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1. Introduction

The main goal of this communication is to present some of the results of
Diaz and Tello [1994] concerning the stabilization of solutions to a non-linear
model arising in Climatology. The model under consideration is based in a global
energy balance of the atmosphere temperature over relatively long time scales,
The so called climate energy balance models were introduced independently by
M. Budyko [1969] and W. Sellers [1969]. The energy balance is stated in the
following terms:

Heat variation = H, — R + D,

where R, represents the solar energy absorbed by the Earth, R, is the energy
emitted by the Earth to the outher space and D is the temperature diffusion. If we
denote by u the temperature of the Earth surface then usually R, = @5{z)8(u)
with Q the Solar Constant, S{z) the insolation function and fA(u) the coalbedo
{which is a nondecreasing function of u of the type f(u) = 0,7 if v > ~10,
B(u) = 0,4 if v < —10). The term R, is also assumed to be a non decreasing
function on u and can be taken as R(t,,u) = g{u) — f({,z). Assuming (for
simplicity) the heat capacity and the diffusion coefficient equal to one, we abtain
an energy balance model of the type

(P) ut——Apu+g(u)EQS(m)ﬂ(u)-{-f(t,rs) in (0,00)XM
u(0,z) = uo(x) on M

where

e (M, g) is a compact bidimensional Riemannian manifold without boundary
(as for instance M = S§? the unit sphere of IR3).

o Aju= divae(|grad yulP~2grad yu), p > 2, where grady is understood in
the sense of the Riemann metric g. Budyko and Sellers considered p = 2.
Later, Stone [1972] proposed the case p = 3 arguing that the diffusion
coefficient must increase as the gradient of the temperatureincreases.

o g : R — IR is a continuous and strictly increaéing function such that
lg(s)] = Cls|" for some r 2 1 (for instance g(s) = C's Budyko [1969], or
g(s) = C|s|*s Sellers [1969}).
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o S:MwIR,S(I)>so>O,SEL°°(M)‘

o A is a bounded maximal monotone graph of IRZ, and m < b < M for any
b€ B(s) for any s € IR (some times § is assumed multivalued at u = ~10
Budyko [1969] or § locally Lipschitz, Sellers [1969]). ’

® f € L®((0,00) x M) (Budyko and Sellers proposed f constant).

In order to recall the expression of the diffusion operator A,u on M we
start by comsider an atlas {Wy,wilren on M. Let (8x,1) be thél coordinates
frame:work in wx(Wy) C IR? and let a, be a partition of unity subordinate to the
covering W,. Then we assume g = T cerg* with ¢* given over each local chart.
Given p € Wy C M the set {er =50 e := 52—} is a basis of the tangent space
TPJ\;t,ﬁWe consider the tangent bundle T M a:AU,,EMT,,M and for v : M = R
we define

grad yu = Sfij"QEE;-

Yi

IfEX: M - TM we define

. 1 d :
d N = ¢
VAt Tots O (X \/detg) .

Finally, given u : M — IR the diffusion operator is defined by

Pl ij a'll
g 51
By;

1 .
z, and g are the coefficients of the inverse
. For p = 2 the above expression coincides with the Laplace-

du
Kl

=€
g ay, k

Ay = 1 a g
T Vet ay; \ VOt

where g1 = 0y, 10 = o, |- | = g(-, )
matrix of g = (g;:)
Beltrami operator,

1 a /. Ju
Au = | g9 /detg—
Vdelg 3y (g T8y
In the case M = §? with the spherical coordinates atlas some authors assume u

as a fun.ction oxllly of ¢ (latitude). Introducing the change of variable z = cos ¢
we obtain the simpler expressions

Byu = div((1 - i) Au= div((1— z*)u.)

and so, we obtain the so called one-dimensiona

! climate model [notice the presen
of a degenerated weight in the operator]. | ’ -

