IX CONGRESO DE ECUACIONES DIFERENCIALES Y APL ACIONES Valladolid, 22 - 25 de Septiembre, 1986

ECUACIONES DIFERENCIALES Y APLICACIONES

JUNTA DE CASTILLA Y LEON Conseiería de Educación y Cultura ACTAS IX LEDYA
Valladolid 1986, pp. 147-151

OFTIMAL GRADIENT BOUNDS FOR SOME SECOND ORDER QUASILINEAR EQUATIONS.

bу

J.I. DIAZ (*)
Depto. de Matemática Aplicada
Universidad Complutense
28040 Madrid

J.E. SAA
Escuela Univ. de Estadística
Universidad Complutense
28008 Madrid

ABSTRACT: We give a gradient estimate for any solution of a quasilinear second order equation of the form $-\text{div} (Q(|\nabla u|)\nabla u)+f(u)=0$ in Ω with u=k on $\partial\Omega$. This includes the p-Laplacian operator $Q(q)=q^{p-2}$ as well as the equation of surfaces of prescribed mean curvature $Q(q)=q^{p-2}$ as well as the equation of surfaces are of the type $|\nabla u| \leqslant \Phi(u)$ for some suitable function Φ . The inequality becomes an equality in the one-dimensional case. This result was already known for strongly elliptic operators and $f \in C^2$. The generalization to eventual degenerate operators and $f \in C^2$ is motivated for some free boundary problems in continuum mechanics. The associated evolution problem is also considered. Detailed proofs of this preliminary report will appear elsewhere.

CLASIFICACION AMS (1980): 35B45, 35J70, 35K55.

1. ELLIPTIC EOUATIONS. This communication deals with some pointwise gradient estimates for nonnegative solutions of the problem

(1)
$$\begin{cases} -\text{div}(Q(|\nabla u|)\nabla u) + f(u) = 0 & \text{in } \Omega \\ u = k & \text{on } \partial \Omega \end{cases},$$

where Ω c \mathbb{R}^N is a regular open bounded set, k is a positive constant,

- (2) $Q \in C^2(0,\infty) \cap C^0([0,\infty)), Q(q)>0 \text{ and } (qQ(q))'>0 \text{ if } q>0$,
- (3) $f \in C^0([0,\infty))$ and f(t)>0 if t>0.

Problems of this type appear in many different contexts:chemical reactions (Q(q)=1), non-Newtonian fluids (Q(q)= q^{r-2}), surfaces of prescribed mean curvature or the meniscum problem in capillarity (Q(q)= $1/(1+q^2)^{1/2}$): see references in Díaz [2] for the two first problems and Payne-Phillippin [6] for the third one.

Our main result is the following

THEOREM 1. Let u be a nonnegative weak solution of (1) such that $u \in W^{2,\overline{\alpha}}(\{x \in \overline{\Omega}: |\nabla u| \neq 0\}) \cap C^1(\overline{\Omega})$. Then, for every $x \in \overline{\Omega}$ we have

- (4) $|\nabla u(x)| \le A^{-1}(F(u(x)) \alpha(u(x) m))$ on Ω ,
- where m>0 is the minimum of u on $\overline{\Omega}$, (*) Partially supported by the project n° 3308/83 of the CAICYT.

(5)
$$A(q) = \int_{a}^{q} (Q(s)s)' s ds$$

(6)
$$F(t) = \int_{-\infty}^{t} f(s) ds$$

and

(7)
$$\alpha = \min\{0, \min_{\mathbf{x} \in \partial \Omega} (\mathbf{N} - 1) \mathbf{H}(\mathbf{x}) \mathbf{Q}(\frac{\partial \mathbf{u}}{\partial \mathbf{n}}(\mathbf{x}) | \frac{\partial \mathbf{u}}{\partial \mathbf{n}}(\mathbf{x})\}$$

with H(x) being the mean curvature of $\partial\Omega$.

