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Symmetrization of nonlinear elliptic and
parabolic problems and applications:

a particular overview

Introduction.

The sywnetrization provess will be illustrated by the consideration of different
classes of nonlinear partial differentinl equations. In Section 1 we consider the
Dirichlet problem associated to the elliptic equation

—div{QU} Vu Va4 dlu) = f.
The parabolic formudation
i)y — div{QU Vu )Vu) + Blu) = f

with Q) = 772 will be the object of Section 2. Some variational inequalities
will be considered in Section 3. Among them we can miention the abstacle problem,
the Stefan problem and o suitable formlation related with the stucdy of Bingham
Huids. Finally, Section 4 contains an extension of some of the precedent results to
the case of systems of ponlinear equations, as, for instanee, the systemn arising i
chemical adsorption, :

1. The symmetrization process for nonlinear elliptic equations.
Let ) be a bounded regular open set of RY. We consider the Dirichlet (or
PMateau) problem

—civ(Q(] Vu yVu} 4+ Hu)= [ Q2 {1)

=10 ondQ (2)

We assuuie Q€ C2((0,20)), Qlrir — 0if 1+~ 0, Q(r)r* convex strictly increasing
and A continuons non-decreasing such that #{0) = 0.
To introduce the notion of weal solution we first define the auxiliary function

Alr) = / (M s)sdls
Ju
and the Orlicz va,nd Orlicz-Sabolev spaces L), WHA(82) and !’VJ""(Q) assoclated
to 4 as usual (see [50]). Notice that il Hr) = #P=2 then WA = WHe(Q) (the

usual Sobolev space).



By using variational techuiques it is possible to show {[43],{23]) the following
existence result
Theorem 0.

Let f e (],1,-*“1‘-“( Q))J and assume

max(| 217, fliven) € N{wn) ™ lim B(r) (3)
where
wy 19 the measure of the unat ball in R" (4)
and
Blr)y=Qzywr  for anyr >0, (5)

Then there cxists o umque w € ﬂ"}f"“(ﬂ) with f(u) € LY weak solution of (1),(2)

i, the sense that
/ QU Vu €)W - Vodr + / ABliyude =< fiv >
JE JQ

for any v € Wy () (L),

Remarks.

1 I Q(r) = v~ % then lim, .o, B(r) = +oc and assumption (3) is trivially satisfied
for any f € (W, Ay
IfQir) = Tlf—ﬂ' assumption (3] s "almost” necessary (sec {49],[33] and their

references)

)

3. The "eomparison principle” holds in this class of solutions and thus if, for
instance, f > 0iu Q then v > 0 ee. in 2 ([26]).

We also consider the "syunmetvized problem”

—div(QU VU WVU) + A7) =F  in§° (6)
U=0 oudQ" (7)

where 2% is the ball Bp(0) centered at the origin and with equal measure than
£ As we want to find solutions of (6),(7) as simple as possible, we assume that
F:(r* = R is radially symmetric and decreasing along the vadii. In this way the
solution U of (6) and (7) have a simple structure: U7 is a function that is radially
symmetric and decreasing along the radii. Our wain goal is to collect several results
comparing (in some sense) the solutions « and U of (1), (2) and (6), (7) respectively,
assuming a suitable relation befween the data f and F.

A first choice leading to comparison results is F' = fi: the symumetric decreasing
rearrangement of f.

Definitions. Let f: (0 — R measurable. We define the functions

wWt) =|{z e Q: fle) =1} ] (the distribution function) |

fo [0,00) = R, f(s) = mf{t > 0:p(1) £ s} ( the decreasing rearrangement),
and finally

[0 = R fu(e) = f'(uN | & |V) (the symmetric decreasing rearrangement ).

This notion have been exteusively treated in the literature in the last years.
The reader can find an exhaustive treatment in the books [47], (7], [45] and .[41].
Concerning the comparison hetween w and U, assumed F = f,, the situation is
quite different for the cases 4= 0 and f# # 0.

Theorem 1 ([50]). |
Let =0 and assume [ € L'(Q) 0 (f""l:"‘!(ﬂ))’ and f >0 o0n Q. Then U, =U

e

() < Ulx) ac. x€ef° (8)

When /4 # 0 the poinfwise comparison (8) fails ([42]. [45]) and the comparison
hetweon 1 and U7 must be established in a more complicated way (sce [17], [421, [51],
[52],[45}, [19]). The following vesult shows that as a consequence of the "stability”
of the symmetrization process:

Theorem 2 ([21]).

