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1. INTRODUCTION. The problem we shall consider in this work have the

following general formulation
-g—t (hx)~div(h3\7u—hxg]=0 in Q=(0,T)xQ

1) boundary conditlions on Z=(0,T)xaQ
7((0,.]:";150(.) on 2,

where @1 is an open bounded regular set of iRN. Nz2, h is a C*(Q) given
functlon such that

O<m=hit,xisM  on @ ,
e is a given vector of ®R" and the unknowns u and x are related by

x{t, x)eH(ult,x)) ¥iel0,T] and a.e, xeq,
with H the Heaviside maximal monotone graph defined by H(r)={0} if r<o,
H(r)={1} if r>0 and H{0)=[0,1].

Problem (1) corresponds to the ELROD-ADAMS model for transient
hydrodynamics lubrication (see [8]). There u represents the pressure and
x the relative content.

Several others fields also leads to problems formulated as (1).
This is the case of the "nonsteady dam problem”, "Hele-Shaw problem” and
the "electrochemical machine” problem. In those formulations h=l and e
is either a vertical vector (0,0,.,0,1) or the null vector 0 (see Crank
[7n.

Formulation (1) also appears as limit problem associated to the
porous media equation
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as mow (here h=l and u~v™).

In order to fix ideas we shall concentrate our attention on the
"journal bearing problem" which for which £2=(0,2m)x(0,1) and the
boundary conditions are wu(t,x,1)=a, ult,x,0)=0, ult,x+2m,y)=ult,x,y) for
any te(0,T), xe€{0,2n) and ye(0,1),

The plan of the rest of the paper is the following: In section 2 we
shall show that (i) Is a well-posed problem in the sense of the
accretive operator theory on the Banach space X=L1(Q) and we shall
deduce several consequences from that fact. (Those results are a slight
generalization of the ones presented in ALVAREZ-DIAZ-CARRILLO [2]). The
last section (section 3) is devoted to the study of the cavitation
region and extends some of the results of CARRILLO-DIAZ-GILARDI [5].

Detailed proofs will be given elsewhere. .

2. BASIC THEORY FOR THE TRANSIENT JOURNAL BEARING PROBLEM.

As already said in the introduction, to fix ideas, we shall consider
here "transient journal bearing problem” which follewing [8] is
formulated in the following terms: §={0,2x)x(0,1), I‘1=(0,2n)x{1},
r =(0,2m)x{0},

-g-;c- (hx)-div(h’Vu-hxe)=0  in Q
u=a on (O,T)xl"l
(@) 4 u=0 on (O,T)x[‘o
ult,x+2m,y)=ult,x,y) for te(0,T),xe(0,2n) and ye(0,1)
L x(O,x)=x0[X) on § ,

where a>0 is a given number (representing the atmospheric pressure). Our
{irst goal is to formulate (2) as a Cauchy Problem
& (1)ealv()=0 a.e. t€(0,T), in X
. t
{3

v(0)=v

o

where X Is the Banach gpace Llim and A is a sultable operator on X,
A:D(A) © X———P(X). To do that we start by denoting az:i“f1 {in the sense
of maximal monotone graphs) Le. alr)=¢ (the empty sei) w{l)=(Q, 4w}, |f
re(-w,0)u(l,©), olr)={0} if re[0,1], «l(0)={-x,0] and o{ 1)=[0, +m),



If we define
vit,x)=h{t,x)x{t,x) , x=(x,y)
wa easlly check that
yei{u) e uc—sm{%) .

|
Sa, (2} can be equivalently formulated in the following terms

f g—‘é— ndiv(hSVu~v_e]=0 in Q
u=3a on (G,T)}ﬂ“l
(4) A u=0 on (O,T)xl‘ﬂ
u is 2n-x periodic on (0, T)x{0}x(0,)u{Z2rn}x(0,1)
. V(O,x)=vo(x) en £,

where vo(g)xo(;g). In this way, (4} corresponds to a formulation in terms
of (3) if we introduce

v:[0, TI-L'(Q), vt} x)=v(t,x),

Alt)w=-div(h’(t,.)V6(t,.)-we) for any weD(A) where
D(A]m(weLl(ﬂ) such that 3 S(t,z)sa(—g((%’]—ﬂ) a.e.xef), te(0,T),
div(VB(t,.)—wg)ele} in the sense of D’(?l), for a.e. te(0,T),
e(t,.)=a on (O,T)Xrl,e(t,.)=0 on (O,T)XFD and @ is 2m-x-periodic}.

The main difficulties in our study come from the fact that « Iis

multivalued, from that D{«)=[0,1] and from the i-dependence of A(t).

2.1. Definitions and results of the abstract theory.

We recall some facts from the abstract theory: Let X be a Banach space
and B:D(B)cX-—P(X). We say that B is accretive {in X) if there exists Ao
such that V?Lz;io

|w -w_[={w -w_+Al{z -z )| Vz eBw ,z eBw ,
12 1 2 172 1 ) 2
or, equivalently, if the resoclvent operator
-1
J?‘.—(I+?\B)

is a contraction (||Jhwl~.]hw2u$“wl~wzll). When X is a Hilbert Space the

accretive operators are called as monotone operators. Finally, we say

that B is a m-accretive operator {in X) if it is accretive and
R{I+AB)=X.

