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1. Introduction
This work* deals with the one dimensional porous media equation with
convection. We shall concentrate our attention on nonnegative solutions of

the Cauchy problem asscciated with the simple equation
u - W -6 =0 (b0, x€R) (1)
t XX . x -7 ’ '

where m > 1 and b,d > 0. Equation (1) (sometimes called the nonlineacr
Fokker-Planck eduation) arises for example in the study of the flow of a
fluid through a porous medium. Very raughly speaking, equation (1) describes
a fluid moving in a vertical column (in the case of a horizontal column the
gravity action is negligible and there is no convection term : b = 0). It
turns out that the value of the parameter A is of a great relevance : X > 1
occurs in downward infiltration problems, 0 < A < 1 in evaporation type
problems (concerning the physical derivatian of the equation, we refer the
reader to [10]1, (74]).

From a mathematical point of view, we note that (1) is a guasilinear
equation which is nonuniformly parabolie (it is degenerate near the set where
us=0)ifm>1; morecver, the convection term becomes singular (again where
U=0Q) if 0 <A< 1. As we shall indicate later, there is an extensive
literature concerning the filtration problem (X > 1), in contrast with the
limited treatment given to the general case (A > 0). Our treatment will be
general, including the case 0 < A < 1 (if A = 1, equation (1) reduces to
the standard porods media equation by an easy change of variables).

In Section 2 we review some results on the existence, regularity and
uniqueness of solutions of (1). Section 3 deals with the study of the
existence and qualitative behaviour af the free boundaries. Finally, in
Section 4 we explain how the previaus results can be suitably applied to
certain (first arder) conservation laws equations, which are hyperbolic, yet

have an unbounded dependence domain.
—
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This wark* deals with the one dimensional porous media equation with
convection. We shall concentrate our attention on nonnegative solutions of

the Cauchy problem associated with the simple equation
v, - (WM ~b (ux) = 0 (t >0, x €R) (1)
£ XX ' % - ’ ’

where m > 1 and b,k > 0. Equatioﬁ (1) (sometimes called the nonlinear
Fokker-Planck eguation) arises for example in the study of the flow of a
fluid through a parous medium. Very roughly speaking, equation (1) describes
a fluid moving in a vertical column (in the case of a horizontal column the
gravity action is negligible and there is no convection term : b = 0). It
turns out that the value of the parameter A is of a great relevance : A > 1
pceurs in downward infiltration problems, 0 < A < 1 in evaporation type
problems (concerning the physical derivation of the equation, we refer the
reader to [10], [241).

From a mathematical point of view, we note that (1) is a quasilinear
equation which is nonuniformly parabolic (it is degenerate near the set where
u = 0) if m > 1; moreover, the convection term becomes singular (again where
u=10) ifF 0 < A < 1. As we shall indicate later, there is an extensive
literature concerning the filtration prablem (X > 1}, in contrast with the
limited treatment given to the general case (i > Q). Our treatment will be
general, including the case 0 < A < 1 (if A = 1, equation (1) reduces to
the standard porous media equation by an easy change of variables).

In Section 2 we review some results on the existence, regularity and
unigueness af solutions of (1}. Section 3 deals with the study of the
existence and qualitative behaviour of the free boundaries. Finally, in
Section 4 we explain how the previous results can be suitably applied ta
certain (first arder) conservation laws equations, which are hyperbolic, yet

have an unbounded dependence domain.
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2. Existence, regularity and uniqueness
Since the equation (1) becomes degenerate or singular near the region
{u = 0}, we cannot expect ‘it to have classical solutions. Several weaker
notions of solution may be introduced. We recall the one given in [18] for
the Cauchy problem: )

(CP} "to find u satisfying (1}, as well as u(0,.) = uD(.)”,

where u, > 0 is a given bounded continuaus function on (-m,+w).

