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Qualitative properties of solutions of some
nonlinear diffusion equations via a duality
argument

1. Introduction

The main goal of this work is to present several qualitative properties of

solutions of the two following nonlinear parabolic problems:

u T Ap(u) =0 in Q= (0,®) = &
$(u) =0 on I =(0,%) x 30 t (P)
u0,*) = uy on 0
and
vt d(=4v) =0 in Q )
v =0 on L 3 {(P*)
v(0,") = A on 0. )

N . .
Here 1 represents a regular open bounded set of R and ¢ is & continuous
non~-decreasing real function such that ¢(0)} = 0. Problems P and P* arise in

many applications leading to functioms ¢ of a different behaviour, specially

near the origin (see, e.g., [11], [6] and [9]).

An essential tool in our study is the '"duality" existing between problems
P and P*. To explain this let us note by A = -4 the canonical isomorphism
from the Hilbert space Hé(ﬂ) onto its dual H'](Q). We also recall that
problems P and P* are well-posed, in the semigroups semse, on the spaces

H~1(9) and Hé(ﬂ). More concretely, the operators A and B given by

{u e H_i(ﬂ)‘n L1(Q) : b(u) € H;(Q)}

D(Aa) =
Au = = Ap(u) if u € D(A)
and
D) = {v & H;(Q) cave '@ and ¢(-av) € Hé(m}

Bv = ¢(~Av) 1if v € D(B)



are m-accretives and densely defined in H‘1(Q) and Hé(ﬂ) respectively,

assumed ¢ satisfying
D) =R} = R

({3}, [4]). Using the usual time-semidiscretization scheme, it is easy to

prove (see, e.g., [6]) the following duality result:

Lemma 0. Let Yo € Hé(ﬂ) and u, = Avo. Let v e c{{0,=) : Hé(ﬂ)) and
ue ¢([0,=) : H1(®@)) such that ulr) = Av(t) for every t > 0., Then, u is

the mild solution of P if and only if v is the mild solution of P*.

We shall use thisresult to prove the extinction in finite time of solutions
of P under a suitable condition on ¢ near the origin as well as in the case
in which ¢ is multivalued at r = 0. This last case is proved by using an

abstract result concerning the Cauchy problem

%% +‘Au 3 f(t)
{cp)
u{0) = uy

for accretive operators A on a general Banach space X. Finally in Section3
we apply Lemma 0 to the study of the asymptotic behaviour of solutions of an
evolution variational inequality which can be formulated in terms of problem
P* for a special ¢ also depending of the x-variable. Again, this study uses
an abstract result for the Cauchy problem (CP); in this case a comparison

type result between the solutions corresponding to different operators A.

2. Finite extinction time property in fast diffusion problems

A curious and interesting property of solutionms of P was exhibited in [12]

and [2] when assuming u. € Lm(ﬂ), u

0 020 and 9@ =u", 0 < m< 1. They
proof that there exists a finite fime TO (called the extinection time) such
that u(t,x) = 0 Ffor all ¢t > TO and x € Q. By well-known results, that
property does not holds in the linear or slow diffusion ¢{u) = um, m=1 or
m > 1, respectively. A natural question arises: For which general functions
¢ the finite extinction time property holds? We note that the equation under

consideration may be rewritten by
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o, - div @' (@Ta) =0,

So, if #'(0) < 4= the equation is uniformly parabolic if ¢'(0} > 0 or
degenerated if ¢'(0) = 0. In any case the property can not be satisfied
{(1111,19]1) and so a first necessary condition is ¢'(0) = += (fast diffusion
equation). It turms out that this condition is not enough, being given the

wanted charactevization by means of the convergence of an improper integral:

- ...1 o
Theorem 1. {[6]). Let u_ € H 1(SB) A LT(Q) such that A u, € L (@) (e.g.

0 0"
w € LP@), p> N/2 if N > 2) and let u be the mild solution of P. Then
0 Z Z

the assumption

ds
é b (s)

is the necessary and sufficient condition for the existence of a finite

< 4@

extinction time Ty (i.e. such that wu(t,x) = 0, a.e. x € {, for all
£ > TO).

The keystone part of the proof is to obtain primilary the similar result
for solutions v of P#* cqrresponding to initial data vy smaoth encugh. To
do that we use the comparison principle and the construction of suitable
super and subsolutions. Here the maximum or comparison principle may be
proved by using the fact that problem P# is "well-posed” in semigroups sense
in the space Lm(ﬂ). The proof of Theorem i ends by using Lemma 0, some
regularizing effects as well as the maximum principle for solutioms of P
which now is obtained through the fact that P is also "well-posed" in semi-
groups sense in the space L](ﬂ). For details we refer the reader to {6}.

The conclusion of Theorem 1 may be easily extended to soluticns of the

nonhomogerneous equation

uo o~ Ap(u) = £(r)
where f € L1((O,m) : H_j(ﬂ)) is assumed such that £(t) 20 for a.e.
£> ts, for some t0 > 0. A general reference containipg many other wvariants
of Theorem 1 to other equations, other methods of proof and many references
is [9].

The case in which in the equation of P ¢ represents a general maximal
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monotone graph of Eg have some interest in applications {([7]) and may be
also treated by using Lemma 0, The anly new difference appear when ¢ is
m:ltivalued at tr =0, i.e. #{0) = I¢—(O), ¢+(O)] for some numbers ¢—(0),
$ (0), —«n§_¢—(0) <0< ¢+(0) < +=. In that case a necessary condition for
the finite extinction time property is thar A~1(f(t)) g $(0) for t large
enough and a.e. x e Q, (take u = 0 at the equation). That condition turms

out to be "almost sufficient", and we have

EEEEE%ELE;. Let wuy e H_1(Q) n Ll(ﬂ), such that A—luo € 17(7) and
£fel; (=) :1L7(@) such that, there exists ¢

satisfying that

0 20 and e>0

$7(0) + e < A (E(E)) < 870 ¢ ae. &t £y o).

