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1. Introduction.
In this communication we present some of the results of the article Diaz-Shmarev

(1992) concerning the Cauchy Problem

P) { Uy = (™) + (ut)y  In @ = (—00,+00) x(0,7)
&

€ (——OO'! -%—OO)’

w(a, 0) = ug(x) for
ASSUITINE
m>1 and A >0, (1)
uy € CY =00, 0¢), ug > 0, support of ug = [0,a]. (2)

Problems of this kind appear in many different contexts: filtration through porous me-
dia, statistics mechanics (the nonlinear Foldker-Plank equation), nonlinear heat equation,
plasma physics, etc. (see references in Diaz-RKersner (1987)).

The equation of (1) is a nonlinear paraholic equation which becomes degencrate when
m > 1. and singular when A < 1, on the set of points where u = 0. Due to that, classical
solutions do not exists, in general. Nevertheless, there is already a satisfactory theory
on the existence and uniqueness of generalized solutions (see, e.g. Diaz-Kersner (1987),
Gilding (1990) and their references}.

A peculiar property of the degenerate equations (m > 1 and A > 1) is the finite speed
of propagation. More exactly, for any ¢ € {0,T] there exists two free boundaries on Q
defined by

£(t) = inf{a € R:u(z,t) > 0}

and
n(t) = sup{e € R :w(z,t) > 0}.
In that case, £ and 5 are Lipschitz continuous functions on [0,7] and if T' = 4oo they
satisty
lim £(t) = —oc  and lim p(t) = +oo
f—oe [t

(see Kalashnikov (1987) and Gilding (1988)).
It tourns out that the behaviour of the solution of (P) is rather different in the case

of a strong convection
0<A<l and m> A (3)



Indeed; it was firstly proved in Diaz-Iersner (1983) (if besides m > 1) and generalized
after in Gilding (1988) that under assumption (3)

£(t) = —oco  for any t € (0,1

but
—oo < n(t) < oo for any t € (0,7,

and that, if fact.
lim 5(t) = —oo.

[Re ]
The initial growth of the interfaces £(t) and 5(t), when existing, have been studied in the
series of works Alvarez-Diaz-Kersner (1987), Alvérez-Diaz (1987) and (1990). In particular
if we assume (3) then the interface n(t) is a wetting front (17(t) < a for any ¢ near 0) “if
and only ifoo

uple) < C

1
- , m— A\ (mY
t—a|0-9  for any x near a and some C' < (____) . (4)
m

It is easy to see, from the definition of #(#), that 4 is, at least, a lower semi-continuous
function. The question of the continuity of 5 have been an open problem during some years.
A first result in this direction was given by Shamarev {1990) under suitable conditions
on the initial datum wug. This result was improved in Diaz-Shmarev (1992) where other

qualitative properties on y(t) was also given.

2. Formulation in Lagrangian coordinates

One of the main difficulties in the study of »(#) is that its location is not known. To
advoid this difficulty the main idea of the so called “tracking fronts methods”is to introduce
a change of variable and unknow in such a way that the free boundary becomes a fixed
and know curve.

Tt is a curious fact that in owr case the “good” new formulation comes from the
interpretation of the equation of (1) as the mass conservation law of a “ficticious” fluid
with density w(z,t) in the Eulerian description u(x.t). If ¥(x,t) denotes the Eulerian
description of the velocity of the fluids then

w + (uV), = 0. (5)

By identifying (5) and the equation of (P) we get

1. ... :
Vo= —=[(u")e + u’\] (6)

[

Notice that the equality in (6) is only formal because A € (0,1) and u = 0 over a positive
measured set.
As Lagrangian coordinates we use the parameterization

xo=X{(p ),
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where p represents a general particle of the fluid. In our case it is useful to take as system
of coordinates as the one introduced for the study of compressible fluids (see, e.g. Courant-

Friedrich (1948))

X {p,t} .
p:] u(x, t)dt (7)
X(po,t)
of inverse transformation
T
ety = [ uty by, (s)
—0

Thus, p(x, t) represents the total mass of fluid in the interval (—oo,z). If we define

[ = / wol2)dz

o —oxc

then p € [0,1] as © € (—o0, 00) because any solution u of (D) satisfies

/ w(z, t)de = / ugla)de.

The trayectory of any particle p is X (p,t) and then the function

Ulp,t):=u{X(p,i),1)

represents the material description of the density and
Vip,t):=V{(X(p,t),1)

the material description of the velocity. They satisfy the following equations

Ulp, 1) X,u(p.t)=1 (9)

(thie mass conservation: it comes by differenciating {7) with respect to p) and

X(p.t)=V(X{p.1).t)

(the definition of the velocity). After some manipulations we see that U(p,?) is character-
ized as solution of the boundary value problem

U, —U[(Um)y, + U, =0 in (0,1) x (0,77,
(PLYy{ U0,t) =0=U(1,1) for t e (0,T),
Ulp,0) = ug(X(p, 0)) :=Up(p) for pe(0,1).

Problem (PL) is a quasilinear parabolic problem and now there is not any free bound-

ary at ¢ = 0 because Ug(p) > 0 for p € (0,1). Nevertheless, the principle of conservation
of the difficulties applies: the equation degenerate where U = 0 (and so, in particular, on
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the lateral boundaries ({0} U {{})a x (0, T)). The new argument to advoid this misfortune
is to approach U by U, satisfying, essentially, (PL) but replacing the boundary conditions
by

U008y =Up(l,t) = l, n € N.

7
Using this general idea and sharp “a priori”estimate we obtain the results that are stated

in the following section.

3. The main results.
We assume the conditions (2), (3), (4) and

(ug™)" € C([0,4]) (10)
uy  is strictly decreasing on (a — ¢, a), for some € > 0. (11)

The following list of conclusions are proved in Diaz-Shmarev (1992) by using the
Lagrangian formulation described in the above section:
. There exists a unique classical solution U of {PL) such that U(p,t) > 0 for any
p€(0,1) and any t € [0. 7]
II. The function

walat) = Ulp,t), if x€Qt)tel0,T],
e, e 0 T g Q(f‘)‘t c {OrT]?

is the unique generalized solution of (P}). Here (#) is defined by

Qi) = {;‘L‘ eR:a2=X(pt)p€ (0, Z)}

and
, 't . 1
¥ = X{(p. _ ,7/\_] - ]"m.—z\—!-l —
X0 = X0 - [ 1 (pu){w—_m_/\ﬂ(t ), (p,7)|dr
"\>(p10)
X(0,0)=0 and p= / wg(y yly.
Jo

TI1. The free boundary n(t) satisfies n(¢) = X(,t) and 5 € C[0, T)NLip(0, 7.
IV. If condition (11) holds on (0,1) [instead on (a — €, )] then

7' (t) <0 ae te(0,1)

V. We have
A—m

lm  (u™ Me(a,t) =
r—{t)—0 m

[Notice that as conclusion (u™~ ™), is a discontinuous function near ¥ = 7(¢) even
for initial data vy € C™(R). Property ¥ was previously obtained “formally” in

Namin-Rosenau (1984)].
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VI

The free boundary n(t) satisfies

77I(t) =— lm {_ﬂ?‘__.(“m—l)w + u’\_l}_

e—nin—0 | m—1

Further results have been obtained recently in Shmarev (1992) by assuming some

additional conditions on g,
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