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1. Formulation,

In this communication we preseat some of the results of {2] on a mo-
del related to the lubrication with cavitation arising in bearings. To des-
cribe this phenomenor two unknowns are required: the pressure, p, and the
relative content, ¥, of the oil film., When the lubrication takes place by
an incompressible fluid with convection effects, the Elrod-Adams model
([13]) leads to the following equation valid both in the cavitated and the
noncavitated regions

®) dive’vp + y¥) = 0 in Q,

where Q= (0,T)x3, Qcﬂ!z is a connected open set with regular boundary 983,
h(t,x, )ECw(Q) is a given function with O<m=<hs=M, and V is the given
convection term (Some references on the mathematical treatment of this and
athers rebated models are [3] [4] [6] [7] [9] [12] and [17]). This problem

can be formulated under weak regularity in the following way:

Weak Formulation, Find (p,y)ELZ(O,T;Hl(Q))XLw(Q) such that:
i) pz0 and y&H(p) a.c. in Q (here H is the Heaviside graph).

i thy:, 2J.Q033‘7PVE + BVYO - [ 0o,

VEER'(Q) with £=0 on 3 Q=((0,T)xaMU({T}xE).
iid) p=p, on (0,T)xof2.

2. Existence of Solutiom by Elliptic Regularization.
We consider the approximated problem:
Elliptic Regulatized Formulation. Find pe EH](Q) such that:
i*y pfz0aecin Q.
i) e’ + @F, %) dive’vp®) - diveF,6%") = 0 in Q

iiie) suitable boundary conditions,
where Fe is a smooth function approaching the Heaviside graph.

In [2], we obtain a priori estimates for pe by means of & suitable
election of Fa Then, we show the convergence:
p® — p (weakly) in L%0,T;H'())
Fe(pe) —— y (weakly star) in L= (Q).

]
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Finally, p and p satisfy the integral equation ii) and condition i) helds

in the sense J bp(1-y) =0. (Similar results in the litersture can be found

in [15],[1}[11]).
3. Uniqueness.
We shall use, now, the following approach:
Parabolic Regularized Formulation. Find pgeLz(O,T;Hl(S))) such thar:

as) pgzﬂ a.e.in Q.

£

%y P (pe))- divan’vp®y - div(hF, OB =0 inQ
& pamz on (0,T)x 30 ana'F(p(O »= )J()an 2,
where y > e, z.>8 and F is Llpschltz continnous, such that Fe—:-H in the
sense of graphs, and FB(C(B)IZ)Z]., (here paaC(a) with C(g) independent on
the explicit definition of Fa)'
It is not difficult to show that
p° — b (weakly) in L*0,T;HY(Q))
Fa(pg) — ¥ (weakly star) in L=(Q).
with (p,y) solution of the weak formulation which we shall denote in the
following as limit soluhon
Theorem 1. Let (P,}’) be any solution of the weak formulation relanve to
the initial datum Yy let (p,y) be the limit solution relative, to yo Then,

Sor all 120 we have

N + A +
bty [ym-i:m] ix = [ bO [r -&} dx
| R | O,

In particular, if ;os ;0 then ;(t)s y(t) and so the solution of the weak
Jormulation is unique.

Idea of the Proof: Let ¢€C™(Q), &(t,.)=0 in 9@ By integrating in
Q =(0,t)xlﬂ for p and 1; and substracting we found

A L.y +
[ sz fpor,ed] = [ bowofr,) +
I¢] o
p -p
+J' J' [ F o )]{hf + o divhve - hvw:} .

Yy —Fecp*’)

t

0" 982

Denote by As(t,x) = (p -pe)()' -Fe(pg))'1 and let § be the unique solution

of the adjoint retrograde non-degenerate elliptic problem:

B¢ + Ae(l,x)div(hav.f) - BVVE = 0 in Q=(0,0x8



£wy= sign’ [y(t)—Fe(pa(l)) on £ (final condition)
=0 on (0,)xdf2.
From the maximum principle we get 0=¢:<1 and using suvitable barrier func-

tions we prove:

= 0(e).

t
3 95
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Finally

A + A +
I h(t)[v(t)—&(c)] dx = lim h(t)[y(t)-Fe(pem)] dx =
2 &0 Q

a A +
in [ w06 (o) = [ o AN,
4, Time Semidiscretization.(Implicit Scheme).

We denote by o« the maximal monotone graph "L By introducing
the new unknown w=hy, one has

w/h €H(p) + p€&a(w/h).
Then, w satisfies:
W - divh Va(wh) + w¥130 in Q
W(O,X)=W0(]{) in £,

where wo(.)=h(0,.))!0(.).

Using an bhomogeneous discretization in time (tn»tu_lﬁﬁ.), the above
equation becomes

w(tn)-w(tn_ l) w(tIl

— g [ha(tn)Va [—Fﬁ:}] + w(tn)V(tn)] 30

From this implicit scheme we lead to the following family of problems

w
w-xldiv[hanVa[ h] + wV]Eaf in £

o

w
a[h]apo on 942,

o
where f is a given bounded function,
Now we define the family of abstract operators

w
A = - div[hanVa[ - } + w¥ ]

and
w W

w
D(A) ={WEL2:OsTs I,Q[T] aH‘(Q),AweL’,a{ = ]=p ouag}.
o . 1

n o

We have

Theorem 2. There exist a positive constamt k  depending on ¥ such that if
A=<k and fEL°° then there exist an unigue ’WED(AD) satisfying w+AAnw5f.
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Moreaver, if W, and w, are selutions for £ | and f2 respectively then

o] e 8"

L'@) L.

Idea of the Proof. We approach o« for @, Lipschitz continuous and such

~that @ — « in the sense of graphs, We get existence for the problem

2
associsted to «, by using pseudo-monotone operators ([16]). The szbove p!

estimate is now proved, in that case, by multipliyng by sign+(w lnwl).
The uniqueness for the regularized problems is obtained again by a duality
method, generalizing a preliminary result of [18].

Results on the convergence, when A goes to zero, are given in [2] in two
following cases:
1) b and V are time-independent. We get strong convergence in Ll(ﬂ) by
using an abstract result of [8].
2) h and V depend on t in a “regular” way. The L' convergence is obtained

by showing a suitable condition on the resolvent operator [14]).

5. Menotonicity in time of y

Under suvitable conditions we prove the monotonicity of the free
boundary defined as d[p=0].
Theorem 3. The following inequality holds:

div(Vh)(xa—;u)—‘Vth-ht(xo-r)+hrt z0 inQ

where Z,= X [p>0]. So, if V=0 then hl(x(,-y)s hyl and ¥ 0 when htso.
Idem of the Preof. We take the test function He(p)f with He(p)=min{1,p/8}
and EEC‘: such that supp(,‘(.,x)c(ro,T-TD), TU>0. Then,

[ nmoe =[ ¥ |vePmg + [ vpven,e - | divevmm, e
Q Q Q Q
and hence

f hx g + I div(Vh)xoe-J' B'VpVE x, 20 for all ¢.
Q Q Q

The result follows by substracting
bty + div(Vhyg) + divia’Vp) 20
and
“(by), + div(Vhy + b'¥p) =0._
Remark. We note Hg(p)f & HI(Q) and so the detafled proof avoids the term
[Ha(p)]{ The argument is similar to the one used in [5].
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