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ON THE CONTROLLABILITY OF
SOME SIMPLE CLIMATE MODELS

11 DIAZ

1 Introduction.

Originated by the works by Budyko [8] and Sellers (31} in 1969, several energy
balance models have been extensively studied in the Hterature as a tool for
assesing qualitatively the impact of the ice-albedo fesdback on the climate,
i.e. on the description of the evolution of a long term average of the Farth
surface temperature.

A basic two-dimensional model can be formulated ia terms of the following
reaction-diffusion equation

e(t, 2)udt. o) — div(k(t, z)gradu(t, r)) = Ralt, 2, ult.z}) — Ro{t. 2, uli. o))
{1)
on the Fuclidean two-sphere $? of R® or, more generzlly, on a compact
oriented two-dimensional manifold M without boundary. Se div and grad
must be understood with respect to the given Riemannian metric. The heat
capacity and the diffusion coefficient, ¢ and &, are strictly positive func-
tions. The right hand side of {1) stands for the mean radiation flux balance:
R, (L, &, u) represents the fraction of the solar energy absorbed by the Earth
and R.(i.r.w) the energy emmitted by the Farth to the outer space.
It is well accepted that R,it, 2. 1) obevs to the expression

Ra(t, e, ) = Gt 2)B(u) (2

where (J{f.r} 15 a positive number representing the mean incoming solar ra-
diation flux (the solar constant) and #u) = (1 —a(ul} is the co-albedo func-
tion obtained from the planetary albedo a(ut) as funciion of the temperature,
Usually 3{u) is assumed to be increasing (or more precisely non-decreasing},
B(u) € {0.1] for any value of u and B(u} takes a constant valve ¢; € (0. 1)
(the 1ce co-albedo) for small values of u, and a; € {a;, 1) for large values of
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i s J P ~ a0 TR— .y b T . . . -
u. The shape of 3 in the transition zone is a controversial question: Budyko
assumes J discontinuous

. g ifua—10
j{L.} = ! . (3)
| ar ifu>—10 :
{the transition temperaturs is customarily taken as u = —10°C). and Sellers

assumes that 7 is a regular function {at least Lipschitz continuous) such as,
for instance,

{a; — a;}{1 + tanh ~u) {4)

L]

i = +

for some v £ {0, 11 :
The mean emmitted energy flux R,{t.z.u) is determinated empirically.
It is understood that R, depends on the amouni of greenhouse gases, clouds
and water vapor in the atmosphere. [t seems natural to assume that Re
mcreases with u but the increasing rate is also contraversial: Budyko proposeé

a Newton linear type radiation ansatz
Rﬁ(é.ﬁ:.uj=A§r:',r)-'rB(t,:)u (53
and Sellers uses a Stefan-Boltzman type-law 7
R (i x. u) =a{t.x){u—r{t o))’ {6)

{in (6) wis given in Kelvin and ¢ and r take positive values). ,

Many other enerey halance models. more sophisticated that (1), have
been introduced in the literature by taking also into account, for instance,
the atmospheric temperature. the humidity, etc. Nevertheless. it is clear that
if & simple energy halance model as (1355 embellished by adding many differ-
ent factors it loses its diagnostic simplicity and may become as (:c;m;;)licate:cl
as short-termn prediction models (as. for instance. the General Circulation
Model). .

The equation {1) has been treated from a mathematical point of view by
different authors under some assumptions of different type on R, and R,:
see, e.g. North, Mengel and Short, [30], Hertzer [22], Hertzer and Schmidt

(23] and Diaz and Tello [16] for the two-dimensional model and Xu [33] and
Diaz {10} for the one-dimensional model {arising when assuming that z;(t, )
depends only on the latitude). We point out that one of the main reasons
of the interest of this simple energy balance models is that it provides clear
answers to the study of climate sensitivity concerning various parameters
such as, for instance, the solar constant: we send the reader to the surveys
Gill and Childress [20], North {29], Stakgold [32] and Diaz {11

The main goal of this work is to study the possible human interaction on
the climate from the point of view of the control theory. Roughly speaking
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we are interested in knowing if it is possible to act on the system in a such
manner that the climate behaves (in some sense} according to our wishes,
carrying the temperature from a given distribution u(0, 2} {0 2 wished distri-
bution u(T,z), alter a given period of vears T. The study of such a question
seems to go back to J.Fourier [19], attracted the attention of distinguished .
sclentists (J. Von Neumann [28}) and is being currently under consideration
{J.L.Liens [25], [27]). 1t is clear that the world decissions (or considerations)

