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EX1stence of a solution for a weaker form of

a nonlinear elliptic equation

ABSTRACT. Consider the nonlinear elliptic equation
~div(R grad u) - div(e(u)) = f in 0, u € H(2), (1)

where A is a (Lm(ﬂ))NXN coercive matrix, f € H—1(Q) and ¢ € (CO(R))H; na
growth restriction is assumed on g3 thus the term div(¢{u)) cannot be under-
stood in the distributional sense,

In this paper we prove the existence of a solution of

[-div(A grad u)lh{u) - div(e(u))h(u)) + ¢(Q)h‘(u)grad u
, (2}
= fh(u) in 0, vh € Cl(R), u € Hy(@)

where in contrast with (1) every term has a meaning in D'(Q) if u € Hé(Q).
Equation (2) is a weaker form of the original problem, obtained in a formal
way through a pointwise multiplication of (1) by h{u).

SUNTO. Consideriamo 1'equazione ellittica non lineare

-div(A grad u) - div(¢{u)) = f inq, u € Hé(i), : (1
con A matrice coerciva a coefficienti limitati, f € H‘I(Q)e ¢ € (CU(R))N; non
facciamo su ¢ nessuna ipotesi di crescenza; in tal caso i1 termine div(¢(u))

non &, a priori, una distribuzione.
In quest' articolo proviamo 1'esistenza di una soluzione del problema

[-div(A grad u)Jh(u) - div(e(u))h{u)) + ¢{u)h'(u)grad i
- (2)

= fh{u) in @, vh € Cl(R), ue Hg(sz)

dove invece ogni termine ha un senso in U'(q). L'equazione (2) ® una forma



indebolita del problema originale, ottenuta in modo forhale moltiplicandg
puntualmente (1) per h(u).

RESUHEN. Consideramos Ta ecuacifn elfptica no lineal siguiente

~div(A grad u) - div(g(u)) = fengq, u € Hé(ﬂ), (1

siendo A una matriz coerciva con coeficientes en L=, f e H—1(Q)y 6 € (CO(R)ﬂ“

no hacemos ninguna hipéthesis sobre el crecimiento de ¢ en el infinito; por
To que el término div{e(u)) no puede ser definido como una distribucidn.
En este articulo demostramos la existencia de una solucidn de

[-div(A grad u)Ih(u) - div(p{u))h(u)) + ¢(u)h'(u)grad u
(2)
= fh(u) en 2, vh € Cl(R), u € IHED
donde todos los términos estdn bien definidos en D'(). La ecuacidn (2) es

una forma débil del problema original obtenida de manera formal al mulTtiplicar
(1) por h(u) en todo punto.

RESUME, Considérons 1'équation elliptique non lindaire

~div{A grad u) - div(®(u)) = f dans Q, y € Hg(ﬂ), (1)

ol A est une matrice coercive 3 coefficients ", FeEH @) et o e (CG(R))N;
nous ne faisons aucune hypoth&se sur la croissance de ¢ & 1'infini; Je terme
div(¢(u)) n'a donc a priori aucune raison d'8tre une distribution,

Nous démontrons dans cet article 1'existence d'une solution de

[~div{A grad u)Jh(u) - div(é(u})n(u)) + o(u)h'(u)grad u

(2)
= fh(i) dans 2, vh € CL(R), u € #)(0)

ol, contrairement i (1), chague terme a un sens dans D'(R) dés que u € Hé(ﬂ)o
L'8quation (2) est une forme affaiblie du probléme original obtenue de .fagon

formelle en muitipliant ponctuellement (1) par h(u).

2an

i, INTRODUCTION AND MAIN RESULTS

fhis paper investigates the existence of a solution for the following non-

jinear elliptic problem:

-div(A grad u) - div(¢(u)) = f in 2, (1.1)

u =0 on 39, (1.2)

‘ . N . . )
Here 2 denotes a bounded open subsét of R, and A is a N x N coercive matrix

with components in Lm(Q), i.e. there exists o € R, 2 > 0, such that

e (Zant, (1.3)

A(x)EE 2 aig]z, vE € RN,,a.e. x € 23 {1.4)

lthe right-hand side f of equation (1.1) is assumed to satisfy

Fen@). (1.5)

