JUIDIAZ

MATHEMATICAL ANALYSIS OF SOME DIFFUSIVE ENERGY
BALANCE MODELS IN CLIMATOLOGY. !

1. Introduction.

This paper is devoted to the study of the nonlinear parabolic problem

uy — (p{@)|uglPug)e = Ra(z,t,u) — Re(z,t,u) z€1,t>0,
(P) plz)|uzlP2u, =0 z €01,t>0,
U(SU,O):UQ(.'Z') :L'E_I,

where [ = (—1,1).

The problem arises from climate modeling, more specifically from an ener-
gy climate model due to Held and Suarez [1974] where the case p = 3 was
proposed. We point out that many of the results of this work will be obtained
under the general assumption 1 < p < oo and so they are also of applica-
tion to the classical models introduced for Budyko [1969] and Sellers [1969]
corresponding to the choice p = 2.

A list of structure assumptions is the following:

p(z) = k(1 — 2*) with £ > 0, (1)

R,(z,t,u) = Q(z,t)f(u) where @ € C([—1,1] x IR, ) satisfies
0 < @(=,t) and S is a nondecreasing function such that (2)

B{u)| < M Vue€ R, for some M > 0,

R.(z,t,u) is a continuous function on z, Lipschitz on ¢ and Re(z,t,")
is nondecreasing as function on u, for any fixed (z,t) € I x R;.
(3)
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The modelling of the problem is considered in Section 2. Two special
choices of the functions R,(z,?,u) and R.(z,t,u) are of relevance in Clima-
tology: the Budyko model corresponds to the case in which §(u) is assumed to
be a discontinuous function

ﬁ(u)z{af in uw>-10 (4)

a; in u<-—10

for some positive numbers a;,a; such that a; < ay and the function R, is

assumed to be linear
Re(z,t,u) = A+ Bu (5)

for some A € IR and B > 0. The Sellers model assumes that R,(z,t,u) is a
regular function of u, as for instance

1
Blu) =a; + §(af — a;: )(1 + tanhvyu), (6)
where a;,a; are as before, v € {0,1) is fixed and R.(z,t,u) is of the forme
Re(z,t,u) = e(u)lul*u (7)

for some function € such that e(u) € (0, K) for any u € JR and some K > 0.

The notion of weak solutions of problem (P) is introduced in Section 3.
It is proven that if uy € L°([) there exists at least one bounded weak so-
lution of {P). This is obtained by two different methods: via a compact-
ness abstract method and via a regularization argument. Due to the pres-
ence of the degenerate coefficient p(z) the natural energy space is given by
V = {we L}I): w, € LP(I : p)}, where LP(I : p) is the weighted-Lebesgue
space associated to p.

The question of the uniqueness of bounded weak solutions is studied in
Section 4. The answer is positive for the Sellers model (it is enough to require 8
be a locally Lipschitz continuous function). As in the case of the homogeneous
model (see Diaz[1992]) the Budyko model may have more than one solution.
This is explicitly shown in the Subsection 4.1 by means of the construction of
a counterexample, Nevertheless in the Subsection 4.2 it is shown that there is
at most one solution of the Budyko model in the class of solutions satisfying
a "nondegeneracy property”.

Finally, the mushy region (M(t) = {z € I : u(z,t) = —10}) is considered
in Section 5. When p = 2 the results of Xu [1991] allows to conclude that
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M(t) is a curve in ¢ (the free boundary). Nevertheless, if p > 2 it is shown that
M(t) has a non empty interior set if we assume this property on M{0) and ¢
is small enough.

2. On the modelling of problem (P).

Several energy balance models have been introduced in the literature since
the pionnering works by the Russian Budyko [1969] and the american Sellers
[1969]. We refer the reader to the expository papers in this volume by North
[1992] and Stakgold [1992] (see also Diaz [1992]). As usual u(z,?) represents
the mean annual temperature average on the latitude circles around the Earth
(denoted by = = sin ¢ where ¢ is the latitude). The degeneracy at z = £1 of
the diffusion coefficient p given by (1) is due to the peculiar expression of the
diffusion operator on a circle. Notice that when p = 2 and k£ =1 the diffusion
operator becomes the linear Legendre diffusion operator

Au = —((1 — 2%)u.),. (8)

The main reason argued by Held and Suarez [1974] in order to introduce the
nonlinear diffusion operator (with p = 3) is to take into account the negative
feedback inherent to the transport of energy by large eddies in the Earth’s
atmosphere (such a transport increases as the gradient of the temperature
increases). We point out that the elliptic operator

Apu = —(p(z) " uz)s (9)

degenerates not only at z = +1 (due to the assumption (1)), but also in the
set of points where u, = 0, assumed that p > 2. For 1 < p < 2, the operator
becomes singular in this set.

The right hand side of the equation in (P) stands for the mean radiation
flux. Ra(z,t,u) represents the fraction of the solar energy absorbed by the
Earth. Clearly it depends on the solar flux Q(z,t) and the planetary albedo.
Very often the absorbed energy is assumed to be given by

Ry(z,t,u) = Q(z,)(1 - afu)) (10)

where a(u) is a real function which represents the albedo as function of the
temperature and takes constant values for temperatures far from a critical
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value (usually v = —10°C'). For u near the critical value there are two different
kind of assumptions: Budyko [1969] assumes that « is discontinuous at u =
—10°C and Sellers [1969] supposes that o is a smooth function. In both cases
assumption (2) holds.

The energy emmited by the Farth to the outher space is modelled by
the term R.(z,?,u). Different empirical relations have been proposed in the
literature. Budyko [1969] assume R. given by (5) and Sellers [1969] uses a
Stefan-Boltzman type law leading to (7) where ¢(u) is a regular, positive and
bounded function representing an emissivity (u is this time measured in Kelvin
degrees). It is understood that, in both expresions, the coefficients may depend
on the amount of greenhouse gases, clouds and water vapor in the atmosphere.
For more generality we can also assume that they can change with the position
= and the time ¢t. Notice thatn any case the general assumption (3) is fulfilled.

More general models have been introduced in the literature. For instance,
the study of the temperature distribution as a function of latitude, longitude
and time leads to a parabolic equation on the unit sphere S* of /R®. In that
case the diffusion operator becomes the Laplace-Beltrami operator when p = 2.
We remark that if we write the usual p-Laplacian operator

Au = —div(|VuP?Vu)

on the sphere z = cosfsing, y = sinfsing , z = cos¢ and apply it to
functions u = u(¢) we obtain an operator different of the one given by (9).
Nevertheless, the associated parabolic problem can be treated in an analogous
way after some technical changes.

