Reprinted from

W.-M. Ni
Editor

Nonlinear Diffusion Equations
and Their Equilibrium States

Volume [

Proceedings from a Conference
Held August 25-September 12, 1986

© 1988 Springer-Verlag New York, Inc.
Printed in the United States of America

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo



On the Initial Growth of the Interfaces in
Nonlinear Diffusion-Convection Processes

L. ALVAREZ, J. I. DIAZ AND R. KERSNER

Abstract. We study the qualitative behavior of the fronts or interfaces gen-
erated by the solutions of the equation

ug = (Um)zz + b(uA)m,

where m,A > 0 and & is a real number, & > 0. In particular we focus
our attention on the waiting time phenomenon and give “necessary” and
sufficient conditions on the initial data ug(z) in order to have such a prop-
erty. Since the convection term in the equation introduces an asymmeiry,
a separated study of the left and right fronts is needed. The results de-
pend in a fundamental way on the values of m and A. In particular, the
different answer with respect to the case of pure diffusion { = 0) occurs
for 0 < A < 1, where the left front does not exist and the right one may
already be reversing.

1. Introduction.

The nonlinear diffusion-convection processes referred to in the title of
this paper are those described by the equation

(1) Uy = (um)zx + b(u)‘)ma

wherem >0, A>0and be R, b > 0.
This equation arises as a model for a number of different physical phe-
,nomena. For instance, when u denotes unsaturated soil-moisture content,
the equation describes the infiltration of water in a homogenous porous
medium and some natural conditions in this context are e > 1 and A >0
(Bear [3], Phillip [15]). The equation also occurs in the study of the flow of
a thin viscous film over an inclined bed for the specific exponents m = 3 and
A = 4 (Buckmaster |5]). By analogy with the classical equation from statis-
tical mechanics (Chandrasekhar [6]), equation (1) is often referred to as the
nonlinear Fokker-Planck equation. Equation (1) is also used in connection
with transport of thermal energy in plasma (then 0 < m < 1 and X = 1,
Rosenau and Kamin [16]). Finally, the equation has additional interest as
a generalization of the well-known equation of Burgers approximating the

associated hyperbolic conservation law equation.



It is a well-known fact that nonnegative solutions u of (1) may give rise
to interfaces (or free boundaries) separating regions where v > 0 from
ones where ©u = 0. These fronts are relevant in the physical problems
modelled and their occurrence is essentially due to slow diffusion (m > 1)
of to convective phenomena dominating over diffusion (A < m) (See, e.g.
Gilding [10,12] and Diaz-Kersner [8]). Another kind of front (the time
of extinction of the solution) is intrinsic to fast diffusion (m < 1) and will
not be considered here (Berryman-Holland [4]). Note finally that we cannot
expect, in general, to have classical solutions of (1), and that discontinuities
of the gradient of solutions take place on the interfaces.

The existence, uniqueness and regularity of weak solutions of the Cauchy
problem, the Cauchy-Dirichlet problem and the first boundary-value prob-
lem for (1) was given by Diaz-Kersner {7] for m > 1 and A > 0 and later
extended by Gilding [11] to any m > 0 {see the references in these articles
for earlier works).

The main goal of this work is to study the initial growth of the interfaces

¢ (t) = inf{z: u(z,t) > 0}
¢+ (t) = sup{z : u(z,t) > 0}

in relation to different values of m and A. For the sake of simplicity, we
restrict the discussion to the Cauchy problem for (1). However, we remark
that the initial growth of ¢ and ¢, will depend only on the behavior of
the initial data ug(z) near the boundary of its support [¢_(0), ¢4 (0)]. Thus
our results may be extended to solutions of other imnitial boundary-value
problems associated with {1) (the extension to the study of “interior” fronts
is possible as well).

To be explicit, we shall focus cur attention on continuous nonnegative
weak solutions of the problem

{ up = (u") oz +6(u); for (z,t) e R x RF

(CP)
u(z,0) = uo(z) for z €R,

where ug is a given continuous nonnegative function on R which, for sim-
plicity, is assumed to satisfy
(2) ug{z} > 0 on (a—,a4) and up(r)=0on R —(a_,a).

