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On the disappearance of the mushy region in
multidimensional Stefan problems

1. Introduction. We present in this communication some of the results of
the work by the authors [2}, [3] concerning the disappearance in a finite lime
of the mushy region for the Stefan problem. Previous results in this
direction was obtained In [8] for one-dimensional problems {see also [1]).
For the treatment of the multidimensional problems, different cases must be
introduced according the "nature" of the spalial domain Q and the type of
boundary condlitions. Qur results deals with this complex situation but rest
on the same general program: we first consider the problem under symmetry
conditions on the domain and the data and then we reduce the treatment of
general formulations to the symmetry case by means of rearrangements
techniques,

To fix ideas and to simplify the exposition we shall restriet ourselves
to the consideration of the following one-phase problem {(we send the reader

to (2], [3) for the treatment of two-phases problem and other boundary
conditions):

(1) FTi 68 =0 in Qm = ({0, w)
(2} e(x,t) =e°t) on 5= amx(0, )
(3) ul(x,0} = uo(x) on @,

where Q2 is a regular bounded open set of RN. As usual, u and 8 represents

the rescaled gntalhpy and temperature, respectively, and they are related by
(4; u = ¢(a)

where

(1)
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¢ is a strictly increasing continucus function on (0,m) extended

(5) { to [0,w) by $(0)=[-L,0l.
Here L>0 represents the latent heat. We assume on the data the following

conditions:
o4] . .
(6) uneL (Q), uo(x)- 1. a.e, xeQ
(7) a%ewl'®(0,w), ©0°(t)z0 for any L=0 .

OQur results will be concerned with weak sclutions i.e. pairs of functions
1 2 ol s (2), (4)
(u, © )EILTUC(O,m:LE(n))nC([0,w);L (Q)]IXLauc(O'm'H () satisfying

and such that

t t
8) J ulx, thnix t)dx—j ju(x.r)n (x,r)dxdr+f [ Vo, Vndxdt = I uo(x)n(x,O)dx
( a ' ) ‘ ") Q

! h i = Exis ce uniqueness
for any t»0 and any neH (Qx(O,t)).n[.,s)EHD[Q) if O=s=t. Existenc ‘q
and many other results on weak solutions are today well~-known 1in Lhe
w
literature {see e.g. [5],(7],[10]}. In particular we know that wu,8el (Qm)
i =0 have the
and that u(x,tl}z-L, 8(x,t}=0 a.g. (x,t) in Qm. So, for any tz0, we
domain decomposition 0=1{t)U m(t} where I(t) and m(t) are the liquid phage
and the mushy region defined by
1{t)={xe: 6(x, t)>0} and m(t)={xeQ: 0(x, L)=0}.
. o ] s . Assure
Our main goal is to obtain conditions on & (t) and uo(x) in order Lo assure

- e
the disappearance (in measure) of region m(t) after a finite time [

2. The radially symmetric case. The treatment of the problem becomes easier
. N -~ -
= = H < 3 assune u_ us
under symmetry assumptions. So let Q—B(D,ro) {xeR .|x1 ro} and o

before and such that

u {r) = ~L if OSrSRO

= ) satisfying
(97 Gy (] u {r)>=L if R srsr
0

~esult we need to introduce some
: €(0,r ). In order to state our re

for some RO (Q, o

auxiliary notation. Given N>1 we define

Nty T S T S (E Y

N-2)" o

r

(10) p (r) = B
N rlog(r/ro) if N=2 .

0 . -
i i E define the quantities
Finally, given 6 and u e
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r t
(11) Dit:u 6% = J' %u_(r)p (rldr + J' 8%(<)dr
0 4]
and
(12) D =D(w:u_,8%) = lim D(t:u_,6°)
w e] o' '
tom
We have

Theorem.1. Let ug satisfying (9). Then
(i) Ir D =0 the mushy region exists (|m(t)|>0) for any time t=0.
(ii) If Dm>0 there exists a finite time t*>0 such that the mushy region
disappear ([m(t)|=0) for any time t=zt®.
(iii) Assume Dm>y where
(13) 7=Mjrnw {(ridr M=lu Il w + 0
N , ¢lsup 8 (t)).

oL
4] Q) o<t

Then the estimate t°>t3 holds with t*= 0 defined by
0

(14) =u,8°)=
D(to.uo.B =7 .

3. The general case. To state the result for the general case of {1 an oOpen

N
bounded set of R we start by recalllng the notion of Iincreasing

rearrangement of a function: Let heLl(ﬂ); the distribution function of h is

defined by p(t)=]{xeQ:h(x}<t}|. The ipcreasing rearrangement of h is the

one-variable function h:[O,|Q|]—aﬁ given by E(s)=1nf{reﬁ:p(r)>s), Finally
the increasing gymmetric rearrangement of h is the function h®*:Q*—R defined
by

(15) h*(x) = hw [x|")
N

: N
where Q* is the ball of R, centered at the origin and with the same measure
as 02, i.e.

(16) Q*=B(0,r ) with r_ such that |o|={a*|=w r "
a N O

where Yy denotes the measure of the unit ball in R
Our main result concerning the mushy regicn is the following:
Thecrem. 2. Let Q be a regular bounded open set of rY. Let u and g’
satisfy (6) and (7) respectively. We also assume that
(17} 6% (t)

and

is nondecreasing in t
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(18) uo(x)£8°{0) a.e. xefl
Finally, let ro>0 be given by (16) and define uo(r) in Lw(O,rO] by

(19) u te)e =l ().