DEFINITION. A function u is a generalized solution of (CP) If

~-(i) u Is continuous, bounded and nonnegative in T, where O denotes
the strip (-=,+») x {(0,7] for some fixed T > O;
(ii) u(0,x} = uo(x) for any x € Rj ~ 21
(iii) for every rectangle P = [ngxq] x [tc’tT] cQand ¥ E Cx:t(P) such
that W(x1,t) = W(xz,t) =0 for any t € [to’t1} we have

|15
0= I(u,¥,P) = JJ {th + ™ - buA? dxdt - j uy dx -
XX x
P X t
0 o
t1 . Xq
- J u WX dt.
t X
0 0

The existence of generalized solutions of (CP) may be established by
following the constructive method in {21]. Thus we shall cbtain a
generalized solution as the pointwise limit of a decreasing sequence aof
classircal solutions of (1). This is made in two steps: first, we construct
the required seguence; secondly, we study the continuity of the corresponding
limit function.

Concerning the first step, a possible choice is the following: uk(t,x)
are classical solutions of (1) in q, = (-k-1, k+1) x (0,71, which satisfy
the boundary and initial conditions
(x);

uk(x(k+1)rt) =M=z |u and uk(x,D) = u

0”@ a,k

here the sequence u | tends uniformly to u  on compact subsets of {(-e=,=)
H .
and satisfies

1/k < u <M, u < u For all k > 1.

o,k o,k+t — "o,k
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It follows from a straightforward application of the maximum principle that

1/k <u < Mandu 2y in Q.

k k+1 k

Then there exists a function u defined on B by u(x,t) = lim uk(x,t) for
— k_rm
every (x,t) € Q. It is easy to see that this function u satisfies condition

(iii).

Continuity and other regularity properties of u are proven by obtaining
e One method to get that is tao
use the Bernstein's method (see the adaptation made in [1]). A crueisl

estimates on the modulus of continuity aof u

point here is choosing some auxiliary functions in a convenient way. In

particular, the following result is proven in [10].

THEOREM 1. Lst u € T (R), u_ > 0, such that u® Is Lipschitz continuous
for some B > 0 with max{(m-1),{(m-1)"} < B. Then there exists at least aone
generalized soclution u of (CP); u satisfies (ua)x € L"(W), where a=max{1,8]}.

REMARK 1.  The above result was previously established in [18] and {17] for
A > 1. We point out that the modulus of continuity of u given in Theorem 1
is optimal ([10]) and that, due to Nash's theorem, u € C where u > . We
also note that (um)X € L¥(Q) and u satisfies (CP) in a stronger sense,

namely:

[free™, - otve, - e Tt = [ 80,000 G 2)
for any & € c'(@ such that $(.,T) = 0, 8(x,t) = 0 far £ > 0 and |x]| large
encugh. Finally, we point out that the regularity assumptions on u, may be
censiderably weakened (see [4]).

The uniqueness of generalized solutions, as well as their continuous
dependence on the initial data, is a consequence of the following comparison

result.

THEOREM 2. Let u be the limit selution constructed in the proof of Theorem
1. Let U (respectively u) be a generalized supersolution {respectively
subsolution) of (cP) [I.e. satisfyinb (i) and I(u,r,p) < O (respectively
I{u,z,P) >0 when ¥ >0 in (iii}]. Then for every o <t < T we have
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jm (ulx,t) - Tlx,£)) dx 5_Jm (u(x,0) - Ulx,0)) dx (3}

or, respectively,
f (ulx,t) = ulx,t)) dx if (u{x,0) - u(x,0)) dx. (4)

In particular, under the assumptions of Theorem 1 there exists a unigue
generalized solution of (CP).

