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Convexity and Starshapedness of Level Sets for Some

Nonlinear Parabolic Problems

A subtitle for this lecture might be: How to treat infinitely many free boundary value
problems in ten minutes. It is a report on some essential results from (3].
Consider the following reaction-diffusion problem in ring-shaped domains Q\G:

ue — Bp($(w)) + fu) =0 in (0,00) x (2\ G),
Hluy=1 on (0,00) % G,
$lu) =0 on (0,00) x 942,
u(0,z) =up(z) onfl,

(P)

where ¢ is positiveand nonincreasing (for positive arguments) Apv = div(|Vv[P~* Vo), ¥
denotes the spatial gradient and p > 1 is a real number. Notice that Problem (P) is in fact
an initial boundary value problem and that ¢(u) = 1 is just & convenient way of writing a
boundary condition on 8G. We always assume that ¢(us) =1 on G. Suppose that 2, G
and the level sets {z € Q | ug(z) > const.} of the initial data are starshaped or convex.
What can be said about the spatial level sets Qq(¢) == {z € Q| u(t,z) = c} of u at fixed
time ¢ > 0 or about the level sets 1, := {(¢,z) € (0,00) x € | u(t,z) > ¢} in space and
time?
The following answers can be given:

Theorem A. (On Starshapedness). Suppose that £. G and the level sets {zx € 2]
ug(z) > const.} of the initial data are starshaped with respect to zg € G. Let f be
nonnegative and monotone nonincreasing and f(0) =0. Huisa solution of problem (P)
and if ug satisfies Ag(ug) — f(ue) = 0, then for any T' > 0 and for any 0 < t < T the
spatial level sets of u are starshaped with respect to zo and the space-time level sets are
starshaped with respect to (0,zp) and (T, zn).

Theorem B. (On‘Cngexity). Let © and G be convex and ug = 0 in \ G. Let u solve
problem (P) and in addition to the assumptions of Theorem A let ¢ be concave. Then the

level sets §1 of u are convex in space and time.

Remark 1. Notice that Theorems A and B can be applied to diffusion problems with
a finite speed of propagation into exterior domains (R” \ G), e. g, to ug — Au + uf with
0 < ¢ < 1. In this case one can choose Q sufficiently large, so that [0, 00] % £ contains the
support of u {see [2] for estimates on its size) and derive geometrical statements on the
support of the solution. It should be stressed, however, that Theorems A and B contain
statements about the support of (u — ¢)* for any ¢ € [0.1}. Moreover, Theorem A can bé
used to prove Lipschitz-continuity of the boundary of the support of (u —¢)t.
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The proofs of Theorems A and B are based on similar ideas for elliptic problems. Fop
the clarity of the exposition we shall outline the proof for the case P=2and ¢{u) =y anly.
The extension to the case of nonlinear ¢ is relatively straightforward, but the extension
to p # 2 requires major technical work which has been done in detail in (3]. While (for
P # 2) the proof contains the same steps as for p = 2, each individual step requires a more
complicated proof. Let us now turn to the major steps in the proof.

Step 1: Regularization

Suppose we approximate the nonlinearity f by a Lipschitzian and monotone increasing
nonlinearity f, (and — in the general case — regularize ¢ and show that the p-Laplacian
operator is nondegenerate for the solution}. Then we obtain approximate solutions which
are classical in the sense that all the occuring derivatives of those are continuous. These
approximate solutions, Ue, 5y, converge uniformly on compact sets to the original solution
as e — 0,

Suppose furthermore that we can prove Theorems A and B for the approximate solu-
tions. Then we are done, because starshapedness and convexity of leve] sets are preserved
under uniform convergence. To see this for instance for the case of starsphapeness with
respect to (0,0) € R one has to observe that each u, is starshaped w. r. t. (0,0) if and
only if

Se(Mtz) = wp(t,z) - us{ A, Az) > 0 in (0,1) x (0,00) x 2
for each ¢. But because of the uniform convergence of u, this inequality is preserved as
€ — 0. In a similar fashion, using the function @ in Step 3 below, one can show that
convexity of level sets is a property which is closed under uniform convergence.