“on greenhouse gases emumision norms follow this philosophy, trving to con-

trol the changes on the present climate. We also mention here the plonnering
works by I.Langmuir {General Electric Laboratory, New York, 1946), in dif-
fereni scales of iime and space than in the problem we are dealing with,
on cloud seeding, showing the possibility of originating watter cristals and
clouds by seeding some chemical substances as, for instance, Agl (see Dennis
[7]}. We will not go into this issue, but it shows the pessibility for humans
to interact with the climate.

To avoid fedious technical details we shall develop our study for 2 model
which simplifies the differential equation (1) and also raplace the two-dimen-
sionial sphere by an open bounded regular set 2 of RY, N > 1. and adding the
Neuwmann boundary conditions. The treatment of possible discontinuous co-
albedo functions J{u) will be made in the framework of maximal monotone
graphs of R? (see, £.g. Brezis {5]}. So, in the rest of the paper we shall
concentrata our attention on the problem

ye— Ay + fly) € Qaly) vy, in(0,T)x 8

(S, 3) g-:’- - on (0.} x &0
w0, ) = yol-) on 0

where w is an open regular subset of (2, with w CC 0, which represents the

spatlal region where the actions will take place. We assume
f iR — R is a non-decreasing locally Lipschitz continuous function, {7)
¢ >0 and

£ is & maximal monotone graph of R? such that D{f#) = R and (3)
0 <b< L forany be F(r) and for any r £ R. «

[n this simplified formulation

Rt r,u) = @)
Rtz u) = —olt, )y, + Szl

The existence of solutions of P(f, ) assuming yg € L*() and v € L*{{0. T} x
w) is almost standard except for the presence of the eventually multivalued
term d(y) in the right-hand side of the equation. When 3 1s a Lipschitz
continuous function, the uniqueness of solutions is also a routine matter.
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Nevertheless, if y) is a multivalued graph then there is not, in general,
uniqueness of sclutions and suitable conditions must be supposed oo ¥, in
order o get a unique solution (see Diaz and Tello [16] and Diaz [10}}.

The controllability question can be formulated as follows: siven y, &
L) is it possible to fnd ¢ L*(0.T) = w) such that f we denote by
(L. riv) to the solution of P{f, 3 then y{T. v} = yu()?. When the answer
5 positive wa say that problem PUf,3) 15 controilable. Due to the smoothing
properties of parabolic partial differential equations we can not expect io
verify this property in the above meaning. A relaxed version is the notion of
approzimate controllability: given yy & L3O and £ > 0, 1s it possible to find
ve € L0, T) = wh such that H(T, 00 — wal ) lLam) <27,

The main goal of this work i5 to show the difference appearing in the
study of the approximate controllability property for the Budvko and Sellers
type models: the answer is positive for the Budyko case and negative (as least
for a suitable class of wanted states yi) for the Sellers model. An analysis an
the understanding of this dichotomy is also presented.

é The Budyko type model.

As we shall see, the behaviour at infinity of the function Fly) is the relevant
difference among the Budyko and Sellers models. A class of functions f

which include the chaice of Newton linear emmision radiation can be defined

in the following terms:
£ satisfies (7} and there exist some positive constanis 1 m)
£, Gy and M such that [f(s)] < O, + Colsl i sf > M |

The following result give a positive answer to the controllability of this
class of problems. It follows closely the results of Fabré, Puel and Zuazua

{17}, {18] and Dfaz and Ramos {14} (stated for Dirichlet boundary conditions
and the special case 7 = 0).

Theorem 1
Assume (3) and (9). Then the problem P(f 3} is approzimalely control-
lable.

As usual in the study of the controllability of nonlinear problems (zee,
¢.g. Henry [21], Fabré, Puel and Zuazua (17], [18]) the proof of Theorem
L will be obtained through the application of a fxed poiat theorem lor an
operator defined in terms of the control associated to a linear problem. More
precisely, let 5o € R such that £ is globally Lipschitz, with constant & >0
o {gn = &8 + &) {such a s exists by (7}}. Define
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L3
W

{ f(Sj' bl f(Su:! e

. —_— s ,i 30
g{s) = § = sg
Iy if s =3,

Given = & LF({0,T) x 1) we start bv considering the Lnear control problem

It

[ - dy=glzy=r. n{0.Trx0
(LF) 4 gE=0 on {0.T" x &0
' an - ;

Y0, -] = wol-] . on (1.