Then there exists a finite extinction time TO > tO for the corresponding

solution wu. °

Due to Lemma 0, the proof of Theorem ? reduces to show the finite

extinetion time property for the solution of
v, * ¢p(av) 2 F(e)

with homogereaus Dirichlet conditions and the corresponding initial data,

. =1 .
being F(t) = A "(£{t)). We first recall an abstract result

Theorem 3. ([7]). Let X be a Banach space, A be an accretive operator on
X, f e Lloc((O,w) : XY, ug € D(A) and u e C({0,=) : ¥) be the (integral)
solution of the Cauchy problem (CP). Assume that there exist € > 0 such
that

B(£(t),e) c A(Q) ’ a.e. t :_to

for some to >0 (here B(h,e) = {weX: [n - wi < g}). Then there exists

a finite extinction time TO for u (i.e, u(t) =0, for all t > TO).
Returning to the proof of Theorem 2, it follows from the application of

Theorem 3 to the realization of the operator $(-Av) on the space X = Lm(ﬂl

Details, references and other applications of Theorem 3 can be Ffound in [7]

and [9}.
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3. On a fully nonlinear parabolic equation

Another context in which Lemma O turns to be very useful is the study of the

problem
v, = min {¥,Av} in Q
v =20 on é : (P¢)
v{0,*) = \ on @

where Y € LZ(Q), ¥ > 0 is a given function. Such problem arises in heat
control theory and can be eguivalently formulated in terms of the following

evolution variational imequality

v, € K={we Hé(ﬂ) :w<y¥ a.e.on @}

[ v Gy ddx + [ V9.V (e-v )dx > 0 for all we k.

Q 2
The existence and uniqueness of solutions of the above variational inequality
was proved in [5]. There it is also shown that v(t,x) converges weakly in

Hg(n), whea t + =, to a function v _(x) € H;(Q) satisfying
min {avm,w} =0 on Q.

Twe natural questions arises: a) identify v_ in terms of vo; and b) try to
show a strong converge criterium. Some results to the first question are
given in {B]. In particular, it is easy to show that if ¥(x)} > 0 then
necessarily v_ = 0. The study of the asymptotic behaviour in this last case

may be carried out by using Lemma 0.

Theorem 4. ({8]). Let v, € Hé(n) and ¥ such that V¥ ¢ H?(Q), with AY > 0.
Then, if ¥ >0 on & then w(t) + 0 strongly in Hé(ﬂ) when t -+ o,

Moreover, if Y(x) > § for some 6 > 0 then there exist a finite time TO
such that v~ Av =0 on (To,w) % Q.

The proof of Theorem 4 is made in several steps. First we show (Lemma 0)
that if v is smooth enough, and v(t) is the solution of (P$) then the

0
Function u(t) = Av(t) satisfies

"



u - Ad(x,u) =0 in Q

t
¢o(x,u) =0 on I (PW)
u(0,+) = AVO on
where ¢(x,r) = - min {¥(x),-r}. Note that the range of ¢ is not the whole

R which leads to some extra difficulties in the study of the realization of
the operator in the space L1(Q). Nevertheless using some regularity results
for stationary variational inequalities it can be shown ([8]) that (PW) is
well-posed (in the semigroups sense) on the space Li(ﬂ), assumed Y ¢ H1(Q)
and (=A%) € Lz(ﬂ). As a second step we shall apply the following abstract

. 1 . .
comparison result to the L ~realization of the operator -d4é(x,u).

Theorem 5. ([1]). Let X be a Banach lattice. For i = 1,2, let 4, be

m-T—aceretive gperator in X and let ED(Ai)‘ Assume that there exists

u.,.

0’1

9:X ~+ X continuous and such that: i) (I-0) 1is order to preserving; ii)
+ +

Azu c A‘@(u) for every u e D(AZ)’ and 1ii) U, €D (AZ)’ D (Az) = {ue

€ D(A,) : Ayu > 0}. Then

2
2

llu, ) = 00, N1 <ty | = 8tuy 17

0,1 0,2 Il

for every t > 0,

Returning to the proof of Theorem 4 we note that by comparison arguments
we can always assume, without loss of generality, vy <0 a.e. on &. Taking
uy = ?—1v0, we apply Theorem 5 to the case of X = LI(Q}, Aiu the realization
in L (&) of the linear operator =-Au aund AZU that of the operator
~8p(x,u). A function @ satisfying the requirements of the theorem is given
by the Nemitsky operator in L1(Q) of the Lipschitz functien ¢é(x,r).
Finally, it is not difficult to show the existence of a ao e L7(2) such
that —A¢(x,u0(x)) >0 and uO(x) = ¢(x,GO(x)) a.e. x € ., In consequence,

if h{t,x,z) denotes the solution of the limear heat equation

h_ = Ah in Q

h=20 on I
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we deduce from Theorem 5 that h(t,x,ﬁo) < ¢(x,ult,x)) < 0. By Lemma 0

applied to P, as well as to the linear heat equation we obtain that
h(t,x,A_1(;0)) <~ min (¥{x},8v(t,x)} <0 a.e. (t,x) €qQ,
where now v(t,x) is the solution of the origimal problem (P$). From the

well=known results on the asymptotic behaviour of solutions of the linear

heat equation we obtain the wanted conclusions. (See details in [8].)

Remark. Duality arguments similar to Lemma O are also useful in the

the regularity of the semigroup solution as well as for some other
qualitative properties (such as, for instance, the finite speed of

propagation) of solutions of nonlinear problems P and P* (see, e.g. [16] and

(al).
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