) N s N
Finally, let ¢ be a continuous function defined on R with values in B, i.e.

s € (cP@anh. (1.6)

The main feature of the problem under consideration is that no growsh

restriction is assumed on ¢, ' t H1(m
It is natural to seek a solution u of (1.1), (1:2) which belongs to Hy

since the right-hand side f of (1.1} beiongs to H (). Bu% when u.1s only

in Hé(ﬂ) there is no reasonable ground for ¢(u) to be in (L' (R))" since no

growth restriction is assumed on @. Hence. div(e{u)) may be 111 defined, even

as a distribution. o X
This obstacle is bypassed by solving some weaker problem, obtained throug

pointwise multiplication of the orig;na1 equation (1.1) by nh(u) where h
belongs to Ci(R), the class of the ¢ (R} functions with compact support.
¢

THEOREM 1.1: Assume that (1.3), (1.4), (1.5) and {1.6) hold true. Then
there exists a solution u of



€ Hé(ﬂ), : (1.7)
[~ div(A grad u)lh(u) - div(¢ku)h(u)) + ¢{u)h'(u) grad u
= fh(w) in0' (@), viecl®). o
In the equation (1.8) every term is meaningful in the distributional
sense; indeed, for h in Cg(R) and u in Hé(ﬂ), h(u) belongs to Hi(Q); thus fop

f in H_i(ﬂ) the product fh{u) is the distribution defined by

<Fhu),e
pt(a),p{n

= <f,p h{u)> oy 12 YO ED(R);

W (@) ()

the same holds true for [- div(A grad u)] h(u) since -div(A grad u) belongs
to H_T(Q). Further because ¢h and ¢h' belong to the class Cg(R) of continuoys
functions with compact support, ¢(u) h(u) and é(u) h'(u) belong to(Lm(Q))N for
any measurable u, which implies that ~div(o(ulh(u)) and c(u)h'(u) grad u

are respectively a distribution (in H_1’m(ﬂ)) and a LZ(Q) function,

Equation (1.8) follows formally from (1.1) by muTtiplying by h(u) since
[=div(e(u))Ih{u) = ~div{s(u)h(u)) + $(uh*(u) grad u, (1.9)

Note, however, that in contrast with the right-hand side, the left-hand side
of (1.9) does not make sense when h € C;(R). Thus (1.8) is to be viewed as a
weaker form of (1.1). _

The original equation (1.1) will be recovered whenever h(u) 2 1 (which
does not belong to C;(R)J) can be used in (1.8); such is not usually the case
in general, except when stronger (regularity) requirements are met by u.

THEQOREM 1.2: Assume.that (1.3), (1.4), (1.5) and (1.6) hold true and define
b€ C'(R) by

N t -
it) - JG 16(s)]ds. (1.10)

Let u be a soTution of (1.7), (1.8) such that:

7237

o {u) E(J.1 (Q))N, (1.11)

Wy el (o). (1.12)

Then u is a (usual weak) solution of the original problem (1.1), (1.2). @
We do not know if (1.12) is a necessary condition for Theorem 1.2; (1.11)

-seems to be necessary to lend a distributional meaning to div(¢(u)).

Consider now a solution u of (1.1). Formal multiplication of (1.1) by u
and integration by parts yields

j A grad u grad u dx + { o{u) grad u dx = <f,ud. (1.13)
a ,

Q

Define o € (C1(R))N as

. t
3t) - JO 8(s)ds.

Then, formally, div(@(u)) = o(u) grad u and since ;(0) =0

RS oK
—
s
~—
—
[aR
=
I

J ¢(u) grad u dx = J div( J $(0)n ds = 0; {1.14)
1Y) : all

9

thus

f A grad u grad u dx = <f,u>. - (1.15)
Q

Let us stress that most of the operations performed before are purely
formal. However, relation (1.15) (and even an extension of {1.15))can be
proved whenever u is a solution of (1,7), (1.8).

THEOREM 1.3: Assume that (1.3), (1.4), (1.5) and (1.6) hold true and that u
s a solution of (1.7), (1.8). Then

J s'(u) A grad u grad u dx = <F,su)y (1.16)
Q .

