COMPACTNESS OF THE GREEN OPERATOR ASSOCIATED TO THE POROUS MEDIA EQUATION¹

J. I. DIAZ

and

I.I. VRABIE

Universidad Complutense

Institut Polytechnique

Madrid, SPAIN

Iasi, ROMANIA

Let Ω be an open regular set of \mathbb{R}^N , $N \ge 1$, and let T>0. Consider the problem

$$u_{\downarrow} - \Delta \varphi(u) = f$$
 in $Q = \Omega x(0, T)$ (1)

$$\varphi(\mathbf{u})=0$$
 on $\partial\Omega\mathbf{x}(0,T)$ (2)

$$u(0,.)=u_{0}(.)$$
 on Ω (3)

where

$$\varphi$$
 is continuous nondecreasing and $\varphi(0)=0$ (4)

$$\mathbf{u}_{\Omega} \in \mathbf{L}^{1}(\Omega)$$
. (5)

Problems as (1),(2),(3) appear in many different contexts as, for instance, unsaturated flows through a porous medium. Existence, uniqueness and regularity results are today well-known in the literature (see e.g.[1]). Here we are interested in showing some compactness properties of the associated Green operator G defined by

$$G: L^{1}(0, T: L^{1}(\Omega)) \rightarrow C([0, T]: L^{1}(\Omega))$$

 $f \mapsto u$, u solution of (1),(2),(3),

for a given \mathbf{u}_0 satisfying (5). The compactness of G (in some weak sense) has many different applications. For instance, it allows to obtain easily existence results for functional-perturbed equations (see [2] and [8]) or for nonlinear systems

under very weak assumptions on f_i and φ_i (see [7]). Other applications of the compactness of G are concerned with the asymptotic behaviour, as $t\to\infty$, of

To appear in the Proceedings of the I REUNION HISPANO-ITALIANA SOBRE ANALISIS NO LINEAL Y MATEMATICA APLICADA. El Escorial (Spain). June. 1989.

solutions (1), (2), (3) (see [6]).

Our main result is the following

THEOREM 1. Let $u_0 \in L^1(\Omega)$ and assume that φ is strictly increasing

(6)

Let F a weakly compact subset of $L^1(Q)$. Then G(F) is a relatively (strongly) compact set of $C([0,T];L^1(\Omega))$.

The proof of Theorem 1 is based in the following result of interest by itself

THEOREM 2. Assume (6) and let S(t) be the semigroup of contractions on $L^1(\Omega)$ associated to the operator $-\Delta \phi(.)$. Then, for any $t \in (0,T)$, S(t) transforms any weakly compact set of $L^1(\Omega)$ into a relatively compact set of $L^1(\Omega)$. In particular, the restriction $S(t):L^p(\Omega)\to L^q(\Omega)$ is compact if $1 \le q .$

Remark 1. The study of the compactness of G was previously carried out in the work [3] for the special case of $\varphi(s)=\left|s\right|^{m-1}s$ and m>0. It is shown there that if N>2 and m>(N-2)/N then S(t) is a compact semigroup in $L^1(\Omega)$. Moreover, if S(t) is compact and F is a bounded set of $L^1(Q)$ then G(F) is relatively compact in $C([0,T]:L^1(\Omega))$. Later in [5] it was shown the optimality of that result i.e. if m \leq (N-2)/N then S(t) is not compact in $L^1(\Omega)$. Generalizations of the strong compactness of S(t) for more general functions φ were given in [2] and specially in [4] where it was shown that S(t) is compact in $L^1(\Omega)$ if and only if

$$\int_{-\varphi(s)}^{+\infty} \frac{ds}{\varphi(s)^{N/(N-2)}} < +\infty .$$

Remark 2. The assumption (6) is optimal in order to get the conclusion of Theorem 1. Indeed, take as function φ the one associated to the Stefan problem:

 $\varphi(s) = s+1 \quad \text{if} \quad s \le -1 \ , \ \varphi(s) = s-1 \quad \text{if} \quad s \ge -1 \ , \ \varphi(s) = 0 \quad \text{if} \quad s \in [-1,1].$ Take $\Omega = (0,1)$, $u_0 = 0$ and $F = \{f_n, n \in \mathbb{N}: f_n(t)(x) = \sin nx\}$. Then it is easy to see that although F is weakly compact in $L^1(Q)$, the set of solutions G(F) is given by $G(F) = \{u_n, n \in \mathbb{N}: u_n(t)(x) = t \sin nx\}$ which is not relatively compact

in $C([0,T]:L^1(\Omega))$.

Remark 3. The proof of both results was given in [6]. Theorem 2 is shown by reducing the problem to the relative compactness of the set S(t)(B) where B is a bounded set of $L^{\infty}(\Omega)$. It is shown there that the conclusion comes from the gradient estimate

$$\| \nabla \varphi(S(t)u_0) \|_{L^2(\Omega)}^2 \leq \frac{1}{t} \| j(u_0) \|_{L^1(\Omega)}$$

where $j(r) = \int_0^r \varphi(s) ds$. The proof of Theorem 1 uses some approximation arguments. After that the conclusion follows from Theorem 2 by using the formula

$$\|\mathbf{u}_{\mathbf{f}}(t+\lambda)-\mathbf{S}(\lambda)\mathbf{u}_{\mathbf{f}}(t)\|_{\mathbf{L}^{1}(\Omega)} \leq \int_{t}^{t+\lambda} \|\mathbf{f}(\mathbf{s})\|_{\mathbf{L}^{1}(\Omega)} d\mathbf{s},$$

where $\lambda>0$ and u_f denotes the solution of (1),(2),(3) for a given function $f\in L^1(0,T;L^1(\Omega))$.

REFERENCES

- [1] D.G. ARONSON, The Porous Medium Equation, in Nonlinear Diffusion Problems, A. Fasano and M. Primicerio eds. Lecture Notes in Math. 1224, Springer (1986), 1-46.
- [2] M. BADII, J.I. DIAZ and A. TESEI, Existence and attactivity results for a class of degenerate functional parabolic problems, Rend. Sem. Math. Univ. Padova, 78 (1987), 109-124.
- [3] P. BARAS. Compacité de l'operateur f → u solution d'une équation non lineaire (du/dt)+Au∋f. C.R. Acad. Sci. París, 286 (1978), 1113-1116.
- [4] P. BENILAN and J. BERGER. C.R. Acad. Sci. París, 300 (1985), 573-576.
- [5] H. BREZIS and A. FRIEDMAN. Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures. Appl. 62, (1983), 73-97.
- [6] J.I. DIAZ and I.I. VRABIE. Proprietés de compacité de l'operateur de Green generalisé pour L'equation des milieux poreux, C.R. Acad. Sci.

Paris, 309 (1989), 221-223.

- [7] J.I. DIAZ and I.I. VRABIE, Existence for reaction diffusion systems (to appear).
- [8] I.I. VRABIE, <u>Compactness methods for nonlinear evolutions</u>, Pitman Monographs and Surveys in Pure and Applied Mathematics. Vol. 32. Longman 1987.