Let foand F be nonnegative functions in the spaces (W, ) YN LY associated to
the domains §8 and 0* respectively. We assume F symmetric and decreasing along
the radit. Let w und U the solutions of (1),(2) and (6),(7). For s € (0,] $2 H define
the auziliary "mass” functions

z(s)zf floyda,  L{s)= / EF(o)de,
0 JO

Es) = / Alilal}de, R(s)= - AU (o))do.

Jq a

Thew the following estrmate holds

| (k= W)y lresqaqap Sl — L)y

Leo (0,]2): (9)

where L)y denotes the positive part of the corresponding functions. In particular, if
we gssume

/ Fol@)dr < ] Fla)dr for any r € [0, R] (10)
B,(0) B (0)

then
B3..(0)

/ Alu(x))de < / A(U(x))dx  for anyr € [0, R]. (11)
JB{0)

In spite of its "sophisticated” statement, the above result has many relevant
applications: |



Corollary 1.
Asstne foand Foas in Theorem 2 and salisfying (10). Then

/. O (A(u(a)))de < / O(BU(x)))da
JQ S

for any conver nondecrensing reol funciion @ In particular

| 30u) lipeen 20 AU Hpogasy  forany 1< ¢ < oo

Corollary 2 ([21]).
Let o= f, and assime that

dist {support U, 207) = 0

Then
[{ref: ulr)y=0}]2 {re: Ue)=0}].

Remarks.
1. The idea of the proof of Theorem 2 is the follewing: By using the Fleming-
Ttishel formnln and the De Giorgl's isoperimetric theoren in a similar way to
[50] we obtain that

-
—
o
<
>
il
~
-,
—
-
<
=
i

LooN_)

where B is given by (5) and a(s) = N(wn)¥ 57", The conclusion comes by

L¥-techniques for fully noulinear elliptie problems (see details in [21.

The proof of Corotlary 1 uses o classical result due to Hardy-Littlewood-Polya

[40].

3. Corollary 2 is of special interest for the study of free houndary problems arising,
if, for instance, we assume Q(r) = 7% gy = and 0 < g < p—1 (see the
monaograph [19]).
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We end this section by the cousideration of the case of nonhomogeneous Divich-
let boundary conditions. The symumetrization process can he successfully applied
at least for two special cages of interest iu the applications:

(1) the case of 1 constant on 94,

(i1} capacity type proliems,

The treatment of the first class of those problems can he carried out by a direct

approach ([0) or by a homogenization argument and the application of Theorem 2
; a Y :

(1)) The following conclusions hold

(',(;rollary 3 ([1()])
Lot h € By and let 0,V solutions of the prablems

—div(QO Vo )W) + Ale) =0 in ¥

v="h on 08

and

—div(Q( ¥V I)V\) +AHV)=0 n ao*
Ve="0 ondQ®

Then

Bloida))de > / p(V(x))dz  for anyr € [0, R).
JB.(0) JB.{0)

Moreover, V > 0 in Q* implies thatv > 0 § and, otherunse, the following estimate
holds
[{reQ v@)=0}[<i{re 0 Vie)y=0}]. (16)

The case of "capacity” type prableins leads to another comparison results. Let
J —_ .
w be an open bounded regular st of RY such that & C §2. We consider the problem

~div(QU Vu )Vu) + Blu)=f  m Q- (17)
w=1 on v (18)
w=0 ondf2 (19)

and its symmetrized version

—div(Q(| VU Y\WU)) + fU)=F in Q" -@" (17)
U=1 ondw" {18)

i
U=0 ondQ" (19)

K&l * 3 Y Fs - . - M - : - "
where w* is the ball centered at the origin and with equal measure than w. We have



Theaorem 3 ([20]).