In analogy with the case of nonconvective flows in porous media (b =
0,m > 1) the interfaces may be stationary until a certain finite time,



called the “waiting time”, of the interface (some discussions of this prop-
erty for the porous media equation can be found in Aronson [2], Knerr {14]
and Vazquez [17]}. In the following, we shall place special emphasis on giv-
ing “neccesary and sufficient” conditions on ug in order to have a waiting
time. In contrast with the case b = 0, a separate study of ¢_ and ¢4 is
needed because the convective term introduces an inherent asymmetry into
the problem.

As we will show, the initial growth of the interfaces is different in each

one of the following regions of (A, m) parameter space.

m;‘
m|n/
I
| £ IV

—%
x 7
Figure 1

It is a curious fact that the interplay between diffusion and convection
may be completely different in other contexts. For instance, the asymptotic
behavior of solutions of {(CP) was studied by Grundy [13], where a different
decomposition of the (A, m) parameter space occurs.

In order to describe our results we remark that the behavier of the in-
terface ¢ (t) depends only on the values of m and A as well as on the local
behavior of the initial data up(z) near ax. For the sake of simplicity we shall
use the notation up(z) ~ |z — ax|” to indicate that up{z) < Clz—ax|”
and ug(z) > C [:cﬂa;,:t& for = near az, where C, C > 0 and & is some
number < a.

As a final general remark we point out that the conclusions of this pa-
per also hold upon replacing pointwise comparison conditions on up by
more general assumptions indicating how the mass M. (z) of uo grows



near ax (here My(z) = + [7 uo(s)ds). For instance, conditions assur-
ing the existence of 2 waiting time can be formulated in terms of the relation
limsup, o Mz (z) |z — aq:lha_l = 0 (see Alvarez-Diaz [1]; a pioneer work
in this direction is Vazquez [17}, where the case of nonconvection was ex-
amined). We also point out that our proof of the nonexistence of a waiting

time always leads to growth estimates on ¢i(2).

In Section 2 we study the interfaces for (A, m) in the region I, defined by
{(A,m) : A > £(m+ 1),m > 1}. This case corresponds to a slow diffusion
dominating convection, in the sense that the resulis are of the same nature
as in the equation without convection; the interface ¢ (f) has a waiting time

2/{m

only leads to a natural displacement of the interfaces compared to the case

if and only if ug(z) ~ |z — ax| ~1, The presence of the convection term
without convection {such a property occurs for any value of A when there

is some interface).

Section 3 is devoted to the case in which (A,m) belongs to the region II
defined by {(A,m) : 1 < A < (m + 1)}. Some differences compared to
the case of pure diffusion appear, namely the criterion for the existence
of a waiting time for ¢_(t) is weaker (ug(z) ~ |z — a_El/(A_lJ) while for
the front ¢, () a stronger criterion is needed: ug(z) < Cyl|z — a+|1/(m_‘\)
for  near ay and Cy = [b(m — A)/m|Y (™=}, We also show that this
last condition is “necessary” for the existence of a waiting time. We would
describe this by saying that convection already dominates over diffusion
but in a weak way, because many other properties of ¢ (¢), for small %,
remain unchanged: ¢_(t) is finite and nonincreasing, ¢, (¢) is finite and

nondecreasing, etc.