The general theory (existence and uniqueness of weak sol
class of problems was carried out in Diaz (1993] for the one-dimensional model
and then generalized in Diaz-Tello (1993] to the bidimensional case. The exis-
tence of solutions was obtained in the space C([0,00); L} (M)) N LE, (0, co; V)
where V= {u & L}(M) : gradyu € L/(TM)]. As usual (sce og. Aubin

utions) for this

[1¢  and Chavel [1984]), given p > 1 we denote by LP(M) the set {u : M —

IR measurable : [ lu['dS < oo} where dS = 3 any/det g*dfydips. This set is
M Neh
a Banach space with the norm '

[ urds =¥

A€A

f " )a,\|u(w;l(9,\,g.o,\))]”\/detg'\dO,\dcp,\.
LY A

Analogously LP(TM)={X M 2 TM : /M(g(X,X))gd.S' < oo}. Concerning
the uniqueness of weak solutions the answers are of different nature: there is
uniqueness of solutions to the Sellers type model {i.e. when [ is a locally Lipschitz
function) but this is not the case, in general, for the Budyko type model (i.e. when
B is discontinuous or multivalued). Nevertheless, the uniqueness of solutions
holds in the class of functions satisfying a suitable "nondegeneracy property” at
the level u = —10 (see the mentioned references). '

One of the main interest of this kind of models is its simplicity for the
study of the effect of variations on the data (mainly on the solar constant Q).
This study was firstly obtained of p =2 heuristically {see e.g. North [1993] and
its'references) and more rigurously by Hetzer [1990] for the Sellers model. In this
communication we extend some of the above results to the general formulation
(i.e. p > 2 and B not necessarily Lipschitz continuous). The stabilization of

solutions to the solutions to the stationary problem is proved firstly by using some .

abstract results (see Section 2) and after by more ad hoc arguments (Section 3).
Finally, some partial results on the structure of the set of stationary solutions.are
presented in Section 4.

2. Some a__bstréct results for the Semigroup associated to the Sellers
type Climate Model, -~ .~~~ - ..

In this section, we shall always assumie that g is a locally Lipschitz contin-
uous function and that f(t,z) = f(z) with f € L2(AM). We define the nonlinear
operator Au = —Au -+ glu) — QS()B(u) - f(z) with D(A) = {we V: Aw €
L*(M)}. Then we have S o

Lemma 1. oo - .

i) A generates a semigroup {S(1)}iz0 on LA(M).

i) VA> 0 Jy = (I + AA)™! is a compact map from L*(M) into L}H{M),
i33) S(t) i3 equicontinuous on any compact interval of [0,00)..

iv) 5(t) ia a compact semigroup for any t € (0,00). ’

Proof. Parts i}, 11) and iv) are toda.y‘more or less standard (see Vrabie [1987]
and Diaz {1993)). Part iii) is obtained by proving that if ug € V N L*¥(M) then

~ue € L}, ((0,00) x M) and u € L®(0,00;V) in a similar way to Theorem 5 of

Diaz-Thelin {1994].
v @
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Jollowing Temam {1988] we introduce some notions:

Definition 1 A set A C [*(M) is called an attractor for 5(t) f St)A = A
¥i.2 0 and 3 U an open neighborhood of A such that Yug € U, distra (S(t)uo, A)
tends t0 0 as t — +co. Moreover, A is a global attractor of S(t) if A is a
compact atiractor and uniformly attracts any bounded sel B of L} M).

Definition 2 B C U ¢ LY (M) is absorbing in U if VBy € U bounded, Jt1(By)
such that S(t)By C B ¥t > t1(Bg).

Proposition 1. Assume p = 2. Then there ezists a compact global

attractor for the semigroup {S(1)}iz0 associated to the Sellers type
model.

Proof. Multiplying by v and using Hélder and Young inequalities, we obtain

d
Tt Mizagany < =Cillult, idaany + Coy Cr,Co > 0.