Inequality (3) (ar (4)) is proven previously for each classical solution
ukninstead of u; the result follows easily by an already classical duslity
argument. By approaching suitably the solutions, some simplifications are
made without loss of generality. The crucial point of this method is to
obtain sharp "a priori" estimates on the test functions ¥(x,t), which solve
a retrograde linear parabolic boundary value problem (see details in [101).
REMARK 2. Theorem 2 improves on previous uﬁiqueness results, where
different restrictions on )\ were made (see [1B], [17] and [221). The
uniqueness of gensralized solutions has been recently investigated in [4] by
a different method. The main content of Theorem 7 is a comparisen principle:
indeed, from (3) it is obvious that u, iUD implies u < U on U. Finally, we
point out that (3) shows that the semigroup associated with the equatiaon (1}
is a semigroup of contractions on the space.L1(}2)(see [31, [41, [23] and

[24] for a different approach).

REMARK 3. The above results on existence, regularity and unigueness of
generalized solutions are, in fact, particular statements of some more

general results dealing with the equation

u, = plu), + blxyu) - cix,u) (5)
under suitable assumptions on g,b and c. Similar results are also available
fFor other initial-boundary value problems (see [10]}. They also can be

established for the case of higher space dimension (for an adaptation of the

uniqueness arqument see [5], [6]).
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3. 0On the free boundaries

Comparison of solutions and conservation of mass, namely

fm ulx,b)dx = Jm uo(x)dx (t > Q)

L

([151,1111) are wseful tools in order to study the existence or nonexistence

of the free boundaries gi(t) {i =1,2), defined by
El(t) = inf{x€(-w=,=) : u(x,t) >0}, gz(t) = sup{x€(-e,®) 1 ulx,t)>0}.

Here we assume that Y, gsatisfy the canditions of Theorem 1 and moreover

supp U, = [31,32] with -= < 8, < a, < =,

The behaviour of the free boundaries Qi(t) is quite different as to whether
A>%lor 0<Ac<,

The case A > 1 corresponds to filtration problems and has been widely
treated in the literature (see [18], [15] and [16]). In that case both
curves Qi(t) are continuous functions on t, whase behaviour may be

i1llustrated by the following properties:

(a) C1(t)+~m when t=e if A > m and Cq(t)431—K when tsew if 1 < A < m,
for some K > 0

(b) Cz(t)f+m when ta;

(c) if ulx_,t ) > 0 for some (xo,to) € T, then u(xo,t) > 0 for every

t >t .
- "o

When A = 1 an adaptation of the Barenblatt-Pattle solution shows that now
the properties (a) and (b) are not satisfisd.

The case 0 < A < 1 was considered in [11]. Now there is a strong
asingularity in the convection term preventing the formation of the free

boundary cz(t), as the following theorem shows.

THEQREM 3. let 0 < A< 1 and uD as in Theorem 1. Then the function

v = U™ satisfies
Cy R
Ve > - in Q, (6)
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where C is a positive constant only depending on m-X,llu [l and T. In
particular, gz(t) = +»o for every t > 0.

The proaf of {(é) consists in the study of the parabolic equatian
satisfied by vy and the application of the comparison principle to a suitable

subsolution. (An additional argument must be added to the proof of (6} in

[11], as it has been kindly communicated to the authors by P. Bénilan. See
also the proof of (6) in [14]). With respect to the other free boundary

;1(t), its behaviour is given in the following theorem.
THEQREH 4. There exists K > 0 and C > 0 such that
Ct-K < g, (t) < += for every t > 0. « (7)

Moreover Ej(t)f+m when t - o,
The secaond assertion of the above thearem is consequence of the principle
of conservation of mass. Estimate (7) is obtained by comparing the solution

u with a supersoclution u of the form

1/ (m-1)

[F(x-Ct+K)] if x> CtK
ulx,t) = _ ‘
g if x < Ct-K
for a suitably chosen function f [1117.
REMARK 4. Many of the above results can be established for some more

general equations like (5), aother initial-boundary value problems ar in

higher space dimension {ses, For instance, [16], [123 and [91).