The region III, defined by {(A,m) : A < 1 and A < m}, is examined
in Section 4 and reflects the case in which there is a great contrast with
pure diffusion phenomena (especially when 0 < A < 1) because then the
interface ¢_(t) does not exist (Diaz-Kersner [8,9]). Here we show that
convection dominates strongly over diffusion; namely, it is enough to know
that uo{z) < C |z — ay |/ for some C < Co to conclude that ¢,.(f) is
initially a reversing front and that ¢, () < ay — Ct{m—2/{m+1=23) f5r some
suitable C > 0 and any t small. Moreover, if ug(z) > C |z — a+11/(mm’\)
for some C > Cy then ¢, (t) is initially a progressing front and ¢, (t) >
Qe —{—Qt(m_’\)/(m"’”l”z’\) for some suitable € > 0 and any ¢ small. Moreover,
it ug(z) > C |z — ay |/ for some suitable C > Co then ¢ (t) is iitially
a progressing front and ¢ (¢) > asr + Ct(m=A)/(m+1-23) for some suitable



C > 0 and any ¢ small.

We finish the introduction with two remarks. The first is that the re-
gion IV, defined by {{A,m) : m < 1 and A > m}, corresponds to a fast
or linear diffusion with a weak convection. In this case none of the fronts
exist (Gilding [12]), hence this region is not of interest to us. Second, we

can consider a more general formulation of the equation,
(3) Ug = (um):cz + f(u):;

where m > 0 and f is a continuous real function. This program will be de-
veloped elsewhere. As an illustration, consider the function f(s) = us+bs?
with g, b, X > 0. Making the change of variables (£ = z,7 =t — pz) it is
easy to see that the function v(Z,1) == u(t, z) will satisfy the equation (1).
Thus a waiting time phenomenon for v means that u follows the character-
istics of the hyperbolic conservation law u; = f(u),; during some finite time
(see figure 2). Obviously, a systematic study of the different possibilities
can be carried out in terms of the values of A,m and the assumptions on
the behavior of up near the boundary of its support.
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2. Region I: Slow diffusion dominating convection.

We shall assume in this section that A > %(m +1) and m > 1. Under
these assumptions it turns out that the initial behavior of the interfaces is



the same as for the porous medium equation (b= 0). We start by recalling
a well-known result

THEOREM 1 Gilding [10]. Let u be a weak solution of the Cauchy prob-
lem (CP) and suppose that

(4) uo(z) < C |z ~ zof /(™)

for some constants C > 0, § > 0 and for = such that |z — zg| < §. Then
there exists a finite time t* > O such that u{zo,t) = 0 for any t € [0,1%).

IDEA OF THE PROOF: Without loss of generality we may choose zg = 0.
Then, it is enough to show that the separable function

a(z,t) = (Az®) V"D {rp [ (ro — 1)}

is a supersolution on the set (z,t) € [—6,6] x [0,70), for some positive

constants A, & and 7g.

O

Concerning the nonexistence of a waiting time, we have

THEOREM 2. Let u be a weak solution of (CP) and suppose that
(5) uo(w) 2 Clz—ax|”,

for some v € (0,2/(m — 1)), C > 0, § > 0 and for = respectively such that
0<z—a.<6or0<ay~z <46 Then there exist positive constants 7
and € such that

(6) ¢_(t) < a — et/ 2=tm-1)
for any t € [0,7], and (if in addition v(m —1) > 1)
(7) o (t) > ay — gt/ @-im=1)

for any t € [0,7]. In particular, u(ax,t) > 0 for any t > 0.

In order to prove Theorem 2 we will define a family of auxiliary functions

depending on two parameters K and Z in the following way:
(8 u(z, 6 K, 7) = [K% — KM (1 — Mst)(z — 2)] /7Y,

where [a]+ = max{a,0} and M; and M; will be chosen later. The following
lemma shows that u is a subsolution of the equation on sets of the form

[—6,00) x [0, 7] for some suitable 7 > 0.



LEMMA 1. Let M and é be given positive constants. Then there exist
My, M, and 7 > 0 such that u Is a subsolution of (1) in the region (z,t) €
|—8,+00) x [0,7] for every K € (0,M) and % € [—6,0].

