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1. Introduction. The main goal of this communication is to present the

results of the work Diaz-Saa (4] concerning the uﬁiqueness of solutions of

the following quasilinear elliptic problem

— [1U’ [}B—Z‘u,}’ _ (N;I)lu. ’P'2u| " h(X,L\,U’) = g(x’u)’ x>0, (1)
u (0) =0 , limu(x) =0 (2)

300
ulx)=0  (z0) ' (3)

in which p>1 and the functions h and g satisfy certain structural conditions
which will be made explicit later.

The main motivation for the consideration of such a problem comes from
the study of very singular solutions of the quasilinear degenerate parabo?
lic equation with absorption

u, = A u"-u in Q= Rx{0,) (4)
where, as usual, Apu denotes the p-Laplacian operator
A v = div (Jov|P®wv)  , 1<p<w,
N=1 and m and q are nonnegative real numbers. Equation (4) contains, as
special cases, the equations
u, = Au"-u? (5)
and
u = A u-u’ (6)
which have been intensively studied in the last years. For many different
purposes it is interesting to study singular solutions of (4) 1i.e.
nonnegative functions u satisfying (4) in Q@ (in the seﬁse of distributions)
and such that u(x,0)=0 if xeR"-{0}. In many cases, the singularity at t=0 of
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such a solution must be as that of the "fundamental solution" i.e.
u{x,0] = c3(x)
for some positive constant c, or, in other words,
lim J ulx, t)dx = c o
20 7 |xj<r
for any r>0. Nevertheless, when the absorption 1s strong enough with respect
to the diffusion, there exists another type df singular solution u called
“the very singular solution" which has been discovered previously in the
following cases:
a) equation (5) with m=1 and 1<q<1+(2/N) : Brezis, Peletier and Terman [1]
b) equation (5) with m>1 and m<q<m+(2/N) : Peletier and Terman [8]
c) equation (6) with p>q and p-1<q<p-1+(p/N) : Peletier and Wang [9]
In all those cases this new singular solution satisfies that
lim f ulx, t)dx = +e (8)
t30 Y |x]|<r
faor any r>0 and so it is more singular than the fundamental solution. As
usual, the existence of a very singular solution is obtained in the class of
self-similar solutions
Wix, t) = 70V ()x) tB) (9)
where B must be suitably chosen. For instance g=2(q-1)/(q-m} and
B=p{gq-1)}/(g+1-p) in the cases of equations (5] and (6) respectively. More
in general, we can consider self-similar solutions W of the equation (4) in .
which case the natural choice of B is
B = plg-1)/(g-m(p-1)) (10)

A function W given by (8) is then a very singular sclution if f satisfies

E] p_z ’ y
m 1. (N-1) , | p-2 1 ., 1 _ .
l(f ) (£7) |+ == ) [P + g +(q_1)f—fq—0, in (0,w) (11)
£20 in (0,m) | (12)
£ (0)=0 , 1im 7°/{q-m(p-1))f(n)=0 (13)

>0

The uniqueness of f solution of (11} (12) (13) was only given for
the case m=1 and p=2,( see [1]) and was left open 1n [8] and [9]. The main
goal of our work is to give an uniqueness result true for any value of m
and p. Simultaneously to the completion of our work [4] (preliminary inclu-
ded in [10]) S. Kamin and L. Veron have find in [7] a new proof of the exis-
tence of the very singular solution éf the equation (5) as limit of fundamen-
tal solutions satisfying (7) when co+wx. They also have a proof of the unique-

ness of the very singular sclution (i.e. a nonnegative function satisfying



(5) and (8)) .in the class of solutions of the parabolic equation (5). Imn
this way they are giving an indirect proof of the uniqueness of f for p=2
and m>1 arbitrary. It seems that their arguments, jointly with some ideas of
Kamin-Vazquez [6], may allow to give the uniqueness of the very singular
solution in the class of solutions ofr(6) or even (4). In any case our
arguments are of a different nature to those used in [7] and [6] and can be
applied to other elliptic problems not necessarily related with the study of
singular solutions of any parabolic equation.

We remark that introducing v=f" then v satisfies an equation of the type:

(1) with

L ..a/m_ 1 1/m
glx,u) = u -TE:TT—U
and
_{m-1)
hix,u) = - —%— xu o u

So g(x,u) is not monotone in u. Moreover the differential terms in equation
(11) may have different homogeneity (m(p-1) and 1 respectively) which leads

to some special difficulties (solutions with compact support if m(p-1J)>1,

etc).
2. The main results, We shall prove the uniqueness of solutions of the
problem
[| (u")’ [""“’(u‘“)'] + —(—"'—;]—| (u")’ |"'2(u'“)'+—é—x u +G(u)=0, x>0 (14)
u(x)=0 (=0) (15)
(u")’ (0)=0 , lim u(x)=0 _ (16)
X500

where m>0, p>1, N=l, B3>0 and

G(u]=—l_ u-u?
q-1

In some cases problem (14), (15}, (16) does not have any classical solution
and it must be solved in a generalized way. This is the case when m{p-1)>1
because the solutions have as support a compact interval [O,xo] and u’ may
be discontinucus at *=X (see part (v) of Lemma 1). To define the notion of