3. On the existence of solutions.

It is well known (see, e.g. Diaz-Herrero [1981] for the special case of p =1
and R, = 0) that if p > 2 the degeneracy of the diffusion operator makes
impossible expect the existence of a classical solution of (P) even for a regular
initial datum wug. In order to make precise the notion of solution we shall
study, we start by indicating that the eventual discontinuous character of the
function R, will be treated by assuming that

Ry(z,t,u) = Q(z,t)(u), with @ as in (2) and J a
maximal monotone graph of IR? such that |z| < M (11)
for any z € B(u), for any u € IR and some M >0
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(i.e. for example, 3 is given by a nondecreasing real function b as 8(r) = {b(r)}
if b is continuous in r or F{r) = [b(r—),b(r+)] if b has a jump at the point
r: see Brezis[1973]). A usual way to verify the differential equation (at least
wealkly) is to multiply by a test function followed by an integration by parts.
In doing so we obtain

/Iu(x,T)u(x,T)dm—jGT]Iu(m,t)vt(z,f)dmdt

+f ! [ pl@al, PP ua(, o, )dadt

T
= / /{Q(:r,t)z(:v,t) - Re(w,t,u)}v(a:,t)dmdt—l-/uo(z)v(m,O)dz‘ (12)
o JI I
for some function z(z,t) which satisfies that
z(z,t) € B(u(z,t)) a.e. z €T and t € (0,T). (13)

For several purposes it will be useful to take the solution u as a test function.
So, for ¢ fixed, the integrals

/;p|u$|pdx and /;[u|2d:c

must be finite. Then a natural "energy space” associated to (P) is the one
defined by
V={we L*(I):w, € LP(I: p)},

where LP(] : p) is the weighted-Lebesgue space

(13 p) = {0l v s = | @) lo(e)Pdalr < o).

It is easy to see that V is a separable and reflexive Banach space with the
norm
H u “V:H u ”LQ(I) + ” Ur |IL-”(I‘.p) .

Any weak solution must satisfy u(-,t) € V for a.e. t € (0,T). It is not difficult
to see that in that case |uz(-, )P 2u=(-,¢) € LP'(I : p), with p' = p/(p — 1).
We also remark that because of the physical modelling of the problem we shall
restrict our study to the class of bounded functions.



Definition 1 . By a bounded weak solution of problem ( P) we mean a function
w € C([0,T] : L*(I)) N L=(! % (0,T)) such that v € LP(0,T : V), R.(-,,u) €
LY(Ix(0,T)) and there exist z € L=(I x(0,T)) satisfying (13) and the identity
(12) holds for anyv € LP(0,T : VINL=(Ix(0,T)) such thatv, € L7 (0,T : V).

The main purpose of this section is to prove the following result

Theorem 1 Foranyug € L(I) there exist at least one bounded weak solution
u of {P).

The proof of the above theorem can be carried out by means of different
methods. Here we shall present two different type of techniques: (1) a com-
pactness abstract method, and (ii) a regularization method.

3.1. Erzistence via a compactness abstract method.

Problem (P) can be considered as a perturbed problem associated to

{ ue ~ (p(z)|ueP?uy): =0, € (—1,1),t>0,
(P*) p(x)lur[p_zux = Oa I = :tl,t > 07
u(z,0) = up(z), z € (=1,1).

The abstract Cauchy problem associated to (P*) is given by

(CP7) { %(t) + Au(t) =0, in L*(I), fort >0,
u(0) = ug

where we are identifying u(¢) € L*(I) with u(:,t). The operator A: D(A) —
L*(1), with D(A) € L*(I), is described in the following result giving also the
existence and uniqueness of the solution of (CP*).

Proposition 1 . (a) Consider the functional ¢ : L*(I) — IRU {40} given

by
() = { %/{p(:z:)|uz|pdx fueV (14)

= +00 otherwise.

Then ¢ # +0co, @ is convezr and lower semicontinuous.

(b) Let A(u) = Bp(u). Then D(A) C V, D(A) is dense in L*(I) and
Au = —(p(z)|u.]""*uz)z for any u € D(A). (15)

6



(c) For any ug € L*(I) there exists a unique function u € C([0,T]: L3(1)), for
T > 0 arbitrary, such that u(t) € D(A) for a.e. 1 >0, t%% € L¥0,T : L¥(I))
and satisfies (CP*). Moreover if ug € LI(I) with 1 < ¢ < +o0 then u(t) €
L(I). Finally, the application S(t)uo = u(t) is a semigroup of contractions on

L¥(I).

Proof. (a) To prove that ¢ Z +oc and that ¢ is convex is obvious. The lower
semicontinuity of v can be shown, for instance, using the reflexivity of the
space L?(I : p), and that the norm is Ls.c. for the weak convergence.

(b) It is clear that V = D(p)(= {w € L*(I) : ¢(w) < co}) is a dense subspace
of L2(I) (notice that C°(I) C V). Then as D(d¢) C D(p) and D(dp) = D(p)
(see Brezis [1973]) we have that D(d¢) = L*(I). On the other hand it is a
routin matter to see that ¢ is Gateux differentiable in ¥ and that

u+ Ah) —¢
<¢/(w),h >vv=lim plut /\) ) /I p(2) e P 2ughads.
As 9yp(u) is a maximal monotone operator we obtain (15).

(c) The existence of u with the indicated regularity is now a consequence
of the abstract Hille-Yosida theorem given in Brezis [1973]. If uo € Li(I)
we multiply the equation by the test function |u|?~'signu (more precisely, by
a smooth approximation of this function) and a simple integration by parts
shows that J

E/Iriulqda: <0,

which gives the result.

Theorem 1 can be obtained from an abstract perturbation result (see Vrabie
[1987) and Diaz-Vrabie [1987]) assuming that the operator A = Oy generates
a compact semigroup. By a result due to H.Brezis (see the reference in the
book of Vrabie [1987]) this condition is equivalent to know that

"for any K > 0 the set {w € L*(J) :} w |72y +eo(w) = K} (16)
is relatively compact in L*(1)".
This is proved in the following auxiliary result:

Lemma 1 . (i) Let p given by (1) and assume p > 2. Then foranyq € [1,p/2)
we have that

Vc{we L*(I):w; € LY(I)} (17)

7



with continuous imbedding. Moreover, for any r € [1,00] we have
VvV c L7(1), (18)

where the imbedding is continuous and compact for any v € [1, 00].

(i) If 1 < p < 2, then we have the continuous imbedding V C L*(I) for any
q€[1,00) if p=2 and any q € [1,p") with p* = 2p/(2 — p).

(i) If 1 < p < 2, the imbedding V C L*(1) is always compact.