Assiwme [ € L = &) and F € L™(Q" — ") be nonncgutive functions. Let
Loand Foihe votension of these functons o § and Q° by meens of sup fand sup I?
on w and «* respeetively. Assiene also thal Fois symmetric and decreasing along
the radis and )

/ f,()de < / Feydr  for any v € [0, ). (23)
1o JBL(0)
Then
/ Alus(ei}de - Cp < / ;f(g(.,:))d,;r — i, (24)
J13,q0) S
whaere
o= QU Nu N -nde, Croo= / QU VU INU - nde, (25)
Jow i

Remark.

I 4 = 0 the couclusion (24) is replaced by thie pointwise comparison

)y L) '
"..".C“ S < . . 0 & QF, (26)

({47],[45]). Tu the linear ease, QQrd = L the solution u represents the capacity

potential in the condenser Q — w, and ¢, is the eloctrostatic capacity of w relative

to 2 (sce {4?],[48],{30] and {34]).

- » — . . . .
2. The symmetrization process for nonlinear parabolic equations.

The fornmiation of the class of pavabolic problems we shall consider is the
following

oy — A ) = f(F )  111 (0.T)x Q2 (27)
v=0 on (0.T7) % d%, (28)
(0.2 = v(wgla})  on L (29)

where £ is an open bounded regular set of RY, the diffusion operator is
Ay = div(] Vu [P )
and A and 4 are continuous lunctions with 4 strictly nereasing. The existence and

uniqueness of weal solutions have been largely studied by different authors and
methods. Many references can be found in the articles [3], [12], [15], [27].

The symmetrized problem is forinulated as
y

A7) = DU pT) = F(tr) o (0,T) x 92, (30)
=0 on(0,T)xdN", (31)
“r’(U(G‘w)) = ‘y(UU(;r)) on 0, (32)

where, again, 27 1s the ball Br(0) centered at the origin and with equal measure
than € and F(t,.) (for ¢ fixed) aud Uy are real symmetric functions defined on o

and deercasing along the radit,

The following result contain a comparison result as a consequence of a "stabil-
ity™ (or continuous dependenee) estunate.

Theovem 4 ([22]).
Let foug and Uy andegrable nonneqalive and baunded functions. Assume

oy =+ b (33)
with ¢y convex and ¢y concave

Lot uw and U the solutions of (37) (28) (29) and (30) (31} (32) respectively and

A8 8UTTLE
w and U ure bounded functions (34)
.

Fort € {0,T] and s € [O,‘ Q l] we define the aveitliory funclions

Kt.s) = /ﬂv(ﬂ(m)dm Rit.s) = /““f((’“’”’””

AN
l(t,5) = / it oo, Lit,s) = / Fit,a)do.
Jo Jo
Then, there exists a constant C such that,

| k() = B0 s e~ @gep= eSO R0, = K0, )]+ Nleee o mny

‘4*/ ST U, ) = Oy g e e T

0

for any t € [0, T]. In particuler, if we asswme

/ F (b)) £ / v (Upla)) e (35)
Jim SN0
and { for a.c. tE (0. 7)) ‘
] folt, o)da < j Flt,a)de (36)
B.(0) Be(U)



for any v € [0, R], then

/ {wa(t, 1)) dw < / (U1, 2))dx (37)
JB.(0)

JBL(0)

Jor any t € [0,T] and any r € [0, ).

Remark.

1t is possible to show that the pointwise comparison #, < U is not true for
parabolic equations (even for the linear heat equation). The comparison given i
(37) have been established by wany different authors by using different methods.
Sec 15],(6],[51],[1],110],[11],[46] ... [t secms that the stability estimate was first ob-
tained in [22]. Such kind of estimate appears in the treatment of fully nonlinear
parabolic equations.

Theorem 4 has many applications, some of them of special interest when solu-
tions exhibit some peculiar behaviors,

Corollary 4.
Asswme ug. [, Uy und F as in Theorem 4 and sotisfying (35) end (36). Then

Iy (el ) Wiy i A (U)o

for any t € [0,T) and any ¢ € (1, +oc].

Corollary 5 ([6],[22]. Blow-up problems).

Let ug, [ U F as in Corollary /. Define the blow-up time T (resp. To-)
L7(Q) by means of

b | utt, ) llpe )= +oo
17Ty
and
H fl.(f,.) ”[“x((”‘( 400 'ff { € [U,Tﬂ]‘
{unalogously for Ta- by replacing Q0 and v by Q% and U). Then To 2 To..

Corollary 6 ([22]. Finite time extinction problems).