weak solution we multiply the equation (14) by a smooth text function £(x)
with compact support in [0,w] but not neccesarily vanishing at x=0. By

multiplying by %" ' and integreating (formally) by parts we obtain

e t) (4]
- -[ A W™ PP g ax - —%-f MNug” ax +JxN_1(G(u)—uJ§dx=D (17)
0 0
On the other hand, by standard regularity results, it is clear that

ueCO([o,m]) and that in fact ueC® on the set where the equation is not



degenerate i.e. {xe(o,m):u(x)>0 and (u#)’(x]#D}. We shall show that this set
coincides with the support of u. We can assume that umecl([O,w]), because
taking a sequence £&n such that 1lim &n(x)=1 if xe[xg—e,xo] and lim gn{x§=0
otherwise we have that

¥ N b¢ 0
[XN"1|(um)’|D‘2(um)’] o [ X u] ° = x" (G (u)-u)dx.
X R X
[4 1% > 0-£ X
o-€

p“2(um)'(x0)=0 (the continuity at x=0 is similarly Jjustified).

and so |(u")’

In consequence, by a solution of (14), (15),(16) we shall mean a
function ueCO([O,m)) such that u@ecl{[D,m)). uz0 (#0) and satisfies
(16) and (17) for any smooth function € with compact support in [0, w).

Now we are in a condition to state our uniqueness results:

THEOREM 1. Assume that Nz1, m>0, q>0, p>1 and .
m{p-1)>1 _ (18)
and

(p—l)m<q<(p—1)m+§ : _ (19)

Then there is at most one solution of problem (14), (15), (16).

THECREM 2. The conclusion of Theorem 1 holds replacing the assumption (18)
by
m{p~1)=1. (20)

Before giving the proofs we shall make some remarks on the assumptions
of both results. First of all we indicate that the reasonable assumption on
the parameters m and p is m{p-1)=1, because otherwise the parabolic equatiocn
(4) corresponds to a "fast diffusion” and solutions vanish after a finite
time. On the other hand, it is naturalto expecta different behaviour of
solutions of (14), (15), (16) according to whether m(p-1) is greater or equal
to one. Indeed, the first case cofresponds to slow diffusion, and the
solutions of (4) have compact support for any value of t, although when
m(p-1)=1 the solutions of (4) are strictly positive in RNX(O,m). Finally
the assumption (19) include the assumptions made in [1],[8] and [9] for the
existence of very singular solutions, as it has been indicated in the Intro-
duction. This also explains how the boundary condition (16) implies the one
given in (13).

The following Lemma collects several properties of solutions of
(14}, (15), (18).



LEMMA 1. Assume m(p-1)z1 and condition (17). Let u be any solution of
(14), (15), (16). Then ueC’ and u"eC'. Moreover

LR p-2. my,
(1) lin | ) (X’}L Wy te) _ ;G(U(DJ) (21)
xto
| 1/ (q-1)
(i1)  ulx)=M for any xz0 with M={ qii ] '

(111) one[O,w) such that u(xo)=0 then u(x)=0 szxo

{iv) u(x) is non-increasing in [0,o) and u’ (x)<0 for any x>0

such that u{x)}>0.

(v) If m(p-1)>1 then u has compact support [O,xol,and

my, p-1 X .
i 1V EOT o (22)
KX ulx) R
¢

(vi) If m(p-1)=1 then u(x)>0 for any xel[0, »).
The proof of Lemma 1 can be found in [4]. Condition (22) is equivalent to
the differential.equation of the interface of the solution of the parabolic

equation (4) which also comes from the Darcy law.

Proof of Theorem 1. . The first step is to introduce a change of variables in

such a way that the absorption term of the new equation be monotonically

non-increasing, Let v(x) defined by

ulx)=v(x)H - (23)
If we take
p=(p-1)/(m(p-1)-1) (24)
it is easy to see that v satisfies
- 1 N— _ y 1P MHig-1)
v [P 2y | 4N v'lp 2v'+ulx—i—+ﬂ—nz+ 1 hd 0 (25)
K v pRav (g-lla a
v=0 (20) in [0, ®) {26)
v'(0)=0 , 1lim v(x)=0 (27)
X
where
a=(mp) . (28)

Now let v and v, be two solutions of (25),(26) and (27). Let xoeio,m) be
such that
O<(v1—v2](xo) = sup (v —vz) = h .
[0, e)
By comparing the value of

IV;(Q)IP—EV;(X)

1im )
o X . »
for i=1,2, it is not difficult to see that x0>0. On the other hand, by using



part (v) of Lemma 1 one can show that Vé(x0)>0 {see details in [4]). Then

there exists a constant L>1 such that
v (x J—vz(xo)

max{vl(o)wvz(ol , vl(yo)—vz(yo)} < i B (29}

where RS is such that supp v2=[0,y0]. We also chose k>0 such that
max (2, Dy ¢k < v (x)-v_(x) = h (30)
L ' 2 1 70 270 '

Now, we shall first pay attention to the case pz2. We multiply the equations
of v1(1=1,2J by XNJE with £ given by