Proof. (i) Let w € L?({ : p) and ¢ € [1,p/2). By the Holder inequality with
p = p/g and py = p/(p — 9)

./zlw(z)iqu = fI lw(z)|2p(z)9/?p(z) P dz <
= UI'w(l‘)lpp(m)da:)w (/I p_(m—)%f(?;).) (P—q)/p.

/ dz < 1 1 dr
7 p(m)Q/(P"‘Q) - I{g/P_q [1 (]_ o ;ﬁ)q/p—-q <

since (1 —z?) > Cd(z,8I) and g/(p— ¢) < 1. This proves the first part of the
statement. This also shows the continuous imbedding V € W(I) and so (17)
holds by a well-known result (see, e.g., Brezis [1983], Theorem VIIL7). Then
V C Wha(I) for any ¢ € [1,p/2) and by the mentioned result the imbedding
(17) is also compact for r = 4co. The proof of (ii) can be found in Adams
[1980] or Rakotoson-Simon [1993]. Part (iii) is shown in Meyer [1967] for p = 2.
His proof can be extended to any p € (1,2) using part (ii).

But

Corollary 1 . Assume (1), (3), (11), (14) and p > 2. Then for any uo €
L*(I) there egists a function u € C([0,T]: L*(I)) such that u(t) € D(A) a.e.
e (0,T), the € L0,T : L*(D)), »(u) € L'(0,T : R) and it satisfies (P)
ae. t € (0,T) on L*(I) as well as in the sense of (12). Moreover, if uq € %4
then & € L*(0,T : L*(I)) and u € C([0,T] : V). Finally, if ug € L®(I) then
u € L>®(1 x (0,T)).

Proof. The existence of u satisfying (P) a.e. t € (0,T) on L*(I) is a conse-
quence of the application of a suitable fixed theorem for a compact operator
(see, e.g., Vrabie [1987], Corollary 2.3.2). The application of such results is
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guaranteed by Proposition 1, Lemma 1 and the assumptions (3) and (11).
This function obviously satisfies trivially (12) (take integrals on (7,7') x [ and
make 7 N, 0). The boundedness of u, assumed ug € L*(]), is proved as in

Proposition 1 if the right hand side of the equation is a bounded term.
B

Remark 1. The above method can be applied to two-dimensional problems

(on a compact Riemannian manifold without boundary): see Hetzer [1990] (for
the Sellers type model) and Diaz-Tello [1993] (for the Budyko model).

3.2. Existence via a regularization method.

The existence of a bounded weak solution of (P) can be also obtained by
approximating the multivalued (discontinuous) term 3(-) by a regular function
B. € C*(IR) with the properties

Bi(s) > 0and |Bfs)| < M Vse R. (19)
It is also usefull to remove the degeneracy at 91 by replacing p(z) by
pu(2) = pl) + . (20)

In order to approximate u by classical solutions of a related problem we also
replace the data ug, @ and R, by C'* functions ugm, &n, Hex such that

Uom(£1) =0, | wom [l < o [[zee(n),
and
tgm — Up in L2(I), as m — oo,
Qn — Q in C(—I—X [OaT])a

R, satisfies (2), Rex(-,,u) — Re(-,-,u) in C(I x [0,T])
for any fixed u € IR and Rex(z,t,-) — Re(z,t,-) in C(J) for
any compact J C IR and any fixed (z,t) € I x [0,T1].

Given €, m, n and k positive numbers we consider the problem (F.)

pe(z)(Juz)P2uy + ug) =0 on 81 x (0,7,

u(z,0) = ug,m(x) on [.

{ A {p5($)]uz|p—2u$]z — €Uyy = Qn(z,t)Pe(u) — Re(z,t,u), z€1x (OvT):



The partial differential equation is now uniformly parabolic and so by well-
known results (see e.g. Ladyzenskaja-Solonnikov-Ural’ceva [1968], Chapt.V)
there exists a unique classical solution U = u¢mmi. In order to study the
convergence, when € N\, 0 and m,n, k¥ — +oco we need some a priori estimates.

Lemma 2 . The solution U of (P.) satisfies (for n and k large enough)
I U llporxan< C, (21)

| pUs ||Loo,1:0(1) < Cs (22)

where C denotes a positive constant independent of e,m,n and k.

Proof. Estimate (21) is derived from the maximum principle (see e.g. Ladyzenskaja-
Solonnikov-Ural'ceva [1968]). To obtain (22) we multiply the equation by U.
Integrating by parts we obtain

1d
2dt
(where we have used (19) and (21)).

2 P 2 <
/IU (m,t)dﬁprciUA dz+ﬁ/I|Ux| dz < C

Using the a priori estimates and the assumption (11) the proof of the
convergence U — u, B(U) — z with z € S(u) and that u is a bounded
weak solution of (P) is standard (notice that this is not the case if we want
obtain more regularity on u; as, for instance, that given in Corollary 1).

Remark 2. The regularization of the multivalued term F(u) was already
carryed out in Xu [1991] for p = 2 (see also Feireisl-Norbury [1991] for some
related problems). We also point out that the existence of a weak solution
can be obtained by the method of upper and lower solutions combined with
monotone iteration arguments (see e.g. Carl [1989] and Diaz-Stakgold [1989]
for other related problems).

4. On the uniqueness of solutions: positive and negative answers.

The type of answer to the question of the uniqueness of solutions to problem
(P) is rather different in the cases of the Sellers model (where R.(z,t,u) is a
smooth function) and the Budyko model (where R,(z,t,u) is a discontinuous

function of u).

10



4.1. The Sellers model.

The following result shows the uniqueness and others properties of solutions
for the Sellers model.

Theorem 2 Let p > 1, and assume that
R, satisfies (11) with f a locally Lipschitz function of u. (23)
Then given ug € L>(I) there exists at most one bounded weak solution of (P).

Idea of the proof. First of all we point out that u; € L¥'(0,T : V'). This can
be obtained from the definition of bounded weak solutions and the character-
ization of the dual space V'’ (see e.g. Ivanov [1981], Lemma V.2.1). Moreover,
if we define w = e=%'u, w satisfies (in a weak sense) the equation

i e () e PP ) = Qo 1)B(we) e Rafa, we®) ~Cu.