Let ug, [, U, F as in Corallary 4. Define the extinction fume T;f(resp. Tf*) by
means of

| wlt, V| oign=0 for any t2 Tgf

and :
[ wtt, ) >0 if t€[0,TF),

(unalogausly for Té’t by replacing Q and 1« by QO and U ). Then Tg;# < Tg?.,

Corollary 7 ([10],{22]. Free boundary problems).
Assumne uy, f,U and F as in Corollary 4. Then

[H{e e Quult,x) =0} Sz € Q7 Ult,7) = 0} |

for any t € [0,T].

Remark,

The phenomena mentioned in Corollaries 5-7 arisés under suitable conditions
on the nonlincar terms of the equation (27). So, for instance, the blow-up property
holds if, for instance, F = f =0, p=2, v(u) = v and Alu) = —u? with ¢ > 1. The
existerce of o finite extinction time can be proved, for instance, if p = 2, (u) = um
with 0 < ¢ < 1 and m > 0. The existence of a free boundary is typical of slow
diffusion problems (v(u) = ww. 4= 0 and (p— 1)m > 1) and also when the

absorption is stroug enough (e, p =2, y(u) = wm, Bin) =u? and 0 < g < m).

The case of nonhomogeneous boundary conditions has been also considered in
the literature. So, if the solution is constant on the boundary (0, T}x 98 conclusions
similar to Corollary 3 have been obtained in [10] and [11]. The parabolic capacity
problems was considered in [39) (for p =2 and f# = 0) where it was proved that the
comparison (24) must be now stated in terms of

( t
[ ‘f(tl*(l‘,,:z'))d.u - / Culrydr < / (Ut x))de —] Cylr)dr  (38)
JB.(0) Jo JB.w) 0

where t € (0,7, » EIIO,R} and

Ct)y= / Vu(t,z) ndr and Cuy(t) = / VU(t,z) ndz
B J b

3. The symmetrization process for variational inequalities.

Many differént problems of natural sciences are formulated in terms of varia-
tional inequalities instead of equations ([28]). Here we shall comment some result
illustrating the symmetrization process in that context.

We start by the consideration of the Obstacle Problem. As we shall see the
treatment is different according inferior or superior obstacles, u > ¥ or u < ¢, re-
spectively. To simplify the exposition le us consider the obstacle problem associated
to u =-0 on . Let fe LY(Q) and v € K(£) be the solution of '

1
inf {~ / | Vi | dz - / fwd:r} \ (39)
weN () LP Jo LJ0

K(Q) = {we WeP(§):w >0 ae on Q) (40)

where



The symmetrized problem is

- 1 '
4 [ Ve dr— | Fods
e {1’ /Q [ Y |P da ,/n Fu.rl.:} (41)

where (2*) is given hy (40) replacing by 0* and F is a radially symmetric and
decreasing along the radii function. We have

Theorem 5 ([8]).
Assume f € LV (D) and F = Fo. Then

u* () <U(x) ae xe? {42)

Moreover
e € wle)y =0} 2| {req: U)= 0} 1, (43)

and

Hoeefd": Ule) =0} >0
if and only if there emists sy € (0,] || such that

/l _f(«r)n’rr = ().

J0

An "equivalent” formulation of problem (39)-(40) 1s the given by
A+ 83 f in (44)

w=0 ou JN (45)

which has & greal similarity with the formulation (1)-(2} but where now 2 is the
maximal monotone graph of R? given hy

0, ifr >0,
Hiry = {(—x‘«()}, i = 0,
0, if v < 0.

(see (16),[19]).

As an example of tlie superior obstacle problem we can take the associated to
the condition u < 1. We iutroduce she elosed and convex sets

K(Q) = {u e Bi(Q): w<l ae on . (46)

The variational formulation is given by (39), (46} aud the symmetrized version hy

{41}, (46). When, f ¢ LP(Q)and F E”’(Q‘) 1t is possible to show ([19]) that the
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corresponding solutions w € W, 7(Q) and U € W) P(Q2"} are "characterized” by the
existence of two functions b € LYQ) and B € L'{2*)such that

“Apu+b=[ in and  b(z) € Blu(z)) ae z€EQ (47)

-AUA+B=F in{" and B(a) € /j’(U(:r:)) a.e. T €Q* (48)

. . 2 .
where # is now the maximal monotone graph of R? given by

0, ifr < 1,
/3(-r-):{[1,+oo), if r=1, (49)
#h, Hr>1.