PROOF: It is easy to see that if u satisfles (1) then the function v =
m/(m — 1)u™" ! satisfies the equation

L{v) = ~vi + (m ~ L)vvee + (v2)* + q(vP)z = 0,

where
_ m—1\ T 1 A-1
g_m+)\— A > P m—1

Now, take y(z,t; K,z) = 2 [KzthMl(l—Mgt)(:c—z)]_l_. A direct

computation gives

Ly =

K{K { mMy (1 - Mat)? - } — MM, (z — 3)+

m—1

+ pM, (mL_jL)p_l o(Myt = 1) {K® — KM (1 — Myt)(z — 5}
+

In order to prove that L£(v) > 0 in [—§,+o0) X [0,7] for some 7 > 0 we
study the following two cases separately.

Case 1: z < —K. Since K € (0, M), £ € [—6,0] and X > %(m—i— 1) then v
is uniformly bounded in [—§,+c0) X [0,7] and moreover p — 1 > 1. Now,
let

— /
r =min{1/2M;,1} and Mlzz(m—l) .

m

Then, there exists N = N(M, ) > 0 such that

£(e) 2 K Mael (M — N(1+ M) V?),

and so, if we take M, = N(1 -+ M;)/? we have £(v) > 0.

Case 2: =z > —K. Since y = 0 if z > 2K/M; it suffices to assume
z < 2K/M;. Then

m g2 T M
- T m-—-1 m—1 4

—1—2N{1+ M;)M? + MyN(1+ M;)Y?|.

Therefore, if M, is big enough we conclude that £L(v) >0



PROOF OF THEOREM 2: We shall first prove (7). Without loss of gen-
erality, we may assume ay = 0, 1 < y(m — 1) < 2 and up(z) = C|z|" for
z € [—6,0]. We shall compare the function u, defined by (8), and u in a
region [—§,00) x [0,7] when the parameter Z belongs to (—6,0) and 7 is
given in Lemma 1. First of all, we remark that by the continuity of u, there
exists a value # > 0 such that u(—86,¢) > 6 for every ¢ € [0,7] (recall (2)).
The initial inequality u(z,0; K,Z) < C|z|7 is verified if and only if

(@) [~y K (z — )] < 0™ z[107),

Since y(m — 1) > 1, by a convexity argument, (9) is satisfied if we choose

. m-—1
K = K(z) = X = Ue A?C [z[1em -1,
1

Next, choosing E small enough we have
u(—6,¢; K(%),z) <0 < u{—6,t) for any ¢ € [0,7]
and
u(z,0; K(Z), Z) < uolz) if z €[4, +c0).
Then, by the comparison principle, we conclude that
u(z,t; K(%),z) < u(z,t) in [—6,+o0) % [0,7]

A direct computation shows that u(0,¢; K(z),Z) > 0 if

Mgl

i )= .
(10) >(z) (m — 1)C™—1 + MZM,|z|?-10n—1)

Then for ig € (0,7) we choose T = —ﬁté/(z_”’(mml)) with § > 0 large
enough, and derive from (10} that

F(m—1)Cm1prm=l N oy mo)),

this proves the inequality (7) because tg is arbitrary. By a well-known result
(Gilding [10, Theorem 3]) we have, in fact, u(a4,t) > 0 for any t > 0. ‘



The proof of the inequality (6) is similar. As a matter of fact, the study
of the left interface ¢_(t) is easier due to the sign (b > 0) of the convection
term (see Remark 1). In particular the proof that u(t,a_) > 0 given in

Knerr [14] remains true without any significant change.

O

REMARK 1: The assumptions (4) and (5} are the same as in the the proof
of the corresponding results for the porous media equation, b = 0 (see, for
instance, Knerr [14]). (We point out that the proof of Theorem 2 is different
from the one given in Knerr [14] and that the estimates (6) and (7) seem
to be new in the literature.) As already mentioned, in region I the diffusion
dominates the convection. Nevertheless, it is clear that the presence of the
convection terms modifies the behavior of the solution (and so of the fronts)
compared to the solution of the pure diffusion equation, independent of the
value of X. In particular, it is shown in Alvarez-Diaz (1] that if we denote
by w the solution of the Cauchy problem (CP) without convection (b = 0)
and by £€_(t) and £4(t) the left and right fronts generated by w, then

(12) ¢ () <e(t) and £4(t) < cu(D).