Since g is assumed locally Lipschitz we can choose ' large enough such that
the function

Flz,t,w) = e7“'Q(z, t)B(we®") — Cw

is a strictly decreasing function of v for fixed (z,t). Now assume that we have
another solution u* of (P) corresponding to the same datum ug. We take w—w”
(w* = e~“'u*} as test function in the difference of the identities satisfied by w
and w* (see the definition of bounded weak solution). We have that

< wt) = (1), w(t) = w' (1) >vw= o [ fu(t) ~ v (2)da
(see e.g. Temam [1988]). Moreover, there exists K > 0 such that if p > 2
[ ol o ) ons — w5)de > K [ plallw, — wiPde (24)
For 1 < p < 2 the right-hand side term must be replaced by
K [ p(@)lhes = wl (a7 + wlF)da

(see, e.g., Diaz[1985] Lemma 4.10). Using the monotonicity of R(-,-,u) and
F(-,-,w) we obtain that

%/I[w(t) —w(#)Pdz <0

and so necessarily u = u”.
|
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Corollary 2 . Assume (23). Let ug, tio € L°(I) and let u, i be weak solutions
of (P) corresponding to ihe energy emmision functions R.(z,t,u) = vy(u) +
f(z,t) and Ru(z,t,u) = v(u) + f(z,t) satisfying the condition (11). Then
there exists a constant K = K(T') > 0 such that

| fu(t) = &)+ llz2n<

- " £ K A
< Rt (H [uo — tol+ llz2() +/0 e R Lf(s) = F(8)+ Mz ds) ' (25)
In particular up < to, [ < f imply u < 4.

Proof. Tt suffices to use now (w —w*); (= maz(w —w*,0)} as a test function.
Indeed, by a variant of a result due to Stampacchia we know that (w—w")4 €

LP(0,T : V). Moreover

< wift) — wile),((t) =W (O)s Svv= 5 [ lw(®) = w O]

and inequality (25) follows.

4.2. A non uniqueness result for the Budyko model.

The discontinuity of the coalbedo function §(u) and its role as a source term
in the equation may lead to the existence of multiple (even infinite) solutions
of the problem. This has already been shown in Diaz [1992] for the case of the
homogeneous (zero-dimensional) balance model

d

%:mm—mm.

The main purpose of this subsection is to show that this situation may also
occurs for problem (P). Our presentation is inspired in the work of Feireisl-
Norbury [1991] (see also Feireis! [1991]). We fix our attention in the special

case of Budyko model i.e., R, and R, are given by (2), (4) and (5) respectively.
We shall also assume that

Q(z,t) = Q and Qa; < A —105. (26)
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Consider a function ug such that

wF(0) = 0 for k = 1,2, ug(0) = —10 (27)

ug € C=(I), uolz) = uo(—=) for all z € [0,1],
ul(z) < 0ifz € (0,1), up(l) =0 }

(in this hypothetical case the maximum of the distributed temperature is
—10°C and it is only attained at the equator). We first show the existence of
a "completely ice covered” solution u”.

Proposition 2 . Let R, R. given by (2),(4) and (5) respectively. Assume
that (26) and (27) holds. Then there exist at least one solution u* of (P) such
that w*(z,t) < —10 for any z € (—1,1) and t € (0, T).

Proof. Let u™ be the unique solution of the problem

p(z)|uzfP?u, =0 zcal,t>0,

we — (p(2)|usP~2uz)s + Bu = —A+Qai, z€I,t>0,
(P)
u{z,0) = uo(z) z €l

The existence and uniqueness can be shown again by different methods (for
instance, it is a trivial consequence of Proposition 1). The function z = —10 —
u™ satisfies that
2= (pl(e) a7 22)a + (2) = 0
with
f(zy=Bz+10B—- A+ Qa;.
Moreover z(z,0) > 0 and 2(0,0) = 0. Then from (26) and the strong maximum

principle (see Vazquez [1984]) we deduce that z(z,t) > 0 [i.e. u(z,t) < —10]
for all (z,t) € (—=1,1) x (0,T].

The nonuniqueness of the solutions will be a consequence of the existence
of solutions which exhibit the presence of "free-ice zones”.

Theorem 3 . Under the assumptions of Proposition 2 there ezists at least
one weak solution u of (P) such that {(z,t) : u{z,t) > —10} is not empty for
any t > 0 small enough.
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To carry out the proof of Theorem 3 we shall construct a family of auxiliary
functions v* depending on a parameter A > 0 in the following way. We first
introduce the partition (—1,1) x [0,A] = @} U Q> U @3 by

QY = {(z,t) € (0,1) x [0, A,z > t/A}
Q% = {(‘Tat) € (_171) X [01/\]7—1"//\ Sz < t//\}
Q; = {(:E,t) € (_1_70) X [D,/\],I < _t/’\}'

Now we define v* on Q3 as the unique solution of the problem

v — (p(m)!vmip_er)r —+ By = _A+ Qaia (mit) € Q%a
PQN{ v{1,8) =0, v(%,t)=-10, t € [0, ],
v(z,0) = uo(z) z € [0,1].

The existence and uniqueness of a solution of P(Q7) is an easy modification
of the results of Friedman [1964] (see also Idrissi [1983]). Finally

vM(z,t) = =10+ Ct)(z — t/A)(z + t/X) for all (z,t) € Qs, (28)

vMa,t) = vi(—z,1) if (2,t) € Q3.
We have
Proposition 3 . [t is possible to choose C*(t) in (28) such that
(i) vt e C([—1,1] x [0,A]), v} € C((=1,1) x [0, A]).

(ii) v* is a bounded weak solution of the associated problem

p(z)|vzP v, = 0 on 01 x (0, A),
v(z,0) = uo(z) on I,

{ v, — (p(z)|veP"*vs)s + Bv = —A+ Mz, t) in I x (0,2),
where B € L°(I x (0, 1)) satisfies that h* = Qa; in Q} U Qs and
h(z,t) < Qaj —a;)/2 forz €l and it € (0,Ty) with T small enough. (29)
(iii) vM(z,t) > —10 on Q3 and v < =10 on Q7 U Q3.
Proof.(i) The continuity of v* follows from the continuity of the solution of

P(Q}) (any w € L*(J) such that p(z)jw’ € LP(J) satisfies w € C°(J), for
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any open interval J C (0,1)). Moreover, by (27), the solution v* of P(Qy) is
regular on the segment {(¢/),¢) : t € (0,A}} and the function
g\ (1) = vp(t/A, 1)

satisfies that g* € C((0,A)), ¢*(0) = (¢*)(0) = 0 and from (26) and the
strong maximum principle (see e.g. Vazquez [1984]) g*(¢) < 0 if ¢t € (0,A].
Then choosing

2t

we obtain that v} € C((=1,1) x [0,A]). From the strong maximum principle
and (27) we deduce (iii). To complete the proof we only need to show that
the (multivalued) equation also holds on @3. So it suffices to show that if u?
is given by (27) then the function

WMz, t) = v} = (p(z)|o2P~*0;) + Bv*
satisfies (29). A strightforward computation yields

Mz —t/M)(z +t/A)

T (g(t)(Bt+2) - /(0]

Rz, t) =

(Y i - 1 - o 0] - 41

(where g denotes ¢*). The bound

(z =t/ M=+t

572 < C(X) on Q3

with C'(A) independent of, allows to choose T so small such that the function
h* satisfies (29).