The approximate controllability for the probiem {LP) can be proved ")
using the Hahn-Banach théorem and a unique continuation tbec?rem {see L}-
ans [24] aud Diaz, Henry and Ramos [13] for the case of ponnegative controlfj.
Here we shall borrow another approach due to Fabré. Puel and Zuazua [17},
[18] which atlows to obtain some additionai

information on the construction’

of the conirols.
Theorem 2 ([17],[18]) L

Let a € L0, T1 = Q), ¢ » 0 and §; € LHQ), with |g]
20, € L*(0) we consider the problem

L¥m > &, (iven

o Aptap=0 in(0,T}xN

do_y on (0,T) x 60 (10]
an
o T} = gul-} on 0.

“Define the functional

L2a) —/ﬂfdgodi (11

;:7(_19(!73?1175} =

B |

(/ fg[dédx) + zf oo}
s {0.T)xw
The‘:‘fz:

1 T (oo, e, ) 18w strictly conver continuous and poercice “f.z_mciiuzzgi in L0
In particular, it achieves its minimum at u unique pain: a € L‘(Q)j )

il [f § denotes the solution of 110} for oy = By there exists w £ sign(§),
such that the solution of

Yy — A?j ay = Ii;:IA‘((U(T)xQ)“" L in (U.T x {1

% =0 ‘ on (0. T x 80 {12
o
yil, ) =10 on .
satisfies that -
BT ) = Gl €20 o (i3



24 Enpvironment, economics and their mathematical models

We point out that although the conclusions of Theorem 2 were obtained
in [17], {18 for zero Dirichlet boundary conditions. obvious modifications
lead to the proof for the case of Neumann houndarv condiiions.

Proof of Theorem 1.

Given - = L*{0.Tj x ) we define bv u the (uniquej solution of the

problem

u = Mt g{zu = = f(so) + gl=)se = Ofs=; in [0,T) x O

Ju _q o -
o - an (0,7 = 902 [i4}
ul(f.) = yo(-) on 02,

where 8y : R — IR s, for instance, the so-called main section of the graph
3. Tt is den_ned by

Bolr) =be if lbo| 1|4 Vbe 8lr). C15)

From assumnptions (7), (8) and (3) we know that g(z) and Fy{z} are boundead
functions and so u € ([0, T] : L}()). Applying Theorem 2 with a = g(z)
and ¥y = yg — w(T.-), given £ > 0 we know that the functional 7{gq, 74, £}
possees a unique MINimMuMm gy € L”{,Q {notice that this §y and the solution
3 of (10} depend on z, y, and yo) and that there exists w € sign{5)y. {and
5o w also depends on z) such that the solution Y of (12} satisfies

(T, )+ ulT, ) = i}y <o ' {16] -

We then deduce that the function y := ¥ + u satisfles

ye— 2y +a{z)y = F + [Bluiomxm . in (0,T) x 0

dy .
-,()—gm‘l) on {0, T) = J¢ (17)
T ) = yol) on {}

(T ) = yal Hieye < =,
for
F= = fsq) + giz)s0 + Q0.

v=w(z]and b = Fy(z). Now it becomes clear that the conclusion is reduced
to show the existence of a fixed point for the operator

A L0, T) < Q) — PILA(0,T) x Q)

= Als) = {y satsfying (17) for some ¢ € sign(§)\,, and some b & (2]}

The multivalued character of A comes from the non-uniqueness of the control
win the problem (12) and the muitivalued nature of signi-) and A. On the
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other hand, we know that A{z} contains the point ¥ + u and s0 it 15 always
a non-empty subset of L¥{(0.T) x {1). In order to apply the Kakutani fixed
soint theorem (in the weak form presented in Aubin {1]) we need to check
that