Notice that (12) makes sense only when m > 1 because otherwise £..{t) =
—oo and £4{t) = +oo.

3. Region II: Convection weakly dominating diffusion.

We shall now assume that 1 < A < £(m +1). As we shall show, in this
case convection dominates diffusion weakly and therefore the influence of
convection is different for each front, making it necessary to study ¢_(¢)
and ¢4 (t) separately.

We start by studying the left interface ¢_(t). A sufficient condition for
the existence of a waiting time is given by the following resuls.

THEOREM 3. Let v be a weak solution of (CP) and assume that
(13) uo(z) < Clz—a YOV ifo<z—a_<$§

for some positive constants C and §. Then there exists a finite time t* > 0
such that u(a—,t) = 0 for any t € [0,%7].
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PROOF: Without loss of generality we may choose a. =0 and § < 1. As
in Theoremn 1, we shall derive our conclusion from the construction of a
suitable supersolution. We define

1 1/{m—1) )
(14) a(z,t) = (m) |z}
with

K1 =min {1, crm, M1—m5{m—1)/(A—1)} s M= luollpe (ry >
m{m — A +1) 4h A ‘

(A—1)2 A—1

From the choice of K2, A < m and m + 2 — 2A > 1, it is not difficult to
verify that u satisfies the inequality

Ko=(m—1) |

By — (™) 2z — b(7*)z > 0.
Moreover, from the definition of A3 we have

z{z,0) > C’§$|1/(’\*1) if z€[-6,6]
a(6,t) > M if ¢ € [0,t7],
with t* = Ki/K,. Then, applying the comparison principle to the region
(—6,6) x [0,t*) we conclude that 0 < u < @ and the result follows.
' O

The nonexistence of any waiting time for the front ¢_ can also be proved
when the opposite inequality in (13) holds.

THEOREM 4. Let u be a weak solution of (CP) and suppose that
(15) up(z) > Clz—a_|" f0<z—a_ <6

for some v € (0,1/(A —1)), C > 0 and § > 0. Then there exist positive
constants r and ¢ such that

E_(t) <a_ — grl/1—1(x-1)
for every t € [0,7]. In particular, u(a_,t) > 0 for any ¢ > 0.

PROOF: As before, it suffices to take a.. = 0 and to construct a suit-
able subsolution, which we shall choose as the following “traveling wave
solution” depending on two parameters K > 0 and z £ (0,6):

(17) v(z,t; K, %) = pr ([z+ Kt — 2 )



where px is defined by

ax(y)  m-2
(18) y—m/ [ o3 45

Given 7 small enough, we shall compare v and v on the region (—oo,6) X
[0,7). From the continuity of u and (2) there exists 7 > 0 such that u(§,t) >
0 for any t € [0,7]. Then we shall choose T and K such that

(19) v(6,5; K,z) <0 < u(b,t) forte[0,7]
and
(20) v(z,0; K, E) < ug(z) for £ &€ (—o0, 6).

In order to have (20) we take K = K(Z) and since

sup v(z,0; K, ) = bK /(A1)
oER

using (15) it is enough to choose
(21) K = K(z) = (C/5)3~Dg7(x-1),

On the other hand, by taking Z small enough it is easy to see that (19} holds.
Then, by the comparison principle we conclude that v < u in (—c0,8) x
[0,7). Now a direct computation shows that »(0,t; K(z),z) > 0 if ¢t >
() = (b/e) Vg1 =70~1) Since v < 1/(A — 1), it is clear that (%) — 0
when £ — 0. Now let t5 € [0,7) and choose z = ﬁté/(l—’fo“l)) with
f > 0 small. Then we have '