Proof of Theorem 3. We consider a regular approximation of B (e.g. Be €
C*(IR)) satisfying (19) and also

4y — 4 if s <« —10.

(30)

4y — 4 < Be(s)<asifs>—10and g; < Be(s) <ai+

a;+ 5 9



By theorems 1 and 2 we know the existence and uniqueness of a solution . of
the problem

{ u — (p(2)|ug P ue)e + Bu = —A+ QB(w) in I x(0,T),
p(x)|uz|P2us =0 on 8 x (0,T),
u(z,0) = up(x) on I.

On the other hand, from Proposition 3, (29) and (30) we know that v* satisfies

vy — (p(@) 0P vp)s + Bv < —A+ QBc(v) in I x(0,Th),
plz)|vgP~ 0, =0 on 91 x (0,T),
v(z,0) = uo(z) on I.

and then by Theorem 2 we conclude that u® > v* on T x [0,T.]). Using the
same kind of a priori estimates as in Lemma 2 we have that u* — u (weakly
in LP(0,T : V) and weakly in L*(0,T: V))as e | 0, with u a bounded weak
solution of (P) such that

uw> v on I x[0,T)], for any A >0, (31)

and the conclusion follows from (28).
8

Remark 3. It is not difficult to show (see Feireisl-Norbury [1991]) that (27)
implies that the solution u of Theorem 3 satisfies uz(z,t) > 0 for any = €
(—1,0)U(0,1) and ¢ > 0. Then by the Implicit Function Theorem there exists
a continuous function ¢ : [0, 7] — [0, 1], defining completely the free boundary
associated to u i.e. such that for any fixed ¢ € [0, 7]

{zeT:u(z,t)=1} = {=(O}U{{t)} (32)
Clearly ¢ € C'({0,T]). Moreover (31) implies that
¢(t) > t/A for any A > 0.

As C(0) = 0 we deduce that necessarily ('(¢) T +oc as t 1 0.

4.3. On the uniqueness of solutions of the Budyko model.

We have proved that the mere presence of a ”bad point” zp where u(ty, T,) =
—10 and u,(to,zo) = 0 can be the reason of multiple solutions for t > to. The
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following result shows that if the initial datum ug leads to a solution u never
flat at the level u = —10 then in fact u is the unique solution. We introduce
the following notation:

Definition 2 . Let w € L=(I). We say that w satisfies the strong (resp.
weak) p-nondegeneracy property if there exists C >0 and & >0 such that for
any € € (0, &)

Hz e I:|w(z)+10] < e} < Ce™?

(resp. |[{z € [:0 < |w(z)+10| < e}] < Cef™).

Theorem 4 Assume p > 2. Let R, satisfying (3) and R, given by (2) and
(4). Let ug € L=(I).

(i) Assume that there exists a solution u(, t) satisfying the strong p-nondegene-
racy property for any t € [0,T]. Then u is the unique bounded weak solution
of (P).

(ii) At most there is a unigue solution among the class of bounded weak solu-
tions satisfying the weak p-nondegeneracy property.

We start by proving that under the nondegeneracy property the multivalued
term generates a continuous operator from L*([) into L(I), for any ¢ €
[1,00).

Lemma 3 (i) Let w,@ € L°°(I) and assume that w satisfies the strong p-
nondegeneracy property. Then for any q € [1,00) there exists C > 0 such thal
for any z,% € L=(I), z(z) € B(w(z)), #(z) € B (z)) a.e. z € I we have

Fope, oMy, (33)

~

| 2= 2 {loon< (a5 — @) min{C || w — %

(ii) If w, @ € L=(]) and satisfy the weak p-nondegeneracy property then

[@) = @) w(e) - i(e))dz < (a = a)C 0= o - (34
Proof of Lemma 8. If || w — b ||pes(z)> €0 then
. L2 o ni{p=1
| 2= 2 s < (2 = a2 < (a7 = a0) gy | w =2 [ e

Assume now that || w — i ||ge(7)< €. Define the coincidence sets

A={rel:w(z)=-10} A={zel:d(z)=-10},

17



as well as the descomposition
N=AUQUN. Q=AU U,
where
O, ={zel:wx)>-10} Q={zel:wz)<-10}

and ), {)_ are defined similarly replacing w by . Let z, 2 defined as in the
statement. Then

z(z) —
z(z) =

Thus as || =2

(z)| < (ay — a;) on Auﬁg(nmﬁ_)g(n_nm)
(z) on (QyNQHUR-NA)

St

[SERT

| =2 |l Lo < (a5 — a;) min{|AUAU (24 N QYU (- nQ)|He, 2. (35)
But we have
(AvAu(@,na)u(@-n 1)) C B.= {2 € Q: —10—¢ S w(z) < —10+4¢}.

Indeed; it is clear that A C B.. Moreover,

B(z)— || w— b ||p=n< wlz) <[l w—1@ ||y +i(z) a.e. z € 1.

Then the inclusion A C B, is obvious. If z € 4 N Q_, —10 < w(z) <
e+ w(z) < =10+ ¢ and so « € B,. Finally if z € Q_NQy, —10—e< —10 —
lw(z)—w(z)| < b(z)+tw(z)—d(z) Sw(z) < —10and z € B Consequentely,
inequality (33) follows from the strong p-nondegeneracy assumption on w.
Let w,1 satisfying the weak p-nondegeneracy property. As before we can
assume that || w — 0 ||feo(y< €0. Then remarking that

(2(z) — 2(2))(w(z) — d(z)) =0ifz € ANA

and that if w(z) # —10 (resp. w(z) # —10) and z € A (resp. = € A) we have
that

ze{zel:0<w(z)+10] < e} (resp. {ze€l:0<|b(z)+10] <e})

18



we obtain (34).
82

Proof of Theorem 4. Let 7 be any other bounded weak solution of (P). Then,
as in the proof of Theorem 2, using the monotonicity of £,

%ff’“( —a(t)Pda+ [ p(e) (o) P Pu(t) = (1) P~ (1)) (wa(t) — ()

< Q/I(z(:c,t) = 2z, ) (ulz, t) — iz, ))dedt

for some z, 3 € L=(I x (0,T)) with z(z,t) € Blu(z,t)), 2(z,t) € B(0(z,1)) for
a.e. (z,t) € I x (0,T). Now assume p > 2. Then ’oy (24) we obtain that

;j;/[ u(t) — a(t)Pdz+ || (u(t) = 4(8)o [1Torp <
< QI 2(t) = 2(8) Nl pll u(t) — a(t) [lze(n)