1wz 2 LG, TY % O3, the set Alz) is non-empty nonvex and compact in
LHL0.T) = 01,

2. A is upper hemicontinuous on L*(0, T) = £2) (zee the definition below}.

The proof of both properties can be obtained by adapting the arguments of

[17], 18] to our framework. As many of those adaptar,lona are routine matter
we sh&ll indicate only those concerning the presence of the term #(z). The
convexity of A(z} is Consequence of the linearity of the problem (17) and the
convexity ‘of the sets () and {v € L}{0, T) x 1) - w € sign{3)x.}. The
boundedness of 3 (see ( ) and Proposition 2.2 of [18] lead to the existence of
a compact subset X' C L?{Q) such that J\(-) C & forany z € L{(0,T) = 22).
Thus Afz) is compact if it is a closed set. Let {y,) be a sequence in Afz)
which converges in L*((0, T) x2) toy € X Then there exists some functions
vy, € siga{§) and b, € 3(z) such that

Vi = Dy + 9(2)0m = Fo + 8o mixaynXe 0 (0,T) = Q
E.Jyl‘ =0 on (0, T) % 39
(0, = yol+) on 2

Nya(Ts o) = yal JliLamy < 2

where
Fo = = flso0) + a(z)s0 + Qbn.

Using that sign('l) and 7 are bounded maximal monoione graphs we deduce
that v, — v and b, — b in the weak -topology of L*{(0,T) = ©2] and since
any maximal monotone graph is sirongly-weakly closed (see Brezis [5, p. 27])
we have that v € sign(3) and & £ 3(z). Using the compactness of the Green
funiction associated to the problem {(17) and the smoothing effect we get that
g — y in C([0,T] : L3HQ)) with y solving (17), which proves y € A(z)

Let us indicate the proof of the rest. We first recall that A is upper
hemicontinuous at z € L¥((0.TY = Q) if

limsup a{Aiza), &) < et\(zo), &) forany k £ L0, T = ),

In— T

where )
al A1 k) = sup / k(L oyl oidade.
) yEALz) Y10 TIx
From the compactuess of A(z). for any n € IN there exists y, € Alzn) sueh
that
(A= L M) = / L(f, )yt oidadt,
10, Thxil
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As Alz) C A, the compactness of ¥ implies the existence of ¥ € 4 suckh that
Yr — y in LA(0.T) % ). If we denote O = Dafz,), we know the existence
of v, € sign{ 8, and b, £ A(z,) such that

¥t — Ay, + Q(Sn);’!u = f+ ;{sngy[‘z((g_'[‘)xmu,,xw in (0. T} % 0 I

hta

E{:U on (0.T) % g0
yrt0, ) = yol-] an {1

HnlT, ) = yal Mz < e

with
= ‘JP(SU} + 9(511) + wa

By Lemma 3.1 of [18] we have z, — = (and so 3, — j) strongly in L3({0,T) x
). Using again that sign{-) and /4 are bounded strongly-weakly closed graphs
we deduce that y satisfies (17), with z = z,, for some v € sign{g) and some

b€ B(z). This proves that y € Alzg). o

Remark 1

Theorem 1 can be improved in several directions. First of all, as i [I7],
(18] it is possible to obtain the approximate controllability for the model
P{f, 3} on the spaces {01}, 1 < p < =c. Second. the boundedness assump-
tion (8} on 4 seems to be generalizable to a linear growth condition
there exists Cy and Cy two positive constants such that i
Bl Oy + Calrl, Yhe 3(r), YreR. } {18}
Finally, the Laplace operator can he replaced by a self-adjoint second nrd‘er
uniformly elliplic sperator (for instance modelling the case of a nonisotrapic
conductivity coefficient k(2 in (1)). The case in which f = f{¢{. . u)and 3 =

At r. u) can bhe also treated analogousiy if the time-dependence is smooth
enough. o

Remark 2

[t is easy to sce that the proof of Theorem 1 can be also applied to the case
N M. 1 S o ; . . .
m which the muitivalued maximal monotone graph appear in the left-hand
side of the equation, i.e.

o= Ay A+ flExy) + Qaly) 3 e(e x)y, (19)