£ = eM1, w= (vl—vz—k)+. (31)
Integreating on (0, +=]) we have

N-1,: , (D=2, |.s 1P"2 5 e
Ig'¢o] e (Ivllp vl—[vzip vz)E

- -1
‘V' lp ]V’ lp v '—L(q 1) v H(q )
XN_l 1 _ 2 _ 1 + 2 E
H Vl Vz a a
& v
+ —
j H® Ba ( v v }E
1 2

Using that E’=pw’ep“(where w’=v;~v; on wr0 and w' =0 otherwise), the
inequality (see e.g. Diaz [2] p 264)

-2 -2
(l"‘ilp a1-|a2|P az)(alwcxzjzplai_azip Val,oczem” (32)

and the fact that (v-v )E=0 we deduce that
N-1

R e A A s RS AL

Moreover, applying the inequality (true for any p>1)
| ip—]a |p = Cle ~e | Ve , o €R,
1 2 12 1’72
using that vl(x)>h/2 for any x such that £(x)>0, and integreating by parts
in the last integral we deduce that '

pj XN_I]W’Ipep“dx = Zi CJ xN~1|w'|(epw—1)
[wezo] [we=0]

+ Eg— J‘ X" (anI—an2)|E’|dx
[wea]
As the logarithm function is concave we have
v -V

pJ“ M [PePax = CJ N P +LJ[. 22 Mg jax.
[wizo]

[we=0] Ba w70 ] Va

where C denotes again a generic constant and so it will denotes in the
following. But [w'#o]lclw#ol and from the cholce of w we deduce that there

exists three positive constants 81,62,63 such that if xel[0,«) satisfies that



w(x)>0 then x<81 (because supp v, and supp v, are bounded), x>62 because

from (29) and (30) w(0)=0) and va(x)>63 {(because w(y )=0 and v, is non-
increasing). In consequence, we deduce '
CJ p ePdx = J |w’|epw dx.
[w‘¢0] [we*0]
or equivalently
CJ I(ew),ip SI l(ewj,le(p"i)w
[we#01 [we01

Using Holder inequality we have

p-1 p-1
o] Jenyr) va [J e
Twe#o] [we=0]
and hence
' 1/p 1/p
C J‘ epw] + J Ifew)'lp = (1+C) J‘ e™
[w#01] [wero] [uz0]
=Te]
C”e “w Pilw #0]) = "e "LP [w' =0)] (33)
Assume now that p<N. Applying Sobolev and H8lder inequalities we obtain
C v s 4 (P*;P)
117 (o wo1) = 101 so1y =He"1LP ([ 201y [SUPPY |
where p* = pN/{(N-p)’ In particular
|supp w' | = C>0 (34)

In the case p=N conclusion (34) is obtained from the Sobolev inequality by
replacing p* by any number greater than p*. Since these inequalities are
independent of K they must hold as k tends to h. That is, the function vl—v2
attain its supremum on a set of positive measure, where at the same time
(vlmvz}’=0. which is a contradiction with the inequality (34).

In the case 1<p<2 inequality (32) must be replaced by

o —oczlz

p-2 p~-2 ~
(|a1| a1 ]a2| az)(al ) =C (Ia !+|a l)Z-p
1 2 )
(see e.g. Diaz [2] p. 264). This justifies a change in the text function £
which now is taken as

£ =w= (vi—v2-~k)+ (35)

Multiplying the equatlons of v1 by deE and integrating on (0,«) we have

CJ W1 I l dx‘“f (]v | *|v ]p)w + —%— X (an -an }' Edx
[wen]

But there exists 64>0 such that |v1]+|v;[>64 on [w'#0] (recall part (iv) of
Lemma 1). Then it 1s easy to see that all the above arguments allow to

obtain the inequality



C"wuw1,2 = (36)

(wr#01) =1 12 201)

(instead of (33)) and so the conclusion follows.

REMARK. The idea of cbtaining a contradiction via Scbolev inequalities was
already used in Trudinger [11] (see also [5] Theorem 10.7) to compare solu-
tions of non-degenerate quasilinear elliptic problems. In that work the test
function is defined as in (35). Finally we point out that our arguments can
be also applied in order té obtain comparison results for solutionsef more

general equations, as for instance
P
-Au - A—lggl——+ B(x,u, |[Vu|} + f(x,u) =0
p
where uf(x,u) and wsB{x,u,n) are non-decreasing and nB(x,u,n) is Lipschitz

continuous (see [4]). In particular, this allows to generalize the uniqueness

result of [3].

Proof of Theorem 2. - As in the previous theorem, we Iintroduce a change of

unknown in order to arrive to a new equation with a monotone perturbation

term. More precisely, let v{x) defined by
ulx)=e"" x>0
(recall that u(x)>0; see part of Lemma 1). It 1s easy to see that v satisfies
H -2 AR ] p-z y X » 1 - (q—i)v ‘
(v P75 ) o+ v Vit —— v+ —— e =
Now the proof reduces to repeat the same arguments as before (even in a

0

easier way because v(x)>0 on (o0, w®)]}.
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