The comparison result is now stated in terms similar to Theoremn 2:

Theorem 6 ([21]).
Assume [ and F nonnegative functions in LV (1) and L (%) satisfying (10)
and F symmetric and decreasing along the radii. Then

/ bo(x)de < / Blz)dz (50)
JBL(0) J B, ()

Moreover

[{ref: wa)=1)|<|{r e Ulx)=1}1. {51)

Remarks.

1. The study of the measure of the coincidence set {2 € Q% : U(x) =1} (forp = 2)
was carried out in {44] where the superior obstacle problem was connected with
the inferior obstacle problem 1 > 0 but under the nonhomogencous boundary
condition v = 1 on &Y. An extension of Theorem 5 to more general maximal
monotone graphs was given in [19] {sec Theorem 2.22).

The parabolic {inferior) obstacle problem was considered in [25). By discretiza-
tion in the time vartable similar conclusion to the stability inequality of Theo-
rem 4 was proved.

&)

Another example of variational inequality for which the symmetrization process
leads to interesting conclusions is the one-phase Stefan problem

Hu)y—Au20 in(0,T)xQ

w=n(t) on(0,T) X 00 ¢
y(u(0,.)) = v(uel.)) on

where v is any maximal imonotone graph such that (0) = [~L,0] (see {39] and
[24]). A related formulation correspouds to the Hele-Shaw flows ({38]).



Our last example of variational inequality arises in the study of special formu-
lations of Bingham Huids. We define 1V = HI(),

a(u,v) = / Vu- Vode, f(v) = / | Vv | dx. (52)
JQ Y]

Given two real positive constants g and g we consider the problem of finding v € V
such that

pafiv = u) + g(j(v) ~j(u)) 2< fro—u> VoeV, (53)

where f € V' is given. The existence and uniqueness of a solution u of (53) was
shown in [28]. Let U7 be the solution of the symmetrized problem, i.e. (53) but
replacing £ and f as in above problems. We have

Theorem 7 ([18]).
Assume f € LUQ), f 20 and F = f.. Then

() < U{x) we. €0 (54}

Remark.

The idea of the proof is to start by showing

=l uy,
p—1

where u, € H}(Q) satisfies
—plit, —g Ny, = f 0 in QL

Then, the conclusion holds by applying Theorem 1 to up. We point out that (54) is
one of the maiu ingredients in order to get estimates on the location and measure

of the "rigid region” {& € Q: Vu(r) = 0} (see [28] and 3

4. On the application of the symmetrization process to systems of equa-
tions.

A very simple noulinear system to which the symmetrization process can he
applied is the {ollowing

iy = Su+ filu)+g(v)y=0 in(0,T) =

ve = dde 4 folu) 4+ galo) =0 n (0,T) x €,
u=wv=0 on(0,T) %0
w(0,0) = up(x) on
v(0,r) =wy(r)  on Q.
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Theorem 8 ([22]).

Assume fi and gy Lipschitz (or nondecreasing) functions satisfying the properiy
(33), f2 and gy nonincrewsing and concave functions.
Let wg,vo € L°(82) be nonnegative functions and let (U, V) be the solution of the
symmetrized system. replocing Q by OF end wy,vo by ug, and vos. Then

/ o, rde < / Ult,x)dz
B, 10) JB.(0)

and

in

/ o, (& a)dr f V(t,a)dx
B, (0) B.(0)

for any t € [0,7T] and any r € [0, 1.

Remarks.
1. The idea of the proof is to show that v = limw,, v = lim v, with (u,,v,)
given hy the tterative algorithin

uf = A fil") = (0"

“:1 . (/.Al‘” e ,(IZ!('U") — _fz(”nml )

After that the conclusion comes from the application of Theorem 4 to u, and
Up.

2. By making d — 0 and showing that v, — w as d — 0 the conclusion of
Theorem 8 remains true for system of PDE-QODE equations, Such is the case
of the system arising in chemical adsorption for which d = 0, fi(u) = — fa{u)
and gy (v) = —g(v) = —v (sece [29]).
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