‘and 3 satisfies (8) (or more generally {18)). This class of problems appears
in other different contexts. It seems interesting to point out that, agaia, the
behaviour of A(y) when it becomes infinity is a crucial point. Indeed, in Diaz
LS)] it was shown that the obstacle problem, which correspands to the equation
{18} with fit,z,u) = f(¢,z) and
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[{0}, fr >4
Blry= 4 {-00.0], Hr=90
]\@, ifr <9

is not always approximatety controllable. g

3 The Sellers type model.

As il was pointed out in the Introduciion, Sellers assume a nonlinear em-
mision radiation flux bassed on the Stefan-Boltzmann law (see (6)}. [no that

case, assumnption (9) is not satisied and which turns out to be relevant (for

the study of the apprfoximate controilability property}is the superlinear char-
acter of R.(, -, 1) asfu] — oo, A representative class of functions f is given
now by.the condition

F satisfies (7} f(0) =0. f'(s) > 0 for any 5 £ 0 and
there éxists p » [-and some constants Cy, Cy, M> 0 such that (20}
AF() 2 O+ CalsiP for any s€ R with & > M,

The main goal af this section is to show that {20}, and more precisely
the condition p > 1, leads to an obsiruction phenomenon on the solutions of
P(f,3): there is a universal bound function V(i z} (independently of the
coutrol v) which plays the role of an obstacle an |y{f,z;v)| for any control

v and any solution y of P(f.3). Such a property was already observed in

Diaz {9, [12] and Diaz and Ramos [Li] for other semilinear problems: see
in Heary [21] a related result showing an universal energy esiimate due to

‘A.Bamberger. In consequence, it is clear that the Sellers type model is not,

in general, approximately controllable.
. We shall need a technical assumption on dw:

#w satisfles an interior and exterior sphers condition, (21}

Theorem 3 (Obstruction for the Sellers type model)

Assume (7), (8), (20) and (21). Then there exisis a function Y, €
C{[0,T] x {Q\@)) such that for any v € L}(0,.T} = w) and any soluiion
y(t,zyv) of PUS, B) we have

|yt z;v)| € Yeoit.z),  for (t,z) € (0.TI x (2N T}, (22)
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Proof.
Let us construct an auxiliar function Yolt,z) by showing that the prob-
lern

Ve-AY+ 1V =0, n {8, T 1243) )

3

_}— =1, on (§, T = 40 e
o o Y
Y=o, on {0, T) = dw

JV‘(C‘«J =Yyo+i-) = max{lyo(-}}, on O\ @ J

. .
nas a weak solution. [et ¢ : R — W he a Lipschitz continuous function
strictly increasing, convex on {0, 5c) and concave on {—ex, 0] satisfving

lgts) < |f(s)] forse R {24)

and
there exists p > | and some constanis Eyy by, L))

such that [g(s)| > &y + ka|s]? for any |s] > L f (25)

{such a function 7 can he easily constructed due to assumption (207).
Let us prove that problem

—Adz4+9(zi=¢, in (0. T = (D \ &

R
Y- w 30}
P a. on (0,T) x an (26}
T = oG, on {0, T) x Juw
200 = o3, on 2\ &
has a solution Z,,. We introduce the family of truncated problems

Ime = DIm + g{zm) =, in 0, T = {0\ D)

Fom .

—— =1, on (0, T} x 90 (27)
7 o

Iy = T, on (0, T) x dw

Zwl0, ) = min{m.yp . (-)}, on N\ T

where m & IN is fixed. Problem (27} has a unique regular solution. Moreover,
by the comparison principle we know that 0 < S m € zmpr 10 [0, T (O @),
In order to to show thay s, - Zx a5 m — oc we only had to construct
a supersolution. Thanks to the conditions p > 1 and (21) we can apply
the results of Bandle and Marcus (4] assuring the existence of the minimal
solution of the stationary problem

AV +Lg(Vy=0, in0\m

G p
a7 W on df) {28)
Vo= 4o, on Ju
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Define w = w(t) as the unique solution of the one-dimensional problem

dw . i R . |
Et__(z) ,,, E“ﬂ(w(”) =0, (0,7 l {29)
w(0) = Jyo.+ Iz

Since p > I, the sxistence (and the unigueness) of w is assured even in the
case in which [[yo 4 lL=(a\zy = +co. Denote by Ug the unique solution of the
problem :

U~ AU+ 39H) = Q, in (0, Ty = {2\ @) ]
g e
== on (0, T} x &9 { (30)
=0, © on{0,T) x &
Un, ) = : on Q\G. J
Finally, we define ) ‘ i ”
3(t,2) = V(z) + (t) + gt 2). (31)

