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1. INTRODUCTION

In this article we present some new results on space or time Tocalization or
solutions of nonlinear elliptic or parabolic equations with "sources”, i.e..
“with a prescribed right-hand part.
The results will be obtained by suitable energy methods (previously
suggested and justified by the authors in [2], [3] and [13]), where homocens=ous

nonlinear equations were investigated. Here the keystone is the study of
several nonhomogeneocus nonlinear ordinary differential 1nequa11t1e5 satist =z

Pfoceedlngs Of aﬂ lﬂtefnatlonal COIlfoGHC@., by the cgrrespond'lng energy functions.
Nancy, FI‘ELI'ICG7 MarCh 1988 Some of the qualitative properties obtained here seem to be new in the

Jiterature. This is the case of the instantaneous extinction time or the
nondiffusion of the support properties for nonhomogenecus parabolic equatiams.
Other results of this work generalize to very general formulations. Some
qualitative properties only well-known before for some special formulations..
This is the case for the waiting time (or metastabie localization) of
parabolic eguations and the nondiffusion of the support for elliptic equatimms.
Both properties were earlier investigated by several authors by other metho

(see the review expositions in [127 and [141).

Energy methods are also app11ed to systems of combined-type equations.
Applications to several nonlinear systems in continuum mechanics will be civezn
in [6]. '

A first announcement of part of the result of this work was made in [5].

1. Parabolic equations

We consider a general class of nonlinear parabolic equations of the form
alg.E:U) - d'[V K(t,X,U,VU) + B(t,x,u) = f(t‘x), (1;

where y is a continuous nondecreasing real function such that
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for some constants C2 z C1 >0and £ > 0 and fo_t every r € R,
assume the following structural assumczions on A and B:

lie will also

A(t,x,u,8)] < caigﬂﬂ, (3)
At x,u,8) 2 ¢lE1P72, (4)
Sty 2 Clul 9, (s
for some positive constants C3, C4, - 1 and C5 20,q20. Hereu €F ana

£ e\, _
Hotice that (1) contains, as a par=<:ular case, the following generziizztior
of the porous media equation:

t/m
au _ q _ e
T Apu +Au’ =0, ) {6}

- di p-2 - : 1/m 3 pes
where Apu = div(|Wi"™vu), A 2 0, m > > and the expressions u and ¢ rust
be substituted by [ull/mqu and ful" _ 3f u changes sign.

1.1 Localization in time: Instantanec.z extinction time
Let us begin by studying the vanishing, in a finite time‘, of global solutions

of {1) satisfying the following initiz”~ znd boundary conditions:

u(0,x) = uO(x) in 2, : . 7

u(t,x) =0 on L = (0,T) x 32 . (&)
~where @ s a bounded regular open set -7 R“ and T > 0. The existence znd
uniqueness of weak solutions of problz== (1), (7), (8) have been considered
by many authors (see, e.g. [1], [8] &re "91). In particular, it is weill
known that if ug € L3+k(§z) and f e LP 2, T8 L(B+k)/8(9)) then there exists
a unique weak solution u € LP(0, T: t!g»’:fﬁ)) n L1(0, T: L8+k(§2)) for any

k z 0.
The following result is peculiar tc =—wo alternative phenomena: a "fast

THEOREL! 1:

diffusion”, whi¢ corresponds to the rzmee =f parameters g > z-7) and
(;3 z 0; or a "strong absorption with rzssect to the accumuleiam term” which

corresponds to the assumption Cj > 0 zrc z<:.

Assume that one of the foi ow -z conditions holc:s:

3> (p-t) and Cq 2 0, (4;
or
C3> 0 znd 8 > q. (123
Let u, and T &s wmentioned with K largs z-zizn. e z7s0 assu= —z2t § vaniz-as
after a finite time Tf < T and that
j §F(t,:<"}}('8+k)/6dx s C6(Tf—t): T oGoroa.z. t € (7.7 (1
Jf'\
where h+ = max(n,0}), 0 = t.| < Tf, o ens I- ire suifzsle postT & zonstants
a € (G,1) and €, small. Then there er-:2z z conster: C7 (demerzng on Cg,
lugi! 2> @nd =) such that if
(r. 1Btk < _ o 17
1u(b.‘,x)§ dx £ C7(T1c ti) . i .(a_

lo

then u(t,+) vanishes on @ for any t 2 “.. “ore precisely

i i e
| !u(t,x)Z”J’kdx £ C7(Tf~t)?_ - (12
Y
for any t € [t.,7).
PROOF: Ve first consider the case of zzz_trzion (5., 7 {uTtiz .-~ the
equation by u r‘_1u, integrating by pzrz. zza usinz Sobolev—:--caré, Hilczr
and Young inecualities it is not diffiz.”z =2 show =nat the “-czzion
p8) = ule,x) | PR (12
satisfies the ordinary differential inmsmzi’zy

(BNt
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wheré o= (p~t+k)/(g+k) and C8 and C9 are given in the following way: First,
we fix £ > 0 and then

B+k ! eP

. _ -p _ Btk 2
Co = gpm Coe 7 s Cg = T (G0 - 5 (1 + CTyy))

P(0) (when
(g-p+1)/p)-3

and qu is the constant of the Sobolev-Poincaré inequality in U
assuming (9), K must be any positive real number such that K =
if p<iland K 21 arbitrary if p 2 N).