4, An application to certain conservation laws equations
As a byproduct of Theorem 3, we can study the domain of dependence of the

conservation law equation

u, + F(u)x =0 in @ (8)

t

when f is a continuous but not locally lipsechitz continuous Function with

F(0) = 0.
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As is well-known ([20],{19]1,[71 and [2]), if f is locally Lipschitz
cantinuous and ug € Lq(R) a LT(R), then

SUpp U, = [31,32] implies supp u(t,.) < [aq-Kt, 32+Kt],
where
K= sup {|F ()] =flull, < = < llull .}

The local Lipschitz continuity assumed for f may be replaced by an integral
condition near the origin. In particular, in [13] it is shown that
supp u(t,.) is a compact set of (~=,=) for every fixed t > 0, provided that

f satisfies the conditian

j ds .
—_1—-—-‘( o, -
g [f(s}]

Nevertheless, both assumptions fail when f near the origin behaves like the
function f(s) = sk, with 0 < A < 1. In fact, an explicit example due to

Kruskov and Hildebrant shows that in that case the suppart of u(t,.) may be
unbounded for every t > 0. The following result shows that this property is

peculiar to a class of nonlinear functions f.

THEOREM 5. Let u_ € L'(R) n L™(R), u_ > 0, with supp u_ = [a,,a,]. Let f
be a continuous function such that

J g5 e, (2)
0 |fis)]

Then if u is the unigue {entropy) solution of (CP), there exists a function
c1(t) such that u(t,x) > 0 for x > g1(t).
The idea of the proof consists in applying Theorem 3 - or, more precisely,

a generalization of it - to the splutions of the equation

U - EU F(u)x =0, € >0. (10)

Indeed, as noted in Remark 4, the conclusion of Theorem 3 is true in a more

general context, which includes, in particular, the case of equation (10}
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under the assumptian (9) on the convection term [12]. Finally, by well-
known results (see, e.g., [41}, lim uo = u when €40, and the conclusion is

obtained by means of some uniform estimates on g, E(t) [4].
r

REMARK 5. A-different proof of Theorem 5 for the special case of

f(s) =

proven in [8]. On the other hand, we point out that a result similar to

|sjk‘1s, with 0 < A < T, may be obtained via the estimate u_ > -u/t

Theorem 5 is also available for suitable N-dimensional conservation laws
equations.
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A FASANO s
A free boundary problem in combustion

1. Introduction
Most of the material presented here (namely the existence, uniqueness and
continuous dependence theorems for Problem (P) below) is a condensed form of
a joint paper with J.R. Cannon and J.C. Cavendish [1]. A section an special
solUtions is added. We consider an idealized model for the combustion of a
hailf-space full of solid fuel by a half-space full of gasecus oxidizer.
Neglecting heat conduction in the solid, evaporation of the snlid and
compressibility and convection in the gas, we are led to the following

problem.

PROBLEM (P). For any given T > 0, find a curve x = s{t) and two functions
ulx,t), vix,t) such that
(1) s €cn,tl nclo,t], ,
(ii) wu,v are continuous and bounded in —= < X < s(t), 0<t<T,
u v, are continuous in = < x < s(t}, B <t <7,
u,,v,,u__,v__ are continuous in -= < x < s(t), 0<t < T,
R T Tax
(iii) the following system is satisfied:

T T T B, in -= < x < s(t), 0<t<T, (1.1)
s(0) = 0, (1.2)
u(x,0) = plx), v{x,0) = ¢{x), == < x <0, - {1.3)
uux(s(t),t) = ~{y+uls(t),t)) 8(8), O <t <T, (1.4)
By, (s(t),t) = ~(pev(s(t),t)) 8(t), D <t < T, (1.5)
5(t) = vfluls(t),t)) exp{~&/(vis(t),t) + vo)}, 0<tx<T, {1.6)

where:
(a) ¢, B, v, S, Uy V, v, are positive given constants,
{b) @, b are continuous on -» < x £ 0, and

0 < plx) < w*, 0 < iy < Wix) E_w*, ‘ 1.7



