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ABSTRACT: We give a gradient estimare for any solution of a quasili-
tear second order equation of the form  ~div (Q(;Vu|)Vu)+f(u) 0 in &
with u=k on 3 . This includes the p-Laplaciao operator Q(q)=g #2

as well as the equation of surfaces of prescribed meam curvature ()(g)"~
l/(l+-ﬂ) . Qur gradient esrimaces are of the tvpe |Vu|€%(u) for scme
suicable fumction ¢. The inequality becomes an equality in the Oﬂe—dlmgq
sional case. This result was already known for stromgly eiliptic opera~
tors and £ € C*. The generalization to eventual degenerate gperators and
f£C%is motivated for some frae boundary problems in contiauum wmecha~
nics. The associarad evolution problem is also considered. Detailed
procfs of this preliminary repowrt will appear elsewhers.

CLASIFTCACION AMS (1980): 35B45, 35J70, 35K5S5. ' !

}. ELLIPTIC EQUATIONS. This communication deals with some p01utu15e gra~
dient estimaces for nonnegative solutions of the problem

‘ {Fdlv(Q(IVu])Vu)+f(u)WO in @
(1)

=k on 3R ,

. . . -
where @ ¢ R 1is a regular open bounded set, k is a positive consranr,

2
() Q€™ (0.=nc’ ({0,)), Q(q)>0 and {q2(q)'>0 if q>0 ,
(3)  £ec’([0,®) and £(t)>0 if >0 .
Problems of this type appear in many different contexts:chemical reac~
tions (Q(g)=1}, non-Newtonian fluids (Q(q)= =q™), surfaces of pres**'aaz
mean curvature or the meniscum problem in capillarizv (Q(g)=1/(l+g~ Wy
se2 re:erences in Diaz A91 for the two firsc problems and Payne-Phiili-
pPPin L5 for the third one.

Our main tesult is the following
THEQREM 1. Let u be a uonnegaclve weak solution of (1) such thac
u€¥J”w(d(E‘?:‘VUITU})nC (%). Then, for every x €5 we have
) 7ux) j€a7 H(Fu(x))—=2(u(x)-m)) on I,

where m»0 is the minimum of u on i} o

(*)} Parclally supported by cha project n® 3308/83 of rhe CAICYT.



(5 a@=r3s)s) s ds
t

(&) Fe)=/_ £(s)ds

and .

(73 a=min{0, min (I-1)EGQC L0 %}
Jn gn

_ x€3il ‘
with H(x) being the mean curvature of 38 .

Proof. Let J:Q +TR be defined by
(8 JG=al|Tulx) D-Flulx))+eulx).

In crder to prove (4), or eguivalently J(x)gum for any x€ 1, we introdu-
ce the noration Dsﬂ{xe 2:1%u(x) |>e} for €30 and procesd in different
steps: First step., We shall prove that if we define q(x)=iVu(x)| and

i A tro, Q' (g (x)}
(9.) . T(x)—AJ(x)‘?'m%W U-k(x)ul(x)Jkl(x)

then TEL (D ) and 750 on D , for any E>0,(1n {9) and in the folla-
wing we use the Einstein summarion convention). Indeed, by differentia—
ting J (in the sense of distributiens), we gbtain
. Q' 1 [ 2
10) 7 AJ=(2= LU u.u. + PR S TRMTOR B cu,~f{u)Autada
($10)] (q+Q Jujugu, ik (Q+qQ )(le_]k j J) (LI)JUJ ‘(%x);u .
Using the equation in (1) and differentiating there with respect to x
we get (after, at least, five minutes of computationi) that
=- . ’ 2 B 20' o ! - (9')
T=(Q+qQ }ujkfujujkuiku.( —E_i+ Q - a )+

1 q

0 1y 2 3 ty 2 ‘
"}'(U.U.'U )2(“g;_9____9__+3(0) +(O) +9ﬁ.+(0) )_
1741 L

- q q*Q qQ” q Q

Q' @)l _Erw)
AT R e

sincg the right side of the equalicty is a bounded function in Dp we have
Te& L (Dg). On the other hand, using Cauchy-Schwarz inequality up Upx Uy Uy

2

- uiuilulf(u)(

u., u.u..u., as well as the identities
ik 1i7jkT]

£q?

UguL, U - 6;367»+ terms containing Jl

2
£°3

(u.u,,u, )= —3 — 4 rerms containing J
17111 z 1
* (Qtqq")?
£iq"
uikuiu'ku': —-—uﬂ——r + terms coutaining Jl,
J& ] (Q+q0")*-

take its maximum value on 3 unless q = 0 on 3. Indeed, since u=K on

9% and uck in &, it follows that Q(|Tu;)3u/3n30 oo 3Q. By the divergagn_
ce theore=

~

Qu) == j £(u)>a.
Jaa @ Jg

-

Then, there is p*g 30 such that —g—g—(p*)>0 aud, in coussquence %{p))()_

but
3l _ f3u ., 1 3u 3% 3u
D oo = [ @H@] 52 52 + (@-E(u)Es <0

Hence, from equation (1)
3%u au, ., Ju 3%u '
(12)  g(a( a7+ B-1E =+ {q) e f(u) on 39