c_(to) < a_ — [ﬁ _ (b/c)(f\—l)ﬁlwr(lwl)] tcl)/(l—'r(f\—l))_

Then, if # is large enough, we have 8 > (b/c)(*=1g1=7(3=1)_ This proves
the estimate (18). The fact that u(a_,t) > 0 for any ¢ > 0 again follows
from the initial positivity of u(e_,t} and Theorem 2 of Gilding {12].
a
We shall now study the initial behavior of the right front ¢, (). We start
by giving a sufficient condition for the waiting time property.
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THEOREM 5. Let u be a weak solution of (CP) and suppose that
(22) uo(z) §C]$—~a+|1/(m_}‘) Ffo<Lar—z<4é

for some positive constants § and C > 0, C < Co, where

(23) Co = (EW_—,.*_))” N

m

Then there exists a finite time r* > 0 such that u(ay,t) = 0 for every
t € 0,7 ‘

PROOF: We first remark that the function z(z) = Colat — :c]i,/(m_k) is

a stationary solution of the equation. From (22) and the continuity of u

we deduce that there exists 7* > 0 such that u(ay — 6,¢) < z(—6) for any

t € [0,7*]. The conclusion follows from the comparison principle applied to
the solutions « and z in the region {a4 — 6,+c0) X [0,77].

O

The optimality of the assumption (22) is given by the following result,

showing the expanding nature of ¢y (t) under an opposite hypothesis on ug.

THEOREM 6. Let u be a weak solution of (CP) and suppose that
(24) uo(z) > C'Iﬂ:—a_;_ll/(m_)‘) Ffo<a,—zc<é

for some § > 0 and C > Co, Co given in (23). Then there exist positive
constants v and ¢ such that

. §+(t) >ay + Et(m—A)/(m-—2A+I)

for every t € [0,7]. In particular, u(ay,t) > 0 for every t > 0.

PROOF: Without loss of generality we may assume a, = 0. We define
a traveling wave solution, depending on two parameters, in the following

way':
(26) w(z,t: K,7) = vg (Kt —z+2)4)

where vy is defined by

viey)  gm—2
7 =
(27) vy= m/ K4 bs*t ds.
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Given 7 small enough, we shall compare « and w on the region (—8§, 00) x
[0,7). By the comparison principle it suffices to have

(28) w(z,0; K, Z) < ug(z) for z € (—6,+o0)
and
(29) w(—6,t; K, %) < u(—46,t) for ¢t € [0,7].

As for (28) we remark that, by (24), it is equivalent to the following condi-

tion:
Clz|Hm=2 g(m—2)
(30) (Z — z|+ <m/ e 1)d
for z € (—6,00). But if & > 0 we have
Clz[/tm=20 (m—2)
m/ K +0:0-0 %
> C[z[l/{m A) (m 2)
m/ & ”5(). 1) 1 pg(r- 1)

= m—2A T _amwA i
" (m- )\)(m“ﬂ’)(c i )

Since C > Cg, there exists £ > 0 such that

mCm—A

e

Then, choosing

(a~1)

— B\ (m=%7 (A1)

K o K(g‘:) =g (—-—(m )‘) (E + )> |i‘| (m—f\]

m

and a = (K/e)/*~1) we deduce (30). Finally, condition (29) is satis-

fied for Z small enough (use the same argument as in the proof of Theo-

rem 4). Then w < w in {—§,00) x [0,7). A direct computation shows that
w(0,t; K(%), %) > 0 if

(A-1)

((—“j(—ﬂb) T g/ tmey,

M| =

t>t(z) =
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Since 1 > (A — 1)/(m - A), then ¢(£) — 0 as Z — 07. On the other hand,
from the inequality w < u in (—6,0) X [0,7) we deduce that

¢ (to) > —|3| + K(Z)to for any to € [0,7).
Then, choosing & = -—ﬁtém_k)/(m_2)"+1) with A small, we have that

te(to) > {_6 t+e (Mﬂ) M}/(m_”} (A =2

m

Since (A—1)/{m—2X) < 1 we conclude that the coefficient of tgm_n/(m_u'*‘l)

is positive if we choose § big enough and, since tg is arbitrary in [0,7), (25) .
is proved. As before, this also proves that u{a,t) > 0 for any ¢ > 0.
O