Therefore, in order to prove Theorems A and B, we may assume without loss of
generality that the solution u of Problem (P) is classical and that f is Lipschitzian and
monotone increasing.

Step 2: Sign of first order derivatives

If one differentiates the differential equation with respect to ¢, it is easily seen from the
maximum principle that ‘

wt,z) >0 in (0,00) x (2\G). (1)

Similarly one can show that

[2%]
——

{(z ~20)-Vu(t,z) <0 and tuy+(r~20)-Vu <0 in (0,00) x (2\ @) (
for every zg € G. But (1) and (2) prove Theorem A.
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Step 3: Gabriel-Lewis method

To prove the convexity of level sets we use the well-known fact that a continuous function
u: D — R has convex level sets if and only if

Qz1,23) = u((z; + 22)/2) —min{u(z),u(z)} >0 in Dx D,

For the stationary elliptic problem one can set D = 0 and prove that () is nonnegative.
This was done for functions which are harmonic or p-harmonic in [4] and [7]. For nonlinear
elliptic problems one can use the same approach; we refer to {5], [6]. In the parabolic
situation we interpret the time-space cylinder {0, 00) x £ as a convex domain in R'*™ and
thus have to show that

Q(fl,fg,zl,l‘g) = u((t; + tg)/z, (Ii +:£2)/2) —min{u(tl,rl),u(tg,zz)} (3)

is nonnegative for any pair (t1,21), (t2,22) of points in {0,00) x D. To prove (3) we can
argue by contradiction. Suppose that () attains a negative minimum at (t;,z;) = 21,
(t2,72) = z; and set z;5 = (21 + 22)/2. We want to apply a maximum principle argument
to Q. Therefore, we have to show first that Q can only attain a negative minimum in
points z1, z2 and 215 in which the differential equation is valid. In this case the structure
of the differential equation will lead to a contradiction. Let us postpone the discussion of

this case to Step 4 and investigate the other possible cases.

Case 1: ¢; = 0. This case is ruled out by (1) and (2).
Case 2: #; — co. In this case (tr +2)/2 — 0. Now (1) and the convexity of level sets
for the stationary problem lead to a contradiction. Notice that u tends asymptotically to
a stationary solution. Therefore both ty and #; are finite and positive.

Case 3: ¢ ¢ G. If (z1 +72)/2 € G, then ¢} must be nonnegative. But if (r1 + z1)/2 €
2\ G, we obtain a contradiction to (2). So we are left with the remaining possibility that
1 and #; are finite and positive and zy, 22 and 7,2 = (z1 +22)/2 are in Q \G.

Step 4: Use a quasiconcavity maximum principle

In this step one needs only modifications of the corresponding proof for the stationary
problem. In fact, if Q attains a local extremum, we expect certain equalities for first order
derivatives of u and certain inequalities for second order derivatives of u. This is how the
structure of the differential equation will come into play. However, Q is not differentiable
in the extremal pair of points, since one can show (see {6])

u(z1) = u(zay > u(zy5), (4)
where 213 = (z; + 22)/2. So one has to study derivatives of ) under the side constraint

that u(ty, z1) = u(ts, 2q). Using the notation Du = (uy, Vi) for the gradient in R and

A= |Duf(z) + %2)/2)|, B = [Du(z1)], C = |Du(z2)| one can derive the following equality
1 171 1

== 5

i-ilzte) )
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and the inequality

A1) 2 o Ae) + 2oL A ute), ©

where 4 = C/(B+C) € (0,1). If we use the thres relations (4), (5), (6) as ingredients and
stir them well, they can be shown to contradict each other. In fact, due to the differentia
equation and the monotonicity of f, (4) and (6) lead to

Iliuf((zl + 22)/2) > é‘%u;(zl) + 1—6,—::2-&111(22). (7)