2
{remember thar Au=<%ag~+(ﬂ—l)ﬂ %E—on 2%2; Sperb ]7]). Conbining (ll) amd

(12) we conclude that g%{p)io, which is a ceontradiction wich the Hopf's

maximm principle {which can be applied because T>0 and p €dD; for e
small emough). Third step. J(x) takes its maximum value in every prell
such that u(p*)=m: To prove that, ler p& @ such that J(p)=max J(x). By
the above step pe¢ {§ and Vi{p)=0. If Vu{p)}=0, from the definicion of J
and p we conclude that u{p)m. ILf [Vu(p)i=6>0 we take <6 and as T20 an
D , by the strong maximm priociple we conclude that J(x)ZT7(p) VKE»DE.
Since this is true for all e<§ and J is continucus we get J(x)=I(p) in
82{x& N: [Vu(x) [>0}. Wow, let p*€ Q such thac u(p*)=m, If p* &S, then
J(p)=I(p*) and the statement follows. If pe& S, there is a largest ball
B centered at p* imn which Vu=0. Then u(x)#m and Vu(x)=oc iz B and as B
incersects S we get, from the definiriom of J, that J(p*]=](p).W

BFMARES 1. It is not difficult o show cthat the estimate (4) is optimal
in che sense that, in fact, the equality is true if N=1.

2.Theorem 1 exrends previous resulrs due to Payne-Phillipin ]6: for the
case of scrongly elliptic quasilinear equatiomns and fe G'. Our proof is
also inspired on the adaptation made by Mossino IS; of Pawvne's wmethod,
for semilinear equations.

3. The regularity assumed on u is not restrictive. This is well-known in
many importanc particular cases including the p-Laplacian and the mini-
mal surfaces operators (see Di Bemederzo [4{).

4, Oprimal pointwise gradient estimates are of a great interest in the
study of the free bhoundary given by the boundary of the support of u.
In particular, estimare (4) is used in Diaz-Saa-Thiel [3| in order to
obtain a necessary condition for the existence of the frae boundary for
the equarion (1) (which gemeralizes results collected in Diaz {2!).

2. PARABOLIC EQUATIONS. Pointwise spacial gradienc estimaces can also
be obcained for nonnegative solucions of




uc-div(Q(.quI)Vu) + £(u)=0  in (0,T)xl
(13 u=k : on (0,T)x3
u(0,x)=uq(x) con fl,
shere Q and f satisfies (2) and (3) and T>0. We have
[HEOREM 2. Assume that ||us||_sk as well as
(14) £ is nondecreasing or £ is locally Lipschirz continucus,
(15) Q'(s)<0 if s>0 , '
(16)  ~div(Q({Vus|Vuo)+£(ue)s0 on Q .

Let u€ C( O,T]ﬁﬁzpe a nommegative weak solution of (13) such thac
ule,Ye W= ({zxg ﬂ;]Vu(t,x)l % 0})nC;(ﬂ). Define w=min u, A and F given
by (5) and (6) and let : . ) R

(17)  arain(0, min (-DEE@AUE €0 32 (0}

Then if ' _ o

(18)  |Vuo () [$A (Flua (@)))-aua(x)-m) om 2,

we have . o . o

(19) - [Fute.x) |ea L(F Gl m) ) adult,D-m) on [0,T]x .

Proof. Due to assumptions (14) and (16) is not difficuit-to show that
u;:o in B'((0,T)x?) (this can be obtained by comparison of u(t,.) with
u\t+h,f) for any h>0). Now, define

L 3(e,x)=AC|Tule,x) |)-Flue,x) )+ault,x)

and

D_(z)={x€ Q: Ivu(é,x)|>s}, DE wwg)E(O;T)DE(t)x{t}.

In order to prave (19) (or, equivalently, J(t,x)<am for any
{t,x)E EU,T]xﬂ) wve see that - - '

iz & 5 g + ' - »
y AT=(2 1 +q )ujujkuiuil'(Q+qQ )(ujkpjk+ujﬁuj) E(u)juj—(f—a)ﬁu
_and so :

! = Q' 132 2 ' l
3pam w3 =B 4 @) T e gug 0 )= (@1aQ Q) Cagyy) *

" [ Ty 2 » 1 '
+ [ 4990903000 - Ja ) OO 4@ Pugua ek (@) -0 E)

¢ alf(a)-a) (1+ ﬂ%l ) €0 in D

where we have used similar arguments to the elliptic part as well as
(15) and u >0. The maximum of J in [0,T]x must be atrained in the pa-
rabolic boundary. But this paximum is not acttainmed in the spacial boun-
dary (0,T)x30 (use that u(k,x)gk on (0,T)x2, u =0 on (0,T)x8] and argue
as in the elliptic case). On t=0 we have J{0,x)<am by (18). Finally, if
the maximum of J is not at t=0 it must be atr sotue (ca,xu)é(O,Tlxﬂ and,
as in the elliptic case, VJ(tg,xo)=0 and u(tq,:-:a)=m.E

REMARKS 6. Theorem 2 extends preévious results due to Sperb .71 and

Friedman-Mcleod !1] for the semilinear case Q(s)Sl. We peint out that

in this case assumpcion (16) is not needed.

7. When @0 assumption (18) can be remaved, Indeed im this czse we can
prove that |Vu(t,x)|sA(F(ult,x))/t). ‘

8. If (15) is not assumed, the problem becomes degenerate and it seems
that conclusion (19) only holds for very special initial datz ug or N=1l.
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