From Theorem 4 of Rakotoson-Simon [1993] we have the estimate

| v i< Co | vs ooqry ;Y 10 iy, Yo EV (36)

where
= []i;pﬂ)/?pgo

with Cy > 0 independent of [ and
1 1
- = _ 2N\dp = ‘
|1,] —/_1 plz)dz = kf—x(l z’)dr = 4k/3
Then by Lemma 3 and using (a + 6)7 < 2P(a? + b°) we get

Q 1 =(5) = 2(0) llwll w(t) = a(t) llzmqn = 1| (wl8) = (D) Wagrn S
< u(t)=(8) [enry (@C(a; ~a) - :,17) HC L) | () =(8) s 1)<

|t = 2(8) [Boegr (chwaa op;p)wznu() a(t) I3

where

(J; ple)?dz)”"

Ct (J; ple)dz)’ =& | Feomyzan s Ca

Cy =
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for some (3 independent of © and @ (that can be obtained from the estimates as
(25) in terms of the data, || o ||z2(ry, @(as —a:) and || Re(z,1,-) |peoo,:z2(1)))-
Assume now that

QC(af — a,‘) - 2;:101 S 0.
Then we conclude that
d . .
7 | u(t) = alt) 72y < Cs | ul(t) = at) |12 - (37)

Setting U(t) =| u(t) — &(t) |32y we obtain that U(t) < U(0)e* but as
U(0) = 0 we deduce that u(t) = 4(t) for any t € [0,T]. If (37) does not
hold we introduce the rescaling y = az with a > 0. Given a function A(z,1)
we define h(y,t) by A(y,t) = h(az,t). Then the functions u(y,t) and u(y,t)
sabisfy

du

Fr ap(POt(y)luylp guy)y = Qz(y,t) — Re(=,t,u)
au ’ . e N .
E -G (Pa(y) Uy uy)y = Qz(yat) - Re(—:t7u)

Arguing as in the case & = 1 we have
d Y 2 P A P
EE ” ’M(t) - U(t) ”Lz(—a,a) +o “ (M(t) - U(t))y ||LP((—¢!,13:):pa)S

< QH 2(8) = 2(8) Il (e u(£) = &(E) Nooo(-cra -
Estimate (36) remains true when one replaces I by I.(= (—a,a)) and p by
po. So a simple computation leads to |Iu|,, = a|l|, and thus
0z (macy < P72 || vy [|za-a,a)pa) H 1) 19 l23((-aaripa) -
Then by Lemma 3

Q Il 2(£)=2(t) |l (cael w(H)=i(t) llz=(-a) = | (W) =dE))y Izr(-a0i0m) =

20



ap——(p—?}/?

oy Ot

<N wl) = A(2) (7o (—ayay (@C(ar — @i} —

+Cy(a) || ult) — () 132 (can) -

Taking o large enough we obtain that U,(?) =| u(t) — 4(t) || satisfies U, <
U, (0)e“4™) and so again u(t) = 4(t) for any t € [0, 7).
If p = 2 the estimate (36) must be replaced by

10 2ty S C1 |l 0 llzeqgy IS 0 s (rn) (38)
for any r € [1,00) where
Cy = [I|;/TC’O

with Cy > 0 independent of I (see Rakotoson-Simon [1993]). But as u(t) —
4(t) € L*®(I) we know that for any § > 0 there exists n(6) > 0 such that for
any r € [n(6), +o)

0 u(t) — 4(8) llzgsy — | w(t) = 5(2) zon| < 6 (39)
and so
| u(t) = at) ooy 2 [l ul®) = G(8) [ITr(ryy +2767 <
< Y || (u(t) = 4))e [Bpqrpy +2 IV [ ult) = () [l32(2) +2°67.
Arguing as in the case p > 2 we obtain

d

£ ) = ) I <1 862) = 600) Vg (QCes = ) = 59)

+Cs|IP/m + 2767
Making § | 0 as Cj is independent of r we obtain (37} and the proof of (i)

ends. Part (i) is obtained in a similar way by using now (i) of Lemma 3.

To complete the study of the uniqueness of solutions of (P) we concentrate
our attention on the nondegeneracy properties. The local character of those
conditions is pointed in the next result.



Proposition 4 .(i) Let w € C°I). Assume that the set A = {z € [ :
w(z) = —10} has a finite number of connected components and that there
exists € > 0 and a positive constant K such that for any ¢ € (0,¢) and
ze B, ={zel:0<|wz)+10] <e}

lw(z)+ 10| > K|z — /P vz, € 9A. (40)

Then w satisfies the weak p-nondegeneracy property. Furthermore, if |A| = 0
then w satisfies the strong p-nondegeneracy property.

(ii) Let Wi°(I) and assume that A has a finite number of connected com-
ponents and that there exists eg > 0 such that for any ¢ € (0,¢) 36 = b(e)
such that

lwe(z)] > 6 ace. € {z €T |w(z)+10] <€} (41)

then w satisfies the strong 2-nondegeneracy property.

Proof. From (40) we deduce that if z € B, then |z — z;] < ¢~!/K. Thus
|B.| < (N/K)e?~! where N is the number of points of JA.

(ii) Tt is clear that (41) implies that meas |A| = 0. Let [a,8] C T a connected
component of B, = {z € I : |w(z) + 10| < €}. Assume that w.(z) > ¢
on (a,b) [the other case w,(z) < —& on (a,b) is treated in a similar way].
Then w(a) = —10 — ¢, w(b) = —10 + ¢ and there exists zo € (a, b) such that
w(zy) = —10. Then for any = € [zo, b] we have

T

e>w(z)+10= / w(s)ds > &(z — o).

Zo

Analogously, for any z € [a, z0),
e > —10—w(zr) = / : wy(s)ds 2 6(zo — z)
and thus (40), with p = 2, holds.

Remark 4. The nondegeneracy properties of the solutions of (P) can be
obtained under some additional assumptions on the initial datum. Let ug €
CY(I) such that

Ag = {z € I : Uy(z) = —10} has a finite number of connected components,

(42)
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and

reBo={zel:0< |ulz)+10] < ¢}
we have |ug(z) + 10| > K|z — z;|Y?*"Y vz e gA

Then there exists a T, € (0, 7] such that u(t) satisfies the weak non-degeneracy
property for any ¢ € [0,7,) where u is any continuous weak solution of (P).
In particular if v and @ are continuous weak solutions of (P) there exists a
T € (0,7T] such that u = 4 on [0,77) x I. Indeed; let u, % be continuous
bounded weak solutions of (P), by the continuity near ¢ = 0 we deduce that
there exist Ty, T3 € (0,7] such that u(t), 4(t) satisfy (40) and that the set
where they take the value —10 has the same (finite) nomber of connected
components for any ¢ € [0,7), [0,7;) respectively. Taking 7 = min{T,, T4}
the conclusion follows from part (ii) of Theorem 4.

deg > 0 and K > 0 such that Ve € (0, ¢p)and any }
(43)

Remark 5. Let ug € C*(]) such that ug is an even function, ug.(z) > 0 for
any z € (—1,0), ue(0) > =10, u{—1) < —10. Then (42) and (43) holds for
p = 2. Moreover, if u is the solution built in the section 3.2 for p = 2 then
u(t) satisfies the strong 2-nondegeneracy property for any t € [0, 7). Finally, if
p = 2 problem (P) has a unique bounded solution on [0, 7] x I. Indeed; it is an
easy modification of Lemma 6.2 and Corollary 6.3 of Feireisl-Norbury [1991].