<u>Proof.</u> Let $J: \overline{\Omega} \to \mathbb{R}$ be defined by

(8)
$$J(x)=A(|\nabla u(x)|)-F(u(x))+\alpha u(x).$$

In order to prove (4), or equivalently $J(x) \leqslant \alpha m$ for any $x \in \overline{\Omega}$, we introduce the notation $D_{\xi} = \{x \in \Omega \colon |\nabla u(x)| > \epsilon\}$ for $\epsilon > 0$ and proceed in different steps: First step. We shall prove that if we define $q(x) = |\nabla u(x)|$ and

(9)
$$T(x) = \Delta J(x) + \frac{Q'(q(x))}{q(x)Q(q(x))} u_k(x)u_1(x)J_{k1}(x)$$

then $T \in L^{\infty}(D)$ and T>0 on D, for any $\epsilon > 0$.(In (9) and in the following we use the Einstein summation convention). Indeed, by differentiating J (in the sense of distributions), we obtain

$$(10) \quad \Delta J = (2\frac{Q'}{q} + Q'') u_{i} u_{ik} u_{j} u_{jk} + (Q + qQ') (u_{jk}^{2} + u_{j} \Delta u_{j}) - f(u)_{i} u_{j} - f(u) \Delta u + \alpha \Delta u .$$

Using the equation in (1) and differentiating there with respect to \mathbf{x} we get (after, at least, five minutes of computations) that

$$T = (Q + qQ')u_{jk}^{2} + u_{j}u_{jk}u_{ik}u_{i}(\frac{2Q'}{q} + Q'' - \frac{Q'}{q^{2}} - \frac{(Q')^{2}}{qQ}) +$$

$$+ (u_{i}u_{il}u_{l})^{2}(-\frac{Q'}{q^{3}} - \frac{Q''}{q^{2}} - \frac{Q}{q^{2}} + \frac{3(Q')^{2}}{q^{2}Q} + \frac{(Q')^{3}}{qQ^{2}} + \frac{Q}{q} + \frac{(Q')^{2}}{Q}) -$$

$$- u_{i}u_{il}u_{l}f(u)(\frac{Q'}{qQ} + \frac{(Q')^{2}}{q^{2}Q^{2}}) - \frac{f^{2}(u)}{Q} .$$

since the right side of the equality is a bounded function in $D_{\mathcal{E}}$ we have $T \in L^{-}(D_{\mathcal{E}})$. On the other hand, using Cauchy-Schwarz inequality $u_{i,k}^{-}u_{i,k}^$

$$\begin{aligned} \mathbf{u}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}\mathbf{l}}\mathbf{u}_{\mathbf{l}}^{2} &= -\frac{\mathbf{f}q^{2}}{\mathbf{Q}+\mathbf{q}\mathbf{Q}'} + \text{terms containing } \mathbf{J}_{\mathbf{l}} \\ &(\mathbf{u}_{\mathbf{i}}\mathbf{u}_{\mathbf{i}\mathbf{l}}\mathbf{u}_{\mathbf{l}})^{2} &= \frac{\mathbf{f}^{2}\mathbf{q}^{\mathbf{u}}}{(\mathbf{Q}+\mathbf{q}\mathbf{Q}')^{2}} + \text{terms containing } \mathbf{J}_{\mathbf{l}} \\ &\mathbf{u}_{\mathbf{i}k}\mathbf{u}_{\mathbf{i}}\mathbf{u}_{\mathbf{j}k}\mathbf{u}_{\mathbf{j}}^{2} &= \frac{\mathbf{f}^{2}\mathbf{q}^{\mathbf{u}}}{(\mathbf{Q}+\mathbf{q}\mathbf{Q}')^{2}} + \text{terms containing } \mathbf{J}_{\mathbf{l}}, \end{aligned}$$

we conclude that $T(x)\geqslant 0$ for $x\in D$. Second step. We claim that J cannot take its maximum value on $\Im\Omega$ unless $q\equiv 0$ on $\Im\Omega$. Indeed, since u=K on

 $\partial\Omega$ and usk in Ω , it follows that $Q(|\nabla u|)\partial u/\partial n > 0$ on $\partial\Omega$. By the divergence theorem

$$\int_{\partial\Omega} Q(u) \frac{\partial u}{\partial u} = \int_{\Omega} f(u) > 0.$$

Then, there is $p* \in \partial \Omega$ such that $\frac{\partial u}{\partial n}(p*)>0$ and, in consequence $\frac{\partial u}{\partial n}(p)>0$.