Then the following conclusions hold:

a) Let (U,8) be the solutlion of the Stefan problem on Q; = *x{0,w)}
corresponding to initial value u; and boundary data 8”. Then

(20) [m(t)[=|M(L)] for any >0,

where m(t) and M{t) denote the mushy regions corresponding to the
respective solutions {u,8) and (U,8).

b) If D(m:uo,60)>0 there exists a finite time t*® such thalt the mushy
region disappears ({m(t}]|=0) for any t=zt®.

c} If D(m:uo,60)>3, with y given by (13), the eslimate t“at; holds, where
t; i defined by (14).

4. Remarks and sketch of the proofs.

A. We notice that in contrast with the radial case no assumption is made In
Theorem 2 on the nature of m(0) (the mushy region at t=Q), So, for inslance
m(0) may be a very irregular sel with several connected components.

B. Assumptions (17) and (18) have a technical nature. One way to avolid them
i{s to Iintroduce ezeu"“(o,m) be any nondecreasing function such that
OSGZ(t)ﬁBO(t) for any tz0 and to define go(~)=min{uo(-], 0;(0)). Then the
conclusions of Theorem 2 remains true for general data 4, and 8° by replacing
the definition of (U,8) by the solution of the radial problem corresponding

to the data u_ and gY.
-0 i3

C. Theorem 2 and the definition of Dm show that the behavior of the mushy
region 1is influenced by an appropriate combinatieon of the boundary
temperature of the initial enthalpy. 15 particular the latter enters Lhis
combination as the integral of GO(riN)wN(r}~ We also remark that the weight
function wN[r) is peculiar to the boundary condition under consideration (so
for the Neumann problem ¢N(r], must be replaced by another suitable function

wN(r]. see [(31).
D.The main step of the proof of Theorem 1 is the equality

(21) J‘Uu(r,t)wﬂ(r)dr = D(t:uo,an)
a



which is obtained by taking a suitable test function n in (8). Conclusion
(1) follows easily from (21} arguing by contradlction. Conclusions (ii) and
(111) are shown by regularizing the problem and by using the structure of
the mushy reglon me(t)=B(0,Re(t)) of the regularized problem (here RC(L) is

known to be a strictly decreasing function of t).

E. The proof of Theorem 2 consists of several steps. The first and fundamental

point 1s to prove the inequality

el . e
(22) J' (u(o.t))dGZJ (li(e. t))der
s s
for any sel0,|Q|]. That inequality is first obtained for a regularized

problem (function ¢ is replaced by a Lipschitz sequence of functiocns ¢c) and

then by passing to the limit. The notion of relative rearrangement is used,
as in [9], extending the approach of [6} to the case of time-depending
boundary data. Finally conclusion (a) 1is shown using some arguments

introduced in [4] (Theorem 1.28). Conclusions (b) and {c) comes easily from

"Theorem 1.
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B GUSTAFSSON AND J MOSSINO
Isoperimetric inequalities for the Stefan
problem

1. Introduction

We consider the Stefan problem in its simplest form and in an annular
space geometry : find a pair (6,h) of functions defined in ¢ = w X (0,T) such
that, in some weak sense,

Ok _ Af=0ingq
ot '

(1.1) 0 =gono=3dwx(0,T),
h[t:o = ho,

h € a(f) a.e. in q.

Here
- w = wo\@y; wo, wy bounded regular domains in RY (N > 2); ©; C wo;
(4=

. g constant on each of g; = 75 % (0,T) = dw; x (0,T) 0,1), let us say

0 on og
g puns
1 on oy,
. a is a strictly monotone graph in R?:

ap(f — A) — a for 8 < A,
[—a,0] for 8 = A,
a (8 —A) for 8 > A,

(1.2) a(d) =

@, ag, @ positive constants, A € [0, 1];
- ho € L (w) satisfies an extra condition (see (1.6), (1.7) below), which essen-
tially means that 8o = b(ho) = a™'(ho) belongs to HY(w)and 0 < 8y < 1.
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Our boundary{zmd initial data, g and ho, are such that 0 € 8 < 1 in all
¢, by the maximum principle. If A =0 in (1.2), the temperature g in the solid
phase (the latter generally defined as the region where h < —a (h = —aif
A = 0)) therefore must be constantly equal to zero. Similarly, if A = 1, the
temperature in the liquid phase (h>0} (R=0 here) is constantly equal to 1.
Thus, for these extreme cases, in practice we have a one-phase Stefan problem,
while for 0 < A < 1, the problem really is a two-phase problem.

One standard way of making (1.1) precise is to say that (8,h) is a weak

solution of (1.1) if

8¢ L™(q), h € L™(g), k€ a(f) ae- ing,

w3 /[q (h%% + m@) dzdt =

Z[Lg%%dth—ﬂho(z)@(x,o)dz

for every "test function” v € C(§) satisfying CRPCEICED NS C(g) and ¢ =0

on o U{w x {T}) (see, e.g. [1] or [2])-
One can obtain the weak solution as a limit as € = 0 (¢ > 0) of the classical

solutions (0, he) of some regularized problems (1.1) where
. a is replaced by a., single-valued smooth function with

(1.4) a’ > 6§ > 0 (6 independent of €)

(1.5) b, = a]* converges uniformly to b = a”t;
. hg is replaced by smooth functions ke,

(1.6) he, — ho in L' (w),

and #, = be(he,) satisfies

0<8, <linw, by =9

1.7
(1.7) / | Vo, |* dz is bounded independently of ¢,as ¢ = C.
W

(see {7}, {1}, [2]}-
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