Because of (1) and (5) we have
1 1 1

ut(zlg) 2115(21) 2u¢(z2) ’
Now (7), (8) and the definition of K give

(8)

U>%Ui(21)+%ul(:2)u%(ﬁm+§;i—zﬁ)_l:
,4(2u12z1)+m)“‘[(§%u1(zl)+§%u!m))(E;%zl_)*_m)_Ais]‘

To complete the proof of Theorem B we have to show that [.]>0, but

(é%ui(zl) + %U:(Zz)) (_—-wgutjéﬁl) + -—..—211;%29))

Lo-apa | 1 a2 —3/232 _ 4-a
2(33 +§C /) 2 (AT = 473,

&

which is the desired contradiction.

Remark 2. Unfortunately Theorem B does not apply to the porous medium equation,
The assumptions of Theorem A can be considerably modified. We refer to (3] for details.

An open problem

The following is a simple looking interior boundary value preblem, whose solution could
contribute a lot to the study of more complicated problems. Again let Q@  IR” be convex
and let u solve the problem

ue— Au=0in{0,00) x 1, (3.1)
=0 on (0, c0) x 0, (3.2)
u(0,z) = ug(z) in Q. (3.3)

Suppose that the function ug{z) has convex level sets {z € Q| wz) » const.}. Is
it true that for every fixed but positive # the function u(t,z) has level sets {x € 0 |
u(t,z) > const.}, which are convex in space?

If the space dimension is n = 1, the answer to this problem is positive and follows from
any of the papers (8], [9], [10], [11). Unfortunately the proof that works in one dimension
fails in higher dimensions.

886

Acknowledgement

This research was begun during the AMS Summer Research Institute 1983 in Berkeley and
completed 1986 at the MSRL. The authors gratefully acknowledge financial support by the
CAICYT of Spain under project number 3308/83 and by the Deutsche Forschungsgemein-
schaft (DFG).

References

[1] BorELL, C. Brownian motion in a convex ring and quasiconcavity, Commun. Math.
Phys. $6 (1982) 143-147.

[2] Draz, J. I. Nonlinear partial differential equations and free boundaries. Vol L
Elliptic equations, Pitman Research Notes in Math. 106, London, 1985.

fS] Draz, J. 1. AND Kawonr, B. Convexity and starshapedness of level sets in some
nonlinear parabolic problems, Preprint 393, SFB 123, Heidelberg 1986, revised
version to appear.

{4] GABRIEL, R. A result concerning convex level surfaces of 3-dimensional harmonic
functions, J. London Math. Soc. 32 (1957) 286-294.

[5] KawoHL, B. Geometrical properties of level sets of solutions to elliptic problems,
Proc, Symp, Pure Math. 45, Part 2, Amer. Math. Soc., Providence, 1986, 25-36.

{6] Kawont, B. Rearrangements and Convexity of Level Sets in PDE, Springer Lecture
Notes in Math, 1150, 1985.

[7] Lews, J. Capacitary functions in convex rings. Arch. Ration. Mech. Anal. 66
(1977) 201-224.

(8] MATANO, H. Nonincrease of the lap number of a solution for a one-dimensional
semilinear parabolic equation, J. Fac. §ci. Univ. Tokyo, Sect. 1A, 29 (1982) 401~
441.

[9] NICKEL, K. Gestaltaussagen iiber Lésungen parabolischer Differentialgleichungen,
J. Reine Angew. Math. 211 (1962) 78-94,

(10] PoLya, G. Qualitatives fiber den Wirmeausgleich. Zeitschr. Angew. Math. Mech.
13 (1933) 125-128.

{12] STurM, C. Sur une classe d’equations 4 differences partielles, J. Math, Pures Appl.
1 (1836) 373-444.

Bernhard Kawohl
Sonderforschungsbereich 123

Jesus Idelfonso Diaz
Facultad de Matematicas
Universidad Complutense Universitat Heidelberg
E-28040 Madrid Im Neuenheimer Feld 294
Spain D-6900 Heidelberg

West Germany

887