(11)
$$\frac{\partial J}{\partial n} = \left[\frac{\partial u}{\partial n} Q'(q) + Q(q)\right] \frac{\partial u}{\partial n} \frac{\partial^2 u}{\partial n^2} + (\alpha - f(u)) \frac{\partial u}{\partial n} \le 0$$

Hence, from equation (1)

(12)
$$Q(q)\left(\frac{\partial^2 u}{\partial n^2} + (N-1)H\frac{\partial u}{\partial n}\right) + Q'(q)\frac{\partial u}{\partial n}\frac{\partial^2 u}{\partial n^2} = f(u) \text{ on } \partial\Omega$$

(remember that $\Delta u = \frac{\partial^2 u}{\partial n^2} + (N-1)H \frac{\partial u}{\partial n}$ on $\partial \Omega$; Sperb [7]). Combining (11) and

(12) we conclude that $\frac{\partial J}{\partial n}(p) \leqslant 0$, which is a contradiction with the Hopf's maximum principle (which can be applied because T>0 and $p \in \partial D_{\varepsilon}$ for ε small enough). Third step. J(x) takes its maximum value in every $p \not= \Omega$ such that $u(p^{\sharp})=m$: To prove that, let $p \in \Omega$ such that $J(p)=\max J(x)$. By the above step $p \in \Omega$ and $\nabla J(p)=0$. If $\nabla u(p)=0$, from the definition of J and p we conclude that u(p)=m. If $|\nabla u(p)|=\delta>0$ we take $\varepsilon<\delta$ and as T>0 on D, by the strong maximum principle we conclude that $J(x)\equiv J(p)$ $\forall x \in D_{\varepsilon}$. Since this is true for all $\varepsilon<\delta$ and J is continuous we get J(x)=J(p) in $S\equiv \{x \in \Omega: |\nabla u(x)|>0\}$. Now, let $p \not= \Omega$ such that $u(p^{\sharp})=m$. If $p^{\sharp} \in S$, then $J(p)=J(p^{\sharp})$ and the statement follows. If $p \in S$, there is a largest ball B centered at p^{\sharp} in which $\nabla u=0$. Then u(x)=m and $\nabla u(x)=0$ in B and as B intersects S we get, from the definition of J, that $J(p^{\sharp})=J(p)$.

<u>REMARKS 1.</u> It is not difficult to show that the estimate (4) is optimal in the sense that, in fact, the equality is true if N=1.

- 2. Theorem I extends previous results due to Payne-Phillipin |6| for the case of strongly elliptic quasilinear equations and $f \in C^1$. Our proof is also inspired on the adaptation made by Mossino |5| of Payne's method, for semilinear equations.
- 3. The regularity assumed on u is not restrictive. This is well-known in many important particular cases including the p-Laplacian and the minimal surfaces operators (see Di Benedetto |4|).
- 4. Optimal pointwise gradient estimates are of a great interest in the study of the free boundary given by the boundary of the support of u. In particular, estimate (4) is used in Diaz-Saa-Thiel |3| in order to obtain a necessary condition for the existence of the free boundary for the equation (1) (which generalizes results collected in Diaz |2!).
- 2. PARABOLIC EQUATIONS. Pointwise spacial gradient estimates can also be obtained for nonnegative solutions of

(13)
$$\begin{cases} u_{\varepsilon} - \operatorname{div}(Q(|\nabla u|) \nabla u) + f(u) = 0 & \text{in } (0,T) \times \Omega \\ u = k & \text{on } (0,T) \times \partial \Omega \\ u(0,x) = u_{0}(x) & \text{on } \Omega, \end{cases}$$

there 0 and f satisfies (2) and (3) and T>0. We have

THEOREM 2. Assume that | | u | | | k as well as

- (14) f is nondecreasing or f is locally Lipschitz continuous,
- (15) Q'(s)≤0 if s>0,
- (16) -div(O(|Vu₀|Vu₀)+f(u₀)≤0 on Ω.

Let $u \in C^0([0,T]x\overline{\Omega})$ be a nonnegative weak solution of (13) such that $u(t,\cdot) \in W^{2,\infty}(\{x \in \overline{\Omega} : |\nabla u(t,x)| \neq 0\}) \cap C^1(\overline{\Omega})$. Define $m=\min u$, A and F given by (5) and (6) and let

(17) $\alpha=\min\{0, \min(N-1)H(x)Q(|\frac{\partial u}{\partial n}(t,x)|) \frac{\partial u}{\partial n}(t,x)\}$

Then if

(18) $|\nabla u_0(x)| \leq A^{-1} (F(u_0(x))) - \alpha(u_0(x) - m)$ on Ω ,

we have

(19)
$$|\nabla u(t,x)| \le A^{-1}(F(u(t,x))) - \alpha(u(t,x)-m)$$
 on $[0,T]x\Omega$.