Remark 6. It should be interesting to know if the techniques on non-
degeneracy properties for the parabolic obstacle problem (see,e.g., Pietra-Verdi
[1985]) can be applied to obtain the p-nondegeneracy properties for the solu-
tions of (P).

5. On the free boundary and the mushy region.

The discontinuity of the albedo function assumed in the Budyko model
generates a natural free boundary or interface ((t) between the ice-covered
area {{z € I : u(z,t) < —10}) and the ice-free area ({z € I : u(z,t) > —10}).
The free boundary is then given as ((¢) = {z € I : u(z,t) = —10}. In Xu
[1991] the Budyko model for p = 2 is considered. He shows that if the initial
datum ug satisfies

uo(z) = uo(—z), ug € C¥{[—1,1]), up(x) < 0 for any z € (0,1)
and there exists ((0) € (0,1) such that (uo(z) + 10)(z — ¢(0)) <0
for any = € [0,¢(0)) U ({(0),1],
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then there exists a bounded weak solution u of (P) for which the set ((t) =
{Ce(®)} U {{-()} with z = {4(¢) a smooth curve, (_{t) = {4(¢) and (,(-) €
C*(l0,1™)) where T is characterized as the first time ¢ for which ¢, (¢) = 1.
He also gives an expression for the derivative ¢! (¢) (some related results for a
model corresonding to p{z) = 1 can be found in Feireisl-Norbury [1991]). We
point out that the uniqueness result {Theorem 4) can be applied for such an
initial datum (see Remark 4).

The size of the separating zone ((¢) for other models is in fact a controversial
question. So, some satellite pictures (Image of the Weddell sea taken by the
satellite Spot on December 10, 1987: Lions [1991]) show that the separating
region between the ice-free and the ice-covered zones is not a simple line on
the Earth (i.e. a point in (—1,0) or (0,1)) but a narrow zone where ice and
water are mixed. Mathematically it corresponds to say that the set

Mi@t)={z el :u(zt)=-10}

is a positively measured set. In the following we shall denote this set as the
mushy region (since it plays the same role than in changing phase problems,
see e.g. Diaz-Fasano-Meirmanov [1992]).

Using the strong maximum principle (see e.g. Vazquez [1984]) it is possible
to show that if p = 2 (or more in general if 1 < p < 2) the interior set of the
mushy region M (t) is empty even if the interior of M(0) is a nonempty open
set. The main goal of the next result is to show that this is not the case when
p > 2 (as it happens for the Held-Suarez model : p = 3). A necessary condition

for M(t)# 0 is that R.(z,¢,—10) — R.(z,t,—10) 3 0 for any z eM (t) and
t € [0,7]. In the case of the Budyko model R, is defined by (2) and (4), R.
by (5) and the necessary condition can be written in the following terms

A—10B € [a.;Q(z,1),a;Q(z,t)] for ae. z €1, ae. t €[0,T] (44)
We shall show that if p > 2 this condition is also sufficient.

Theorem 5 . Letp > 2, R, given by (2) and (4) and R, given by (5). Assume
(44) and uq € L®(I) such that there exist xo € I and Ry > 0 satisfying

M) ={z € I:up(z)=-10} D B(zo, Ro)(= {z € I : |z — zo| < Ro}).

If u is the bounded weak solution of (P) satisfying the weak p-nondegeneracy
property then there exists T™ € (0,T] end a nonincreasing function R(t) with
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R(0) = Ro such that
M) ={z €I :u(z,t)=-10} D B(zo, R(1))
for any t € [0, 7).
Proof. We shall use an energy method as developped in Diaz-Veron [1985].
Given u bounded weak solution of (P) we define v = v 4+ 10. As in Lemma

3.1 of the above reference multiplying the partial differential equation by v we
obtain that for a.e. R € (0, Rp) and ¢ € (0,T") we have

1
f (z,t)] dm—l—/ / ]vx}pd:cdr-f-B/ / (z,7)[*dzdr <
B(I R IGR xClv

t
S// .rp T dd+// zZlz, —A+1OB dd =
: S(rmR)p(a:)[v [P~ v, -Rvdsdr (o0, R) (z,7)z(z,T) Wdzdr

where S(zg, R) = 8B(z0, R) = {z0 — B} U {20 + R} and z(z,t) € B(u(z,t))
for a.e. z € B(zg, R) and ¢ € (0,7]. We introduce the energy functions

E(R) = / j oy P2 sl s

b(R,t) = su ess/ v(z,7)|*dz.
(R1) = sp ess [ pler)

0<r<d

Using Holder’s inequality and the interpolation-trace Lemma of Diaz-Veron
[1985] (since p > 2) we get

/p

OE (=1)/ ,
<
hs (8}2 ) (/ ./m R) i dxdT) -

OE

(p—1)/
P Ak i)) (E(R, )" + R*1'/7b(R, t)1/2)9 b(R,1)1-0/2,

where
0 =p/(3p—2) and 6§ = —(3p — 2)/2p.

Using the assumption (44) we have that

() = [(A—-10B)/Q(- ¢)] € B(-10). (46)

[
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Then applying Lemma 3 to w(-) = u(-,t), 2(-) = B(-,t), w(-) = —10 and 2(-)
given by (46) we get that

i
B < (o~ ) | @ lemiaxomn € ) 1907) Wonipianmy 47
Using the inequality (36) on B(zo, R) we obtain
I < (a5 — @) || @ lz=(xtory C{CLE(R, 1) + tC2(R)b( R 1)),

where now

-2
(fB(a:o,R) P(z)zdw)p
Ca2(R) = o7 (fB( o p(.:r:)da:)p | &+ 10 % oy:L2() -

As in the proof of Theorem 4, without loss of generality we can assume C
small enough. Then, there exists 7% € (0,T] and A € (0,1} such that

A(E(R,t) +b(R,t)) < h

which implies that
0F
VR < g0
- OR

for some g € (0,1) and for any ¢ € [0,T~) and the proof ends as in Diaz-Veron
[1985] (proof of Theorem 3.1).

