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1. Intrnduﬁtion

This paper is a shaort survey of some recent work by the authoers, cancerning
qualitative properties of nonlinear degenerate parabolic equations. The
associated stationary problem was considered by the authors in [7] by using
a local comparison technique invalving some kind of local radial super-
solutions, which was previously introduced by the first author in [5]. There
the main interest was the study of the dead core, namely the subset where
the (positive) solutions vanish identically; some necessary gnd/or, sufficient
canditions for the existence of a (non-empty)} dead core, tugether with
additignal information about its size and lgcation, wese obtained (see [1]
and [11] for related work as well as the monograph [61). )

Here we apply the same kind of arguments to a rather large class of
nonlinear {passibly) degenerate parabolic equations complemented with non-
zero Dirichlet boundary conditions (see Problem (F) below). Some results for
the case of pure powers, i.2., glu) = u" and f{u) = uf were obtained in [8].
Here we extend this investigatiaon to nanlinearities @ and f which are not
necessarily powers but have only a similar qualitative behaviour (s=e
assumptions (H1) and (HZ) below) near the origin. We refer the reader to
[2] - [4] and [13] - [15] for other related work.

Very roughly speaking, a large part of gur results seem to be new in this
mare general situation, and some of them extend to the case 0 < p < 1
theorems known for p > 1. More detailed information can be found below (see
also [81[9]). An extended version of this survey, including also work in
[8], with full proofs and many camplementary results and applications will
appear in [9]: in particular, we will give there applications to some
reaction-diffusion systems arising in cembustion theory (see [2]{81} and

population dynamics with nonlinear diffusion ( [121),

2. Main theorems

In this section we consider the following degenerate parabalic problem:
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(ut - Aglu) + Flu) = 0 in 0 = 9x{0,=) r

! ulx,t) = hix,t) on I = 30x(0,=) (P) : ¥, () =J' ds 77

| ulx,0) = u_(x) in g | 0 [ﬁj: %-FG(¢—1(t))dt]
where Q is a bounded domain in FN with smooth boundary 892, under the then for any *a € & we have . . R
following assumptions: ' ’ -1 )

-dnlfx=x ) + fole (n(lxx D)) >0 in aq. (2.4)
9 is a econtinuous increasing function, @(0) = 0 and (z.1) ‘
o' > O~, 9" >0 in (0,e); i Moreover n(0) = n'(0) = 0 and n(s) >0 if s £ 0.
Ské_t_:;h of the proof of Theorem 2.1. We define (this is an idea adapted from
f is continuous, F(0) = 0; there exists a continuaus increasing (2.7) [10])

function f, such that 0 ¢ Fo(s) < fls) for every s > 0

GO0t) = g (nlx-x_|) + gQU(t)))

h€L7(E), h >0 inI; u, € L7(a), u, 20 on Q. {2.3)
o where n{s) and wu(r) are as in Lemma 2.1 (we remark that by (H } we have
Our main result in this section is the follawing theorem. \I} (r) < =) and U is a positive solution of the ordinary dlfferentlal
. ] _ equatmn
THEQREM 2.1. Suppose that u € C(@), v >0, is & solution of problem (P) . )
with (2.1) - (2.3). Moreover assume that 3\t-’ +_2_ F(Y) = : (2.5)
IR ds
Jﬁ » et (H) V) = fu, u
US f (g (t))dt]
g o
and It is not difficult t? see that, as a consequence of (H ), we have U(t) =
uf
1 L ds
ds foranytzT:f .
J—D F0<S) < r (Hg) a g ZFD(S)

From (2.1), (2.2) we obtain:
are satisfied. Then there exists Ty > 0 such that for every t > T, we have
u, - bglu) + FD('J)
N(u(.,e)) = {x € Qlulx,t) = 0} o {x € Q|d(x, U 5(h(.,T1}) > L}

d -1, . . Ty
where § denctes the support of the corresponding f‘unct.wn, and I, Is a - dt (o (mlx-xoi) *+ plule))) - An(]x-xO[) *

constant depending on P, FD, h, Ugs  and N.

-1
The main tool for the proof of Thearem 7.1 is the fellowing Lemma, which * f‘D(q: (n(lx—x0])+cp(u(t))) 2

generalizes Lemma 2.1 in [7]. Its proof can be found in [8]. '
>—2o2 W A AT
T ( —1( dt 2 o 2 o -
1 o' (p (nrelU))) ‘
LEMMA 2.1.  If we define nls) = ¢ 1/N(s), where dU 1 -1 1
[ — 2@ -+ fle (n))+-é~‘ fU) >0



by_(?.ﬂ) and (2.5}, taking into account that
n+p(U) > olU}

implies the inequality
o (gl > U,

hence
o (0" (ma())) > g7 (1),

once again by (2.1).
Concerning the boundary condition, it is easy to show that if we have

-1 o -

0 < h(x,t) 5-"h”Lm <@ (n(]x=x_ M < ulx,t),
then the inequality h(x,t) < U(x,t) holds at the boundary. Indeed, if
x £ 5(h(.,1)), h(x,7) = 0 and the inequality is automatically satisfied. If
not, it is sufficient that

el ) < n{]x-x [} for any x € 39;

L

this is equivalent to

b el D1 < e,
or, otherwise stated, be

dix , U sth(.,1)) > L,

U —
>0

#here L = w?/N(w(”HHL“))‘

As for the initial conditiaon, it is easily seen that

0 < uy(x) < gl o< (P-w(n(lex‘]l)) + olflagll -
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Thus we obtain {recall (2.2)):
u, = Agplu) + F_(u) E-E.S»GE - Aglu) + FO(E) in
p(x,t) < ulx,t) on

u_{x) < ulx,0) in @ ;

it follows from comparison results for problem (P) with f, that
0 < u(x,t) < Ulx,t). The proof ends by recalling that u(xo,t) =0 if t > T

and %5 satisfies the above inequality.