<u>Proof.</u> Due to assumptions (14) and (16) is not difficult to show that $u_{t}>0$ in $D'((0,T)x\Omega)$ (this can be obtained by comparison of u(t,.) with $u(t+h,\cdot)$ for any h>0). Now, define

$$J(t,x)=A(|\nabla u(t,x)|)-F(u(t,x))+\alpha u(t,x)$$

and

$$D_{\varepsilon}(z) = \{x \in \Omega \colon |\nabla u(z,x)| > \varepsilon\}, \ D_{\varepsilon}^{T} = \bigcup_{z \in (0,T)} D_{\varepsilon}(z) x\{z\}.$$

In order to prove (19) (or, equivalently, $J(t,x) \le \infty$ for any $(t,x) \in [0,T] \times \mathbb{R}$) we see that

$$\Delta J = (2 \frac{Q'}{q} + Q'') u_j u_{jk} u_i u_{il} + (Q+qQ') (u_{jk} u_{jk} + u_j \Delta u_j) - f(u)_j u_j - (f-\alpha) \Delta u$$

$$J_{e} - Q\Delta J - \frac{Q'}{q} u_{k} u_{1} J_{kl} = \left[\frac{QQ'}{q} + (Q')^{2}\right] (u_{1} u_{1} u_{1l} u_{1l}) - (Q^{2} + qQ'Q) (u_{1jk} u_{jk}) +$$

$$+ \left[\frac{qQQ''-QQ'-3q(Q')^{2}}{q^{3}} \right] (u_{i}u_{k}u_{ik})^{2} + \left(\frac{QQ'}{q} + (Q')^{2} \right) u_{i}u_{l}u_{li}\Delta u + (f(u)-\alpha)f(u)$$

$$\leq \alpha(f(u)-\alpha)(1+\frac{qQ'}{Q}) \leq 0 \text{ in } D_{\varepsilon}^{T}$$

where we have used similar arguments to the elliptic part as well as (15) and $u \ge 0$. The maximum of J in $[0,T] \times \Omega$ must be attained in the parabolic boundary. But this maximum is not attained in the spacial boundary $(0,T) \times \partial \Omega$ (use that $u(t,x) \le k$ on $(0,T) \times \overline{\Omega}$, u=0 on $(0,T) \times \Omega$ and argue as in the elliptic case). On t=0 we have $J(0,x) \le \infty$ by (18). Finally, if the maximum of J is not at t=0 it must be at some $(t_0,x_0) \in (0,T] \times \Omega$ and, as in the elliptic case, $\nabla J(t_0,x_0)=0$ and $u(t_0,x_0)=m$.

- REMARKS 6. Theorem 2 extends previous results due to Sperb [7] and Friedman-McLeod [1] for the semilinear case Q(s)=1. We point out that in this case assumption (16) is not needed.
- 7. When $\alpha \equiv 0$ assumption (18) can be removed. Indeed in this case we can prove that $|\nabla u(t,x)| \leq A(F(u(t,x))/t)$.
- 8. If (15) is not assumed, the problem becomes degenerate and it seems that conclusion (19) only holds for very special initial data u_0 or N=1.

REFERENCES

- | I | A. Friedman and B. McLeod: "Blow-up of Positive Solutions of Semilinear Heat Equations". Indiana Univ. Math. J. 34 (1985) 425-447.
- |2| J.I. Díaz: Nonlinear partial differential equations and free bounda ries: Vol.I. Elliptic equations. Research Notes in Math, n°106. Pitman. London (1985).
- [3] J.I. Díaz, J.E. Saa and U. Thiel: In preparation.
- |4| E. DiBenedetto: "C^{1+Q} local regularity of weak solutions of degenerate elliptic equations". Nonlinear Analysis, Th. Meth. and Appl. 7 (1983) 827-850.
- [5] J. Mossino: "A priori estimates for a model of Grad-Mercier type in plasma confinement". Applicable Anal. 13 (1982), 185-207.
- |6| L.E. Payne and G.A. Phillipin: "Some maximum principles". Nonlinear Analysis, Th. Meth, and Appl. 3 (1979), 193-211.
- |7| R. Sperb: Maximum Principles and Their Applications. Academic Press, New York (1981).