Remark 7. The existence of the mushy region (for any value of p € (1,00))
can be proved for a different class of models by taking into account a discon-
tinuous diffusivity (see Held-Linder-Suarez [1981]). In that case the problem is
a variant of the Stefan problem (see, e.g., Diaz-Fasano-Meirmanov [1992]). We
also point out that if we define the mushy region associated to a temperature
ue, with u. # —10, by

M(t:ue) = {zel: u(z,t) = Uct,

then the results of Diaz-Veron [1985] and Antonsev-Diaz [1989] allows to ob-
tain the same type of conclusions than in Theorem 5 (but without the non-
degeneracy assumption on the so_lution) for suitable functions Q(z, ).

26



References.

Adams,R.A. [1980]: Sobolev spaces, Academic Press, New York.

Antontsev,S.N. and Diaz,J.I. [1989]: New results on localization of solu-
tions of nonlinear elliptic and parabolic equations obtained by energy
methods, Soviet Math. Dokl.. 38, pp 535-539.

Brezis,H. [1973): Opérateurs marimauz monotones et semigroupes de con-
tractions dans les espaces de Hilbert. North Holland, Amsterdam.

Brezis,H. [1983]: Analyse Fonctionelle. Masson, Paris.

Budyko,M.L. [1969]: The efects of solar radiation variations on the climate
of the Earth, Tellus, 21, pp 611-619.

Carl,S. [1989]: The monotone iterative technique for a parabolic boundary
value problem with discontinuos nonlinearity, Nonlinear Analysts, 13, pp
1399-1407.

Diaz,J.I. [1985]: Nonlinear Partial Differential Equations and Free Bound-
aries. Pitman,Londres.

Diaz,J.I. [1992]: Mathematical treatment of some simple climate models.
Appendix of the book of J.L. Lions La Planete Terre. To appear.

Diaz, J.1., Fasano,A. and Meirmanov,A. [1992]: On the disappearence
of the mushy region in multidimensional Stefan problems. In the book
Free Boundary Problems : theory and applications, Vol. VII. Pitman.
London.

Diaz,J.I. and Herrero,M.A. [1981]: Estimates on the support of the solu-
tions of some nonlinear elliptic and parabolic equations, Proceedings of
the Royal Soc. of Edinburgh, 83 A, pp. 249-258.

Diaz,J.I. and Stakgold,I. [1989]: Mathematical analysis of the conversion
of a porous solid by a distributed gas reaction. In Actas del XI CEDYA.

Universidad de Maélaga.



Diaz,J.I. and Veron,L. [1985]: Local vanishing properties of solutions of
elliptic and parabolic problems quasilinear equations, Transsactions of -

the A.M.S.. 290, pp. 787-814.

Diaz,J.I. and Vrabie,LL. [1987]: Existence for reaction diffusion systems.
Preprint.

Diaz J.I. and Tello,L. [1993]: Article in preparation.

Feireisl,E, [1991]: A note on uniqueness for parabolic problems with discon-
tinuous nonlinearities. Non linear Analysis. 16, pp. 1053-1056.

Feireisl, E. and Norbury, J. [1991]: Some Existence, Uniqueness, and Nonunique-
ness Theorems for solutions of Parabolic Equations with Discontinuous
Nonlinearities. Proc. Royal. Soc. Edinburgh. 119 A, pp. 1-17.

Friedman, A. [1964]: Partial Differential Equations of Parabolic Type. Prentice-
Hall, Englewood Cliffs, New Jersey.

Held, L.M. and Suarez, M.J. [1974]: Simple Albedo Feedback models of
the icecaps. Tellus, 36.

Held, I.M., Linder, D.I. and Suarez M.J. [1981]: Albedo Feedback, the
Meridional Structure of the Effective Heat Diffusivity, and Climatic Sen-
sitivity: Results from Dynamic and Diffusive Models, American Meteo-
rological Society. pp. 1911-1927.

Hetzer, G. [1990]: The structure of the principal component for semilinear
diffusion equations from energy balance climate models, Houston Journal

of Math. 16, pp. 203-216.

Idrissi, M. [1983]: Sur une resolution directe de problemes paraboliques dans
des ouverts non cylindriques, Thése. Université de Besanson.

Tvanov, A.V. [1981]: Quasilinear Degenerate and nonuniformly Elliptic and
Parabolic Fquations of Second Order. Proceed. of the Steklov Institute.
Math. Am. Soc. Providence, R.I.

Ladyzenskaya, O.A., Solonnikov V.A. and Ural‘ceva N.N. [1968]: Lin
ear and Quasilinear Equations of Parabolic type. Transl. Math. Mono-
graphs, Vol 23, Amer.Math.5oc, Providence, R. L.

28



Lions, J.L. [1969]: Quelques méthodes de resolution des problémes auz limites
non linéatres. Dunod. Paris.

Lions, J.L. [1990}: E! Planeta Tierra. Espasa-Calpe. Serie Instituto de
Bspana. Madrid. '

Lions, J.L. [1991]: Personal communication.

Meyer, R.D. [1967}: Some Embedding Theorems for Generalized Sobolev
Spaces and Applications to Degenerate Elliptic Differential Operators,
Journal of Math. and Mechanics 16, pp. 739-760.

North, G.R. [1992]: Introduction to simple climate models. This volume.

Pietra, P. and Verdi, C. [1985]: On the convergence of the Approximate
Free Boundary for the Parabolic Obstacle Problem, Rendiconti della Ac-
cademia Nazionale det Lincei. pp. 159-171.

Rakotoson, J.M. and Simon,B. [1993]: Relative rearrangement on a mea-
sure space. Application to the regularity of weighted monotone rear-
rangement. Part. [I. Appl. Math. Lett. 6, pp. 79-82.

Sellers, W.D. [1969]: A global climatic model based on the energy balance
of the earth-atmosphere system. J. Appl. Meieorol. 8, pp. 392-400.

Stakgold, I. [1992]: Free Boundary Problems in Climate Modeling. This

volume.

Temam, R. [1988]: Infinite-Dimensional Dynamical Systems in Mechanics
and Physics. Springer-Verlag, New-York.

Vazquez, J.L. [1984]: A strong maximum principle for some quasilinear el-
liptic equations. Appl. Math. and Optimization, 12, pp. 191-202.

29



Vrabie, I.1. [1987): Compactness methods for nonlinear evolutions, Pitman
Longman. London.

Xu, X. [1991]: Existence and Regularity Theorems for a Free Boundary Prob-
lem Governing a Simple Climate Model. Aplicable Anal. 42,pp. 33-59.

J.I. Diaz

Departamento de Matematica Aplicada

Universidad Complutense de Madrid

28040 Madrid, Spain.

Partially supported by the DGYCYT (Spain) project PB90/0620.

30



