists a finite time 7, < -+ oo such that the
set N{u(t, )} has positive measure even for strictly positive initial data and
nonhomogeneous Dirichlet boundary conditions [35, 11]. Moreover, if the Di-
richlet conditions are homogeneous or we are concerned with the Cauchy problem
associated to (39), then, in fact, u(¢, x) = 0 for every t = T and a.e. in x [54, 76,
43].

With respect to the balance between diffusion and convection the situation is
quite different. When the convection is large with respect to the diffusion, then
there is a kind of localization property but only in some directions according to
the equation. For instance, for the one-dimensional equation

(40) ut_(um)xx-i—bO‘(uA)x:OI

where m > 1, A >0, and by € R — {0}, if u is the solution of the Cauchy
problem associated to (40) and if supp u(0, x) = [a, b], then, for every ¢ > 0,
supp u(?, ) = [§,(1), &H()] with {0y =a, {5(0)=5b and {|(¢) = a — ¢ (resp.
$H(1) < b — ) Vi€ [0,00), assuming m > A and b, < 0 (resp. by < 0} (see [55,
49, 50]). When the convection is larger, i.e. when 0 < A <1, then there is only
one (localized) interface: supp u(z, -} = [{{t), +co) (resp. supp ult, *) =
(—o0, §,(1)]) when by > 0 (resp. by < 0) (see [39]). We also remark that the
presence of convection and absorption terms in a nonlinear diffusion does not
produce any new behaviour {44, 58].

Also for “fast” diffusion equations the boundary of the support of the solution
can be considered as a free boundary. For instance for the equation

(41) u, — Ap{u) =0

it is well known that if ¢(s) = |s|™ - sign s with 0 < m < 1 [22], or more generally

fl ds < + o0
o $(s)

[70, 28], then for every initial datum there exists a finite Tj such that the solution
u of the homogenous Dirichlet problem associated to (41) is such that u(z, -} = 0
V¢ = T,. In fact it is also known that u(z, x) # 0 a.e. on x if 7 € (0, T},), and so
@ X {Ty} is a free boundary. This behaviour also appears for the equation (33)
when 1 < p < 2 (see [9, 52 and 2]).

As in the elliptic case, there is also a large literature about the support of the
solution of some parabolic variational inequalities ([14, 25, 31, 43} and [76]).

Detailed results as well as other qualitative properties of the solutions of
quasilinear parabolic equations will be available in [33].
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Finally, we remark that there are alse some references about the study of the
boundary of the support for the selutions of first order quasilinear hyperbolic
equations

N
u,— 2 o (u)., + Blu)y=7

i=1
(see [65, 64, 26] and more recently [40]).
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