INGRNG)

for any Lipschitz continuous, piecewise CT(R) function s such that s(0) = 0, o



Note that Theorem 1.3 holds true for any solution of (1.7), (1.8), and
not only for the solution that we will construct by approximation in the
proof of Theorem 1.1; for the latter, (1.16) follows 1mmediate]y from Theorep
2.1 below.

Existence results for (1.1}, (1.2) were proved by Boccardo and Giachettj
(4], [5] under a smoothness assumption on the right-hand side of (1.1) as
well as a convenient growth condition on ¢: indeed a regularity result
permits constructing a solution uy in Lp*(Q) whenever f lies in W-1’p(ﬂ),p 22,
the condition [¢(t)] < c(tp*+1) then implies that ¢(u) belongs to (L1(Q))N,
and that u is a solutfon of the original equation (1.1). The uniqueness
of the solution for equationsof the type of (1.1) was investigated by
Carrillo and Chipot [9], Carrillo [8] and Chipot and HMichaille £10]; in
these papers the solution u belongs to Lm(Q) or ¢ is assumed to grow at most
11neariy at infinity.

The weaker form (1.8) of the problem (1.1) s very similar to the idea of
“renormalized solution" introduced by Di Perna and Lions in their important
papers [121, [13] when investigating the existence of solutiens for the
Boltzmann equation., It 1s also reminiscent of the introduction by Benilan
et al. [1] of the space T ,p( Q) 1n the study of the existence and unigqueness
of a solution for -div(|grad ulp grad u) = f with f in L1( ). Finally, it
should be mentioned that this weaker form i$ related to the idea of entropy
solutions for scalar nonlinear hyperbolic equations of the Burgers type.

Our proof of Theorem 1.1 starts with an approximation ¢ of 9 which is
bounded on R. In this case the above performed formal operations are Ticit
and (1.15) provides a Hg(ﬂ) bound for the corresponding soiution u®, The
key point is then to prove that u® s actually a compact sequence for the
strong topelogy of Hg(Q); this is achieved through the use of nonlinear (with
respect to uE) test functions, in a spirit closely related to Bensoussan,
Boccardo and Murat [2]. Passing to the 1imit to obtain Theorem 1,1 1is then
‘eésy. |

The proof of Theorem 1.2 consists in observing that assumptions (1.11),
(1.12) allow us to pass to the 1imit in (1.8) for a sequence of functions
h. that converges to 1. In a similar manner the proof of Theorem 1,3 consists
in approximating s(u) by s{u) ho(u) with h. converging to 1. (Use of such
functions h (u) has already been made in Boccardo, Murat and Puel [7].)

Extensions of the present work to general Leray-Lions cperators as well
as to parabolic equations will be given in our forthcoming paper [3].

é. PROOF OF THEOREM 1.1

befine Tm to be the truncation to level m > 0, i.e,

taf |t

£m,
- (2.1)
Tt - t if jt] 2 m
" TET ’
N £ .
and ¢E, to be the following approximation ¢~ of &:
€ (2.2)
05(8) = (T (1)) -
Consider the nonlinear elliptic equation
-div(A grad u®) - div{¢"(u)) = f in @,
(2.3)
£ 1
3 HO(Q).

Since ¢° Ties in (CC(R) n L)Y, 2 simple application of Schauder's fixed
point theorem in Lz(ﬂ) implies that (2.3) has (at least) one solution,

Recall now tﬁe following:

Let 8 be a (Lw(R))N, piecewise continuous function and v belong

LEMMA 2.1: ' 1 : | e
to H[(Q) Define the Lipschitz continuous, piecewise {C (R))" function 'H
0 ) 7
| t
8(t) = I 8(s) ds. (2.4)
0
Then

5(v) € (Nt

grad v = 0 a.e. on the set {x € @|v(x) = ¢} for any c €R, (2.5)

div(8(v)) = 8(v) grad v in 9,



j 8(v) grad v dx = 0, o (2.6)
0 ;

This lemma s a classical result (see e.g. Kinderlehrer and Stampacchia

C11, p. 54] or Boccardo and turat [6, Theorem 4.2]). The assertion (2.6)
follows from Stokes' theorem

J 8(v) grad v dx = J div(g(v))dx = 0,
{2 aQ

since §(v) € (H}(a)".