The importance of the accretive operators comes from a well-know
result due to CRANDALL and LIGGETT {1971) showing that the Cauchy
Problem (3) (with A(t)=B) is well posed in X if B is m-accretive.



In the case of time-dependent operators we extend the above notions
in a natural way. Nevertheless the study of the Cauchy Problem now

requires some additional hypothesis on the t-dependence of Aft).

||JA(t}w—JA(s)wl]ﬁlf‘(t)—f(s) | L
(5) for any t,sel0,T], ¥YA»0, YweX and for some
L>0 and some function f:{0, T]—R,

where f(t) is assumed to be either Lipschitz-continucus (CRANDALL-
LIGGETT and EVANS-MASSEY), Riemann integrable (PLANT) or Lebesgue
integrable (EVANS). See references in [9]. We recall, in particular, the
main result of [9]:

Theorem. Let A(t) be a family of m-accretive operators satisfying (5)
Jor some T Lipschitz continuous. Then for any VOED—(AW there exists a
unlgue solution of the problem (3). Moreover v is the (uniform) limit of

the step functions v"(t)——-w; on (t;_l,t:], where

Byt e nE
P ={0 tB(ti<“.<tN(n)’f(n)}

{s any partition such that

Hm  max  (t)-t) )=0
now  1sksN(n)

arnd
n n
YWk ny_n
+ A(tk)wkac} .
th-t"”
Kk k-1
2.2. Application to the journal bearing problem, Our program in this

subsection will be: (i) Definition of an operator Az(t) on L%Q) such
that it is accretive in LY(RQ) and R(1+AA2(t)):an(Q); (ii) Definition of
A(t) as the closure of Az{t) in LY land so by (1) m-accretive in
L'()); (iii) Checking assumption (5).

The definition of Az(t) is similar to the already anticipated in a

formal way:

D(Az(t})={weLm(Q):Osw(x]sh(t,x) a.e.xe, te(0,T) such that there exist
w(x)

wt el ey Satisfying uel'(0, T:H'RQ),  divih®(t)Vult)-we)eL ()
and u(t)=a on Fl, u{t)=0 on I"2 and u(t) is Zr-x-periodic},
Az(t)w=—div(h3(t)vmt)-wg) if weD(A_(t)).

We have



Theorem. There exists a posliiive 7\0 such that V?\ZAO and geLm(Q) there
exists a unique w, weD(Az(t)) (t fixed) satisfying

(6} w+hA2(t)wag .

Moreover, If w_and w, are solutions of (6) corresponding to g, and g,

1
respectively one has

+ +
(N | Gw ~w )7 Ll{msu(gl—gz) "LI(Q)

Finally, A{t) satisfies (5) for some Lipschitz-continuous function f.

ldea of the proof. First step: Let o, be a strictly increasing Lipschitz

continuous function such that oce—xx (in the sense of maximal monotone

graphs}). Then the first part of the statement holds by replacing « by o«
(this uses the pseudo-monotonicity of the operator Az(t)). Estimate (7)
follows by multiplying by sign+ (wf—wz) {first we regularize the sign
function and later we use that sign+(wf~w2)=sign+(uf(t)»u§(t)).

Second step. The following "a priori" estimates holds

€

(8) [w ||L°°5“g";_°°

and

(9) Ilug(t)“HlSC (independently of €).

{Estimate (8) is obtained by multiplying by sign+(we-—k) for some

sultable k>0, and (9) comes by multiplying by u®).  Then uF(t)—ult)
weakly in HY(Q) and wo—sw weakly in LZ(Q). Using a result of BENILAN~
CRANDALL-SACHS [3] we have that u(t)ealw/h(t)) and that w satisfies (6).
Third step Property (5) is obtained by using (7) and an estimate on

Remark. It is ' important to remark that by a recent result of
ALVAREZ-CARRILLO [1] the solution w of (6) is unique. That allows to
have (7} from the similar estimate for the approximate problem replacing

o by . A similar program of proof for the Stefan Problem can be found
in RULLA [iO}L

2.3, Other consequences of the accretlveness of AlL).

Once we have proved that the operator A(t) is m-accretive in L)
many results from the abstract theory can be applled {(see BENILAN-
CRANDALL-PAZY [4]). For instance:

(a) The assumption VOZO on Q implies w=0 on Q.



(b) The equation in (4) is satisfied in distributional sense.

{cy W {x.ul ,;{x,u) are the assoclated solutions of problem (2)
corresponding to the initial data ;Za and X, then, for any te[0,T],
we have the estimate

N + R +

{10} Jh(t,x)[x(t,x)—-x(t,x)} dst h(O,x)[xo(x}—xo(x]] dx

Q Q
In particular,

X =X, implies x(t,.})sx(t,.) for any telQ,T].