REMARK 2: When (A, m) is in the region II the asymmetry caused by
the convection is quite clear. So, in that case the previous results and the
inequalities
1 N 2 5 1
A—-1"m-1"m-=2
show that, since the convection plays an important role, the condition on

g to have a waiting time in the interface ¢_(#) is stronger than for ¢} (t)
and also stronger than ¢_(£) with (A, m) belonging to the region L
REMARK 3: Some other qualitative properties on ¢_ and ¢, are well-
known when that A > 1 and m > 1. Thus in Gilding [10,12] it is shown
that ¢_(t) is monotone and nonincreasing and ¢ (t) \y —o0 as t /' +oo,
¢ (t) is monotone nondecreasing and ¢ (t) ,/ +o0if A2 m or ¢y (&) /Ay
if A < m for some real number Ay, as t / +oo. He also proves that both
interfaces satisfy the equation

¢ () = {=[(@™)e + butl/u} (5£(8),2)

in a certain sense.

4. Region III: Convection strongly dominating over diffusion.

In this last section we shall assume that A < 1 and A < m. The first
important difference compared to the cases in which (A, m) belongs to re-
gions I or IT appears already for A = 1. Indeed, in that case it is well-known
that m > 1 implies the existence of the interfaces ¢_(t) and ¢4 () (see Diaz-
Kersner [8]), nevertheless, the following result shows that in this case ¢_(t)

can never exhibit a waiting time.
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THEOREM 7. Let m > 1, A =1, and u be a weak solution of (CP). Then
¢ () <a_ —btforallt>0.

PROOF: We introduce the transformation v(z,t) = u{z —bt,t). Then it is
easy to see that v satisfies the equation vy = (v™)a(v™)zz and v(z,0) =
up{z). Moreover if {._(t) is the left face generated by v, i.e. {_{¢) = inf{z:
v(z,t) > 0}, then we have ¢_(t) = £_{t) — bt. Since the fronts for the
porous media equation are nonincreasing the result follows at once.

” O

When A < 1 if turns out that the convection dominates diffusion in
such a strong way that, in fact, the left interface ¢_ () does not exist, i.e.
inf{z : u(z,t) > 0} = —oo for any ¢ > 0. This result was first proved in
Diaz-Kersner [8] for m > 1, and later, for any m > 0, in Gilding [12].

The behavior of ¢ (t) is completely different than that of ¢_(t} when
(A, m) is in the region III. Thus, this front does exist for any value of (A, m)
in that region (see Diaz-Kersner [8] for A < 1 < m and Gilding [12] for
the general case A < m). Besides, the stationary solution z(z) = Cp[a.. —
Ifi_/(m_k), Co given by (23), shows that (CP) admits solutions with an
infinite waiting time. The following result gives a stronger result ensuring
that, under a suitable assumption on uo, ¢4 (#) is in fact a “reversing front”
near t = O (the property ¢y (£) ™\, —co as t  +oo without any additional
assumption on the initial value ug, was first proved in Diaz-Kersner [8], see
also Gilding [12,Theorem 5}).

THECOREM 8. Let u be a weak solution of (CP) and suppose that

1/{m—2X)

(31) uo(z) < Clz— ay] fo<Lap —3 <6,

for some positive constants 6 and C, C' < Cg, where Co is given by (23).
Then there exist positive constants € and v such that

(32) §+(t) <ay — g(m—=2)/(m—22+1)

for all t € [0, 7].