Multiplication of {2.3) by u® and integration by parts yields in view of
(2.5), (2.6)

<~div(g®(u®)),u®> = J oS (u®) grad u® dx = G, (2.7)
Q

since ¢% Ties in (CD(R) n Lm(R))N [contrast (2.7}, which is Ticit since o¢°
belongs to (CD(R) n LM(R))N with (1.14), which is formal since ¢ only belongs
to (CO(R))N]. Thus we have

J A grad u® grad u® dx = <f,u% {2.8)
Q

and the coersiveness (1.4) implies that

1

£ N .
flu “HS(Q) ol HH”(@)

At the possible expense of extracting a subsequence (still denoted by g), we
conclude that

u® —>y in Héﬁﬁ weakly and a.e. in g as ¢ » 0, (2.9)

We shatl prove the following:

THEQREM 2.1: The subseguence u® tends strongly to u in Hé(ﬂ). o

The proof of Theorem 2.1 is based on two Temmas.

hp e ¥l

LEMMA 2.2: Define for k > 0 the set
LEN £.2

2.10
EE = {x € o} |u®(x)] & KkI. ( )

‘Then for any fixed k > 0

1A
R

2 -
1im sup J . lgrad u®|“ dx <f,y Tk(u)>. o

E+G Ek

'PROOF: Consider the test function

(u8) € K ().
Defining Xk as

0 if [t] < K, (2.12)
Xk(t) =

1 IF |t 2 k,
we obtain by virtue of Lemma 2.1:
= Xk(ug) grad uf.

grad v&

Application of Lemma 2.1 to the (Lw(R))N, piecewise continuous function

8(s) = ¢E(5)Xk(s) yields
¢-div(aS(u®)),v® = [Q ¢E(u€)xk(u“) grad u® = 0.
Thus multiplication of (2.3) by v® and integration by parts yields:
(2.13)

: £ z
J % (u) A grad u® grad u® dx = <F,u-T (U5,
Q2

T , th
Since the right-hand side of (2.13) tends to <f,u .k(u)> as g + 0 e
coerciveness assumption (1.4) implies Lemma 2.2.

LEMMA 2.3: Define for i » 0 and j > 0 the set



F§j fr{x €| [u¥(x) - T,(ulx)| s 11 (2.1

Then for any fixed i > 0 and j > 0

1im sup J [grad(uE-T.(u))|2 dx <
Fe J

1 1 :
< a-<f,Tf(u—Tj(u))> - &'J A grad Tj(u) grad Ti(u-Tj(u))dx. o

1y

(2.15)
PROOF: Consider the test function
£ _ £ 1
W o= Ti(u T\](U)) € HD(Q)!
and define
XS = <=div(e®(uF)), W = J ¢“{u®) grad w® dx;
&
we claim that
X5+ 0 as g = 0 for any fixed 1 > 0 and j > 0. {2.16)
Indeed by Lemma 2.1
grad (ue—Tj(u)) on F?j, —_
grad wt = {2.17)
0 . £
on Q\Fij.
Since
[u*(x)] g Ju¥(x) - Tyl + T3 (ul)) ] 5 i+f on F3s
we have

0=(u=(x)) = (T, (uE(x))) = 0(T;, 5 (US(0)) on FE, for /e 2 i+,
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Thus whenever 1/e 2 i + ]

X& = f 6% (u®) grad w® dx = JFE ¢=(u®) grad w& dx
Q T
1] ’

- £ E
= [ ¢(T1+j(u )) grad w* dx,
Q
which tends to

€= | o7,y arad Ty ueTj(u)ex, (2.18)

since w® tends to Ti(u—Tj(u)) weakly in Hé(Q) while ¢(Ti+j(”£))’ which is

bounded in (L7(2))N and converges a.e., tends to :<Ti+j(u)) strongly in
(LZ(Q))N through application of Lebesgue's dominated convergence theorem,.
Applying Lemma 2.1 to the (L=(R))" piecewise continuous function g(t) =
¢(Ti+j(t)) M- Xi(t'Tj(t))JXj(t) proves that the right-hand side of (2.?8)
is zers, hence (2.16). '

Multiplying now (2.3) by w®, integrating by parts and using (2.17) and
(2.16) we obtain