(d} Some Trotter-Kato (or ‘“pas fractionaire”) formula holds by
writing {formally) (4) as

dv 1 2
- A(tlv + A"(t)v = O

with
A (t)v=-div(h Tal—-))
1 h

Azit}Vr—diV(vg).
The solution v(t) can be obtained as "product" of solutions of
dv' dv”

2002
at at +A"(tlv'=0

+ Alft)v1=0 .

{e) Results on the continuous dependence of v with respect the operator

{and so with respect h and g} can be also obtained.

Remark. We end this section by pointing out that other boundary
conditions in (1} can be treated in a similar way assumed that the
operator AZ{t) is well-determinated, but that this is not always the
case. If for instance we take RcR' and u=0 on 8Q then it is well-know
that there is not necessarily uniqueness of the solution of the

stationary problem

hx-div(h’Vu-hxe)=g(x) in Q

u=0 on 422 .
In that case we must take in the definition of D(Az(t)) functions
satisfying the additional entropy condition

(h°Vu-hye).n<0  on 49

where n is the outward unit normal to 3Q -



3. ON THE CAVITATION REGION,

We consider in this section the Dirichlet problem

—g{(hx}—div(hBVu—hngO in Q=(0,T)xQ
{i1) u=k on £=(0,T)xafN
x(O,.)=x0(.) on Q

with the usual state condition xeH(u). Following the above remark we
must made precise the notion of solution:
Definition. A couple (u,%) is called entropy solution (superselution) of
(11) if:

ueL}(0, T:H'(Q)), xeL"(Q),

u=0, Osy=! and u({l-¥)=0 on 9Q,

u=k (uzk}) on Q,

X(O,.)=xo(;c(0,.)2xo) on £, and
J [—hx-g£+(h3Vu+hxg).Vt;]dxdtS(a)O ,
Q t

for every CEHI(Q) such that £(0,.)=¢(T,.)=0 on €, ¢=0 on X and £=0 on
En{k>0} (resp. £=0 on Q, £=0 on I).

Remark. We notice that

el (0, T:H (@)
and so by well known results thC([O,T]:H“l(Q)), which made sense to the
initial condition.

In order to study the cavitation pegion (which we shall take as

{{t,x)eQ:x(t,%)<1}) we shall need to construct suitable supersolutions
of (11}). As in |51, we start by stating an useful criterja for functions
u with a interface. Let FeC'(T) such that |F!+]VF|+|¢B%F|¢O in Q. Let us
denote

Q" =0n{F>0), Q7 =Qn{F<0), F=Qn(F=0).
The following results represents the "Rankine~Hugoniot type conditiong"
for the front .

Proposition. Let u and y satisfy
u+eL2(Q+)nCZ(6n6+). VU+EL2(Q+)N,

x_eC’(@), —Fthx)~div(hxe)eL*(Q7), »_elo,1).,



Define

. + . +
u+ in Q 1 in Q
u= - » x= _
0 inQ x_ in Q
Then (u,x) ls an entropy solution (resp. supersolulion) assumed

~div(h®Vu)=0 (resp.z0) in Q,
—-g—{(hx_]mdiv{hxgh() (resp.z0) in Q_,
h(l—x_)(—%F—VF.Q)~[}3VU+.VF=O (resp.z0) on ¥,

(hSVu++§).gSO on £n8Q
x_=0 on Qn3Q n{n.e>0).

The proof of this result reduces to apply the divergence theorem.
As an application we shall construct a local supersolution defined on
BR(G) the ball of radius R centrated at the origin 0 of lRN. Let M be a

given positive number and define the couple (u,x), by

ult, x)=Mz(r(t), |x| ) if r{t)X|x|=R
ult,x)=0 if |x|=r(t)
where r{t) is such that the following conditions holds
s 3oy . _
fi_W(h Vu)=0 in BR(O] Br(t){O)'
u=M on BBR(D) .

We also define

x_(tx)=c+(l~cly

for some constant cel0,1). By applying the above Proposition to
F(t,x)=|x[2-—r2(t) it is not difficult to show that (u,x) is an entropy

supersolution and that r(t) must satisfy the (singular) Cauchy Problem

M 1 1 -1
o' (t)=~1_f__ pit) K U T ""Ydr]
1-¢)
plt)

(12)
p(0)=R
where
(13) 7=(N-1)-—— [7n° (recall that hzm).

£ ((0,T)xB (0))
Here we must assume h such that

(14) >0 .

Remark. The existence and uniqueness of r{t) local solution of (12) was

obtained in CARRILLCG-GILARDI [6]) when y=N (the dimension of the spéce).



A careful revision of their proof shows that it can be adapted to the
general case of (14). In any case, it is proved that the existence only
takes place in an maximal interval [0,T®].

Following the ideas of [5] it is possible to give some estimates on

the location of the cavitation region.

Theorem., Assume (14) and fix e€{0,1). Let G be the projection on RN of
the support of kt,®) and define

Emﬁusz,‘xpmx(f{l“aili‘usuppxﬁ. _
Then there exists 1%(0,'7) and a positive constant C such that x(t,xo)«(l
in Bd(xD,E)-cﬁ (50) assumned XOEQ such that d(xD,E)ECﬁ .

Further results (as for instance for Neumann boundary conditions on

a part of Z) can be also treated by adapting the results of [5].
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