Using the rcnvex;tv of g we have that T is a supersoiutibn of (27) for any
m € N and therefore z, < Tin'{0, T} {0\ T). Thus. shere axists 2ot z) =
lim, s 2m{f, ). It is a routine matter to ched{ that 2. Is the minimal
sofution of (26} and that =, < 2.
The construction of V¥ (¢, z), minimal solution of 123, is completly simi-
lar, since by (24) wehave 0 < ¥, < z, € Z.0 if Vo is the solution of the trun-
cated problem (23} formulaned in a similar manner ta {27). This proves that
Z is a supersolution for (23), foranyme N, and s0 0 < ¥, < <z,
Finally, let us prove (22). Let v € L*((0,T) x w) and let v{t,z;v) be any
solution of P(f, #).- Then by (8)

—Ay+fly) Q@ in(0,T) < (2\T).

Moreover, we have

c . )

% = Lg;’ on (0,T) x 80
7

¥y <Vt on (0,T) x Jw

y(0,) = J’;(O, -}, on {1 \E?.

Then we conclude that y < V¥, in (0,T) x (2 \ T). In an analogous way we
can construct Y as the mazimal sofution of the problem

Y= AY+f(Y) =0, m {0, Ty x (D\3)
= g, on (O,T‘) % c) (32)
V= —o0, on (0,T) % dw

MO, ) = —yo,- (-} = min{0,y()}, on Q\ T
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N1

and then Y2 < yin (0, T)x(Q\ &), Taking V..(!.x) = min{ V5 (¢, 1}, Yotz

the prool of {22} is complete. p

Corollary 1
Assume the same conditions of Theorem 2. Let yg € L0 be such that
there erists a positively measured set D in O\ & such thai

lwezlf » YA T2} we.zeD, (33

Then. for any v & L*{0,T) ®x w) we have

Tt w) = wal- Moz = EX(T o0 ) — yal iy, {34)

F [ - v A : - 2 . ) + ;
In particular, prodlem P(f, 3) is not approrimatelly controflable. o

Remark 3
e . . . , . L .
Using the functions }', and ) and monotonicity properties it is possible
to show the existence of (Y1, and (Vo). minimal and maximal solutions
of the multivalued problem

Y= AV + (e QB(Y), in(0.T) = (2\@)

o, e

br —! ; on {0, T} = d%} (35)
¥ = dee, on {0, T) = dw

J0 ) = yal- ), on I\E

ze such that any other possible solution ¥ of (33) (i.e. xakinrg any finite or
infinite value on (0, T} x dw) satisfies '

Vi S (V). SY S (D) SV on (0,T] % (@),

We also remark that the behaviour of ¥} near dw can be estimated from

above and below in term of Cd(z, ) = {see Bandle and Marcus [3], G.Diaz
and Letelier (8], Bandle, G.Diaz and J.I.Diaz {2}, [9] and Diaz and Ramos
[14]. o

The negative result given in Corollary 1 leads to the following question:
let yg € L2(52} such that

(Vo) (To2) Sya(e) € (Vo) (Toz) forae refl)o (36)
[s it possible to find v, & L*((0, T} x w) such that
1T vy = pal Ml < ¢
for a given & > 07. Such a question was already raised in Diaz [12]. A partial

positive answer [relative to the simplified case 4 = 0} is the main objective
of the work Diaz and Ramos [L3].
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4 Conclusion.

The results presented in the above sections show that the sole difference
between the Budvko and Sellers type models which becomes relevant when
we study the approximate controilability of those simple climate models is
their distinct behaviour, for large value of the temperature, of the mean em-
mitted energy flux R,(¢,z.u} (i.e. function f in the simpiified formulation
of P(f,#)). In the case of Budyko type models, Theorem [ shows the ap-
proximate controllability for any arbitrary temperature distribution yy. For
Sellers tvpe madels the answer is negative for some temperature distributions
74 (see Corollary 1) but it seems possible to adapt the techniques of Diaz and
Ramos-{15] in order to give a positive answer in a reasonable class of desired

"states yq (see (36}). 7

We end this work by remarking that at present the mean Earth surface
temperature is about 15°C.This implies that the Budyko choice for the mean
emmitted energy fux R.({{.z.i) can be understood as a linearized version

_of a, perhaps, more exactly choice {the one by Sellers) but of a simplier
" treatment and leading to a negligeable error at least in a moderate range of

temperatuzes.
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