Tim | A grad uf grad(uf-T.(u))dx = <F,T.(u=T.(u))>. . (2.19)
e+0 JF?j J ! J

Substracting to both sides of (2.19) the quantity

1im J _ A grad Tj(u) grad (uE—Tj(u))dx
Fo.

g0 Y

1

Tim J A grad T.(u) grad T, (u®-T.(u))dx
Q J 1 J

e+0

IE

( A grad T.(u) grad T,(u-T.(u))dx
)i J T

and using the coerciveness (1.4) complete the proof of Lemma 2.3. o

PROOF OF THEOREM 2.1: From

JuE(] 2 [uS(x)-T; (G = [T (ulx))] 2 1-5 on TF



e ded € =€ . .
e deduce that Q\F1J S Ei-j' Then: . T sup N <2 J | grad U|2 ix,
- £-+0 1 x| ful)|>i-3}
2 .
grad(ug-u) dx g £_ 2 c 2
JQ | | ' FE . [grad(u®-u)|™ dx + F€ |grad(u ~ul|* d which is small when i-j 15 large.
1] {ud . o
’ Hence 1im sup J Igrad(ue-u)l2 dx is small if we choose Jj, next i-J,
g2 rad(u€-T, (u)(2 2 N e /0 .
JF?j ? J(U)I Pz FE, [grad(Tj(u) uJ["dx (2.20$) sufficiently large. Theorem 2.1. is proved. @
ij . .
1 .
z : h belong to C.(R) and ® belongs to
+ ZJ . lgradu®|®dx + 2 j . lgrad u|2 ix = 5. . IIE. END OF THE PROOF OF THEOREM 1.1é Let- elong C(1) elongs |
Ei-i , Ei-j R Y D(R), Mu]tipTying {(2.3) by h{u )o which belongs to HO(Q) and integrating
+ III?j + Iv?j. by parts we obtain
. . . : £
We now estimate the Tim sup, for i and j fixed and ¢ converging to zers J (A grad o + ¢"(u5))(h' (U)o grad 4+ n(u”) grad @) dx =
of each of the four terms of the right-hand side of {2.20). , & _ (2.21)
In view of Lemma 2.3, 1lim sup I?j s small provided j s sufficiently . - <f,h(u€)qb

large; indeed, since e +0

Since h and h' have compact support on R, we have for g sufficiently

lgrad T, (v} < d { small
k ”(LZ(Q))N [grad v “(LZ(Q))N’ vk > 0, w € HO(Q),

p5(EdN(E) = o(T, (£))h(E) = o(t)n(t),

the right-hand side of (2.15) is bounded by (2.22)

= (thh' (1) = 9T, , (£))h'(2) = wlthh*(t),

& Cif ”H"I( ) AL o ey arad u | 2.l lgradu-T.(w
! ) (L-a) TN and the right-hand sides in (2.22) are (CC(R) n L(R)
u® converges to u strongly in Hé(ﬂ) (see Theorem 2.1) it is easy to pass

to the 1imit successively in each term of (2.21); this yields

)N functions. Because
which tends to zero when J tends to infinity.
Since F?j 15 a subset of q

T sup IS5 £ 2 | Jarad(70)u) 2 ax, JQ'“‘ grad u + o(u))(h' (ule grad u + h(u) grad @) dx
2

e+

. . 1
which is small when j is large. = <f,h(u)e>, vh € CC(R), w € D()

In view of Lemma 2.2, 1im sup III?j is smaill provided i=J is sufficiently

large, exl which is equivalent to (1.8). Theorem 1.1 is proved. @
Finally, splitting @ into the union of the sets {x] [u(x)] # i-3} and
Ix[ Julx)] = i3} (note that grad u = 0 a.e. on the second set by virtue of 3. PROOFS OF THEOREMS 1.2 AND 1.3
(2.5)), and using Lebesque's dominated convergence theorem, it is ecasy to PROOF OF THEOREM 1.2: Let u in Ha(ﬂ) be a solution of (1.8). Consider a

prove that function H € D(R) such that

oAN nn4



H(t) = 1 if |t] < 1, H(t) = 0 if [t] 2 2,

A

[H(t)| < 1, [H'(t)] s 2, vt €R,

and define for ¢ > 0 hE by:
Ht + 1/e) if t+ 1/e <0,
h (t) =(1 if |t] €1/, (3.1)
E