REMARK 7.7%. It is also possible to prove similar results when replacing
Flu) by clx,t).f{u), with c(x,t)} > 0 (see [81[9]). This seems to be

particularly interesting for applications to reaction-diffusion systems.

REMARK 2.2. IF g(s) = s", f (s} = sP, then (H,) is equivalent to p < m and

(HZ} is equivalent to p < 1. Now, for m = 1, (H1) and (H2) coincide, But
if ¢(s) = s and fo is not a power, then (H1) implies (HZ) but the converse

is not true (see {10]).

REMARK 2.3.  Our theorem extends some work by Kersner [14] for the case

N =1, and also, for h 2 0 and & = R, results by Kalashnikav [13] and
véron [15] concerning extinctien of selutions in Finite time. On the other
hand, form = 1, h = 1, u, = 1, estimates for the dead core ag

N{u(.,t)) 2 {x € 2|d(x,3Q) > L} can be found in [2] (see alsa {81).

REMARK 2.4. If (HZ) is gatisfied but (H1) does not hold, it is still

possible to get estimates of the kind
0 < ulx,t) < ult)

extending in this way some work by Berstch, Nanbu and Peletier [4],
respectively Véron [15]. Similar arguments also allow us to prove the

estimate

Nu(.,8)) 2 {x € @ - S{u Md(x,5(u ) u (U Sth.,T))) > L'}
>0
for some constant L'.
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REMARK 2.5. The same technigue of proof sllows us also to obtain local
(namely depending on the point x_ €  and on the norm ”u H )
0 ot o .,
. L7 (Bi{x_,e))
0
estimates for the extinction time To(e > 0; see [2],[81,(9]).

THEOREM 2.2.  Assume that u € C{Q), u > 0,Is a solution of problem (P)
with (2.1) - (2.3) and (H,). If x € Q satisfies

1] E.UG(XS 5_¢-1(n(jx—x0]), 1/N) (2.3)

for any x € B(x ,e), where € = ¥, \(p(M)), M = flull 5 nlre,u) = ¢;1(r),
(wu(r) as above), then u(xg,t) =0 for any t > 0. )

Sketch of the proof. On the set B(xu,e) x {(0,=) define the function

W) = 97 (nlxx D)y A/N).
Now, reasoning as in {é] we obtain
up - 8elu) + Flu) <0< U - Bglu) + F (W) in B(x ,e) x (0,=)
Q(x,U).z u,{x) < ulx) = ¢'1(n(|x—x0])) in B(x_,¢)
u(x,t) < M < uix) on aB(xo,s) x (0,=),
where “uHLm < M. Then a comparison argument gives 0 < ulx,t} < u(x).

(@)

REMARK 2.6. Theorem 2.2 improves on some results in [4] for h = 0; indeed,

we only need the local estimate (2.5}, If q(s) = sm, Fo(s) = ksp, then
_ 2
ulad = KyIexo | 3
m
for some Kl > 0.

THEOREM 2.3. Assume u € C(Q), v > 0, is a solution of the problem
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- Au + Fo(u) = 0 in @
u =0 an I
ul(x,0) = UO(X) on £,

H

where (2.2),(2.3) and (H)) are satisfied. If, moreover, u_ € L), then we

have the estimate
S{u(.,t)) c S(uo) + 8(0, ¢1/N(Ct))
for any t > 0 and some C > 0, where C depends on Jlufl
o L

@

Sketch of the proof. Let t0 > 0 and Xg € S(u(.,tu))‘- S(uo). We consider

the regiaon

R(to) = {(x,E)lO ¢t < tys ulx,t) >0, x & S(UO)}
and the function

ul(x) = n([x—xé], 1/N).
The function z{x,t) = u(x,t) - G(x) satisfies

z, -~ 8z + Blx,t)z <0 on 4

for a suitable B{x,t}; thenm the Strong Maximum Principle implies that z
takes its maximum on the parabolic boundary af R(tG). But, on the other
hand, O = ulx,t} € u{x} For (x,t) € 3pR(t) - S(uo), and Z(xu’tn) > 0. Hence
there exists a point (X,T) in as{u ) x (0,t ) satisfying u{x) < ulx,t). This

in turn implies

dlxg, Sl b)) < [xmxg | € by (UGGED) € by (u(RE) - u(x,0)) <

[Ea

\pVN(Ct) < wVN(CtD),

which gives. the result.
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REMARK 2.7. The proaf faollows an idea af Evans and Knerr [10]. If
Au, € L=(R), u, € H;(Q) and h € L™(Z) n H'(Z), then, following a theorem by
Bénilan-Ha, ug £ L7(a).

REMARK 2.8. I f_(s) = P, 0.< p < 1, then y, \(Ct) = ce1-P/2,
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