In the case of assumption (10) the inequality (15) is also obtained for
another exponent g € (0,7) and positive constants C
interpolation inequality of the form

1
0
(
8 and Cg. To do that an

v la < My O¥K A k-1 p
V1B = & VIR )+ e [ 10 v Pax

must be used (see [14] or [15] for the case of homogenecus equations), where

now k 21, g>0,p>1and ¢ > 0 are arbitrary and the constants a, p and C
are suitably chosen.

The conclusion of Theorery 1 comes from the investigation of inequality (15)
which is made in the following leuna,

LEMMA 1: Let y(t) 2 U be such that y'(t) + oly(t)) = F((Tf-t)+) a.e. on
(t1,T), where ¢ is a nondecreasing function such that ¢(0) = 0 and '

1
(1/7¢(+)) € L7 (0,1), For any u> 0 and t > 0 we define

(" ds
R | » S )
and nu(s) = 6;1(5). Assume

aﬁ.< I such that F(s) s (1-p)oln (s))

and

[=3]

REMARK 1:

Then y(t) = 0 fo, any t € [T,T1.

PROOF OF LEMMA 1: The function j(t) = n_((Te-t),) satisfies y' + o(y) =
PROOF OF LEHMA 1

(1-ﬁ)¢(ﬂ_((Tf—t)+), and so it is a super§01ut10n for the ordinary differential
1nequa11%y. o

The conclusion of Theorem 1 can be interpreted as an instantaneous
extinction time (the solution vanishes from the time in which f vanishes).
When t1 = 0, condition (12) only affects the‘initial”datum ug- If t1 >0
(12) can be obtained throughout Ug and f by using the well-known a priori
estimate »
Y
RPN +J0 LESTREy.

REMARK 2: The instantaneous extinction time also helds for other boundary
conditions. The case of the Cauchy problem, & = R“ can also be considered
under assumptions stronger than (9) or (10). . So, if, for instance, we
consider the case of “fast diffusion", (9) must be replaced by

- . Np-1) |
B8 > max p-1< N (17)

REMARK 3: Ineguality (15) is also useful to show fhe "nondegeneracy" of

the energy y(t) near its first zero TO' Applications to the continuous
dependence of TO with respect to Ug and f can be obtained from this property.
Those results will be published elsewhere.

REMARK 4: Lemma 1 is inspired in Theorem 1.15 of [12]. The particular case
of ¢(s) = CS™ with o € (0,1) can be investigated by other methods.

1.2. Space localization: Waiting time and nondiffusion of the support

In this section we will study the local vanishing of solutions of (1). The
local nature of this property will allow us to work.merely with local
sotutions of (1), i.e. functions satisfying (1) on sets of the form 6 < (0,T)
with ¢ = @ but without any information on the values of u or of Yu-n on 0.
The main conclusion of this section is, again, peculiar to two alternative
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phenomena: a "slow diffusion", which corresponds to the assumption g < (p-1)
and C3 z 0; or a "strong absorption with respect to the diffusion”, which
corresponds to conditions C;>0and g< {p-1). Concerning the first case,
we have:

THEOREIN! 2: Assume § < (p-~1) and C3 z 0. Let BD(XD) = {x €Q: |x—xD| < o}
and assume that there exists op > 0> te>0,6>0ande>0 (e small enough)
such that

lu(0,x)** ax + [ 1F(s, )] p/(p-¢) 4a(p-8)/p(1-2)
JBD(XU) J s )
< elp-p )i/(1—6)

for a,e. p € (O,QU+5), where

1 1y, 1 Hep

it

__bp g 1-8
CI—E:T“ "('b""gﬂ-)), 6

0

_1-5 Np
A= (E:T * E):

< 5

w
+
N
-
1L

Then there exists t= » 0, t7 g te, such that u(t,x) =0 a.e. x €8 (xU) and
t € [o,t™]. "0

PROOF: We introduce the energy functions ([13])

E(tsg)

HH

t - ‘ )
J J A(s,x,u,7u)*9u dx dt, b(t,s) = ess sup [ Iu(r,x)|a+}dx
0 /B T€[0,t] /B

Integrating by parts, using the interpolation ineguality

S Sl iy

. gy 1-8 v% .
HU(F’_QEILP g C’Hu(t’ )’!LB+1 ( “vu(t, )|E LB+1
with r € [g+1, Np/(N—p)], g = (1/{g+1) - t/r)/(1/(p+1) - (N~p)/Np), and using
the interpolation-trace lemma (see [131), we conclude that

(1-8)d  (p-1)H 1
(E+b) sct P (%%) P yi-o

e

+ elp-pg (19)

for any p > 0 and . g tf, where

1
H = — . (20)
@ O

The proof of Theorem 2 ends with the following Temma:

LEMMA 2: Let.y € CO[O,t 7 x [D,Do+pl), y z 0, be such that for any t < t1

and for . some w > 0 and & > 0

' (t.0) + 6((0mn)) (21)

dly(t,e)) £ ot of ), a.e. p € (0,p546),

o+

where ¢ is a nondecreasing continuous function such that $(0) = 0 and

1/6(-) € L'(0,1).
lle suppose that

As in Lemma 1, given u > 0, we define GU(T) and n, (s},

g > 0 and € <1 sﬁch that G(s) < ed(n_(s)) a.e, s € (0,8}, (22)
u

Then there exists t* s t1 such that y(t,p) = 0 for any 0 5 0 £ Py and
t € [0,t7].
PROOF OF LEMMA 2: It s easy to see that function v{o) = ﬂu((D«DO)+)
satisfies

ot 2L+ 0(7) = (-Cte De(n,((e-0g),)).
Then, taking v 2 tand t € t* with t* such that

* oo d-et/w

t =
we have that y is a supersolution of the differential inequality. In order

to conclude that y(t,p) < y(p) for p € (0,p0+5) we only need to have
V(tap]) S 9(@1). This last condition holds .if we take ¥ large enough such
that



‘where: 11 = sup {y(t,p, +6)::

A€ 00,5} D
'REMARK 5: In-the special case f = 0 the time t*
The -existence of t* was previously shown, for particular Formulations of (1),
by different authors (see, e.g. [14]3).. It s not difficult to check that
our condition (18) coincides with the one in the Titerature for the one-
dimensional porous media equation, The case of f
by an energy method in [4], where a different proof of Lemma 2 (for ¢(s) = s®
a € (0,1)) was given.

is called the waiting time.
0 was previously treated

REMARK 6: The conclusion of Theorem 2 also holds when C3 > 0 and we replace
the condition g < (p-1) by the assumption g < (p-1). In that case the
exponents in (18) are different and in fact t” = te (nondiffusion of the
These results, applications to suitable Sys$ems,
,+) €l

support of the solution),
the treatment of the case in which B also depends on Vu and f(t
etc, will be given in [7].

REMARK 7:
boTic equations is the object of [11] (see [10] for the proof of the finite

The existence of a waiting time for higher order nonlinear para-
speed of propagation for higher order equations by an energy method).

2. ELLIPTIC EQUATIONS

The local energy method used in Section 1.2 can also be applied to the study
of nonlinear elliptic equations of the form

~ div A(x,u,5u) + B(x,u) = f(x), (23)
where A and B satisfy conditions (3), (4) and (5).
Assume C3.> 0 and g <p-1.

THEDREM 3;: Assume that there exists pU >0,

§>0 and ¢ > 0 (e small enough), such that
“f(x)l]lﬁﬁz;}z)(B (x ) S E(p-po)l/(1"0) a.e. p € (0,05 + 8), (24)
_ p"0

where

an

P (),

LEMMA 3:

l
;I~
2:
'—\ oo
=)
i
23
o

»

‘ggi ;wke 4

*jq +1 R e o S P e BB
Sxg p ”ef (1=8)yy o
(__T = (p 1) ( + qu ).

ﬁ"be any local weak solution of (23) and assume that the following
¥priori estimate holds

|| vui] < e”
LP(B .5 (%))

For_some €* > 0 small enough. Then u(x) = 0 a.e. x € B, (xO).

0

.ﬁﬁOOF: lle introduce the energy functions
- q+1
£0) = | Aoumum g, bie) = | ful ™ e,
BD BD
Using the interpolation inequality
1~ 8
= v
lult g, 5 € Dull G2y Clmall g+ ol )

p

ﬁ%th 8 and r as in the statement of the theorem, and applying the inter-

.,ﬁo]ation-trace lemma of [13], we conclude that

Eebsc (@GP L e (1/01-0)

fﬁr
1
H =
) -8y °
1'('5'*'5:1‘)

* The proof of Theorem 3 ends with tHe following lemma:

Let y(p) 2 0 be such that
(o)) 5 € GElo) + Gllompg),), ave. p € (00976), (25)

"



where ¢ is a nondecreasing continuous function such |t ¢(0) =0 and 7. "
1/¢(*) € L1(0,1). Given u > 0 we define 6u and n, as in Lemma 1. Ve alsc
.assume that Pt e . e L

-3l > 0 such that G(s) s (1-C0ﬂ)¢(nﬁ(s)) a.e. s € (0,6) - (26)
and

§ 2 8_(M) with M2z y(p + p). (27)
2 _

Then y(p) = 0 a.e. p € [O,pOJ.

PROOF OF LEMMA 3: Function y(p) = nﬁ((p—pﬂ)+) satisfies

- ¢ .g% +0(7) = (-Cy H+ 1) ¢>(nﬂ((p-po)+)),

and so it is a supersolution of the equation. Finally, by (26) and (27), we
have that y(DO+D) s 9(00+6) and by comparison on [O,DO+6] we conclude the

result. o

REMARK 8: The conclusion of Theorem 3 can be understood as a nondiffusion
of the support of u with respect to the support of f. This property was
first obtained in [12] for a special formulation of (23) and by means of a
comparison argument. The case of B depending on Vu, extensions to nonlinear
systems, etc, will be given in [7].
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