H(t - 1/g)} if t - 1/ 20,

The function h® belongs to Cl(R) and can be used in (1.8); multiplying
(1.8) by @€ D{n) and integrating by parts we obtain

J A grad u(h;(u)w grad u + hE(u) grad ) dx
Q

+ J ¢{ulh (u) grad ¢ dx + J wolu)h’(u) grad u dx (3.2)
Q & Q &

= <f,h_{u)o>.
[
Since for any t €R,

1, h{t)=1 ase~14, (3.3)

[ (£)] .

A

AN

ihé(t)l 2, hé(t) +0 as e~ 10, ‘ . (3.4)

Lebesqgue's dominated convergence thecrem impiies that
he (u) = 1 in H1(Q) strongly.

We can thus pass to the limit in the first and last termsof (3.2).
If we assume now that ¢(u) € (L%OC(Q))N (hypothesis (1.11)), Lebesgue's
dominated convergence and (3.3) allow to pass to the 1imit in the second

term of (3.2), since in this case

s(UIhE(u) + olu) in (L}OC(Q))N strongly.

Define now

¢(s)h;(s)ds;

then by virtue of (3.4) and of the definition (1.10) of
v, (B s2fj(t)] J_(t) ~0as e+ 0, vt €.

If we assume that y{u) € L:OC(Q) (hypothesis (1.12)), this implies {using

once again Lebesgue's dominated convergence theorem) that

o {u) - 0 in L1

2 10C(Q) strongly.

Thus the third term of (3.2), which is equal to <—div($€(u))
(see Lemma 2.1), tends to zero, when (1.12) holds true.
We have proved that for any ¢ in D{p)

2291 (a),0(0)

f A grad u grad ¢ dx + J o{u) grad ¢ dx = <f,@
{ 2

which is equivalent to (1.1), Theorem 1.2 is proved. o

PROOF OF THEOREM 1.3: Let ¢ be a solution of (1.7), {1.8) and s be a
Lipschitz continuous, piecewise ¢! function from R to R such that s(0) = .

First step. MWe assume here that s is bounded. Then s(u) belongs to
Hé(g) N L¥(g). In this case there exists a sequence ¢hsuch that

o €00, gy L £C,

L ()

e + s{u} 1in Hé(n) strongly as n + + .

1

&)

Then for any h € C

h(u)mn + h{u)s(u) in H&(Q) strongly as n - =,

Using v, € D(n) as a test function in (1.8) and passing to the Timit yields:



<-div(A grad u), h{u)s(u)>

+ JQ o (udh{u) grad s(u) dx + J s{u)e(u)h'(u) grad u dx {3.5)

Q

= <f,h(u)s(u)>, vh € cl(R).

Lemma 2.1, applied first to the (Lm(R))N, piecewise continuous function

8(t) = o(t)n(t)s' (t), next to the (CC(R) n L"(RN" function 6(t) = s(t)s(thh'(y:

proves that the second and third terms in (3.5) are zero. Thus

<-div(A grad u), h{u)s{u)> = <f,h(uls(ul)>,

1 (3.6)
vh € CC(R).

Use now in (3.6) the functions h_ defined in (3.1); from (3.3) and (3.4)
it is easy to prove that for any Lipschitz continuous, piecewise Ci function
s such that s(0) = 0 which is bounded, one has:

hE(u)s(u) + s{u) 1in Hé(ﬂ) strongly as ¢ -+ 0.
Thus passing to the 1imit in (3.6) proves that
<-div(A grad u}, s(u?> = <f,5(u)>
for any Lipschitz continuous, piecewise C1 function s such

that s(0) = 0, s € L™(R).

Second Step. Consider the general case where the function s is not
asggmed to be bounded, and let for m > 0 sm(t) = Tm(s(t)) be the truncation
of s at the level m (see {(2.1)); we can use s, 10 (3.7). On the other
hand, it is easy to prove that

sm(u} = Tm(s(u)) + s{u) in Hé(Q) strongly as m - o,

Passing te the limit in (3.7) gives

. which is equivaient to {1.16).
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