ProOF: We assume a. = 0 and introduce the following traveling wave

solution

(33) v(z,t; K) = ax (-2 — Ki]+)



where ax is defined by

ax(y) g™ 2
(34) y—mf pehel — de,

and K is a positive constant to be chosen such that K < bif A = 1.
In order to compare v with u in the region (—é,-+oo) x [0,7), with 7

suitably chosen, we notice that the condition

(35) v(z,0; K) > ug(z) for z € (-6, +00)
is verified if
c. | IJ-/("’L“J\) Sm_2
|1:|>m/ v de

for —§ < £ < 0 for any C. € [C,Cp). But if z € {—6,0] we have

Culz[(m=2)

sm—?
m/ P de
eAETRA gm—2
< m/ o1 ds
st\—l ~ K (C. x 187('71—3(5)
mcm A

= |z
(m — A) (b— R A))

Since C. < Cg, there exist positive constants & and &’ such that

1 mC'::Em_A) _
(= N2

Thus (35) holds if we take
(38) K = eCP-10§O-1/(m=3),

On the other hand, by continuity, we deduce from (31) that for any C. €
(C,Cp) there exists a r* > 0 such that

u(—6,t) < C.6Y N i e o,
Then, choosing 7 < 7* the condition

(37) v(—6,t; K) > u(—6,t) for t € {0,7)



holds if
(38) ax([6 — Kt]4) > C.6Y/ (=),

From the definition of ax we deduce that (38) holds if 6§ — K7 > (1 — &)§,
that is,

§ e’ _ -
(39) r g sl% — EC;}_I 6(1’?1 22+1)/(m A).

Then, for 7 small enough we deduce from the comparison principle that
v > u in (—§,+co) x [0,7). This shows that

¢ (to) < —eC2 16D/ M=y, 5115 € [0, 7).

Obviously, the same arguments may be applied to any &, € (0,8). Thus, in
particular, by choosing

cCr—1 {m—X}/(m—21+1)
- ()

we obtain the estimate (32) and the proof is finished.

O

Our last result shows that even when ¢ (¢) N\, —oo ast , +oo, the front

¢4+ (t) may expand initially under an assumption on up which is the opposite
to that in the above theorem.

- THEOREM 9. Let u be a weak solution of (CP) and suppose that
(40) ug{z) ZC|z—a+|1/(m_A) #0<ay —z <6,

for some positive constants § and C, C > Cy, where Cy is given by (23).
Then there exist positive constant & and 7 such that

(41) ¢ (1) > ay + et(m—/(m—24+1)

for allt € [0, 7).

PROOF: As before, we can assume without loss of generality that ey = 0.
We introduce the traveling wave solution defined in Theorem 6 but now for
=0, l.e.,

w(z,t; K) = vy ([Kt — z}y)
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where vx is defined by (27). To compare u with w we first remark that the

condition

(42) w(z,0; K) < uo(z) for z € (—6,+00)

holds if s
1:1:|<m/ e de

for —6 < z < 0 and any C, € (Co,C). But for z € (-6, 0], arguing as in
Theorem 8 we have

/‘G’.]III/(’"_)‘) gMm—2 5> mCm- —X | l
m s>
b -1 — K (m — ) (b+ e §(a=1)/(m— A))

Since C. > Co, there exist positive constants € and g’ such that
mc_(m—k)
(m—N(b+e)

Thus, taking
= Ecik—l)g(l—l)/(m—}\)_

condition (42) holds. On the other hand, from (40) and the continuity of
u we deduce that for any Cy € (C, Cq) there exists a 7* > 0 such that

u(—6,t) > C.6Y/(m=3),

Then, choosing 7 < 7*, the condition

(43) w(—6,4 K) <u(—6,t) for t€[0,7)
holds if
(44) vic(Kr+68) < C,84m=2),

As before, {44) is verified when

'

£ (m—22+1)/(m—21)
(45) T < EC*O_I)& :

Tt now follows from the comparison principle that w < u in the region
(—86,c0) % [0,7] for 7 small enough. This shows that

§+(to) 2 EC,‘(‘}‘_iI)(s(A_l)/(m—A)to if ip € [0, T).
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and the same conclusion holds if & is replaced by any & € [0,8]. Then,

h .
cheosing c () (m—X)/(m—2A+1)
60 = (;C* tO)

we obtain the estimate (41) and this establishes the result.
O
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