By Gronwall Lemma,

C C
Ity M Zaany < lluolle= (1~ e™M) s ZLas t s oo,
Gy C,
which shows that the set B = Braeay(0, gj + €) is a bounded absorbing set in
L*(M). Then, using the compactness of the semigroup and an abstract result

{see Temam [1988], Theorem 1.1) we obtain that the w—limit set of B satisfies
w(B)=A
i

A better information can be obtained by using another abstract result
{Temam [1988}, Thesrem VIL4.1),

Proposition 2. The functional

S =3 [ Vel + [ 6w -0 f swiw- [ o
where r
0j=4 and G(r) = [ g(s)ds
s ¢ Lyapunov function for the semigroup S(t).
Corollary 1. Let & be the set of fized points of the semigroup 5(t), then

A= M, (£) where M, denotes the unstable manifold at £. Moreover,

if € is a discrete set, then A is the union of £ and the heteroclinic
curves.

3. St lization of Solutions te a more general Climate Model.

In this section we shall use "ad hoc” techniques valid for B a general
bounded maximal monotone graph (remember the case of the Budyko type model)
and [ alse dependent on time. We assume that there exists f., € V* such that

41
j:-: ”f(T,) - foo(‘)”v‘dT — 0 ast— o0

As usual, given u be a bounded weak solution of (P), we define the w-limit set of
u by ;

w(u) = {1tee € VN L®(M): 3t, — +oo such that u(t,, ) = ue in LH(M)}.

Theorem 1. Let ug € L®(M)NV. Then

(1) w(u) £ 0. ‘

(i) If ug, € w(u) then 3t, — +oo such that u(t,+s,) — ug, in LY~1,1; L M))
and u,, 15 a weak solution of the stalionary problem,

(P2) — Aptles + gltas) € QS5 P{Uco) + foo tn M.

(i) In fact, if us € w(u) then I{i.} — +oo such that u(ly,) = ue
strongly in V,

Proof. i) We first prove that u € L*(0, 00; V). The conclusion is then obvious.
ii) The first part comes from the integrability of u,. To prove the second part
. 53]
we consider the test functions v(t, ) = {(z)p(t — {,) with £ € V N L™(M) and
1

w e D(—-1,1), ¢ 20, /l'p= 1. Then

[ [ weete=ty+ [ [ vuprvuvepti—t s [ [ swept-t)
et Jar 7 M o1 Jm te=1 S M

tatl tati
= [T @utett—t) = [T [ femeti - ) =€ Blulte).

ta~1 JM th=1 JM
Changing variables, namely s = ¢ — ¢, and defining U, (s,2) = u(l, + 5,2), we
obtain the a2 priori estimates

| Un lzeo-1,000= Crs |l VU leesioriinnmamS Can |l 2n lessgotzun < Ca
and thus the following convergences

Up — ues in L*((—1,1); 1) Vs > 1
(VU — Y i LP({(—~1,1); LP(TM)) Vs> 1
fn =z € ) in LA((=1,1) x M) Vs> L.

Passing to the limit we arrive to

/_11 fM YVie + _/Mg(“co)f = jM Q570 + /Mfc.gé YEE VN L2 (M).
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The main difficulty is to prove that f Y (s, )o(s) = [Vum, *Vue. For this,
1

we use a Minty type argument 1‘educin—g the problem to the inequality

n—co

1 . ’
lim ] f TV IV = [V~ Vy) - (Vite = X)ipls) 2 0
1 JAL

for any X.= Uee + A€ (this holds due, essentially, to the coercitivity of the diffusion ‘

operator).

iii) This part also uses the coercivity of the operator and the fact that
1 .
/ / (VU2 VU, = [Vl V) - (VU = Vieo)ip(s) = 0.
-1Jm

(We send the reader to Diaz-Tello [1994] for details).

4., BExistence of Stable Stationary Solutions.

In this last section we examine the sensitivity of the two-dimensional equi-
librium climate model to changes in the solar constant (. It is well-known that
the 0-dimensional model presents a S-shaped bifurcation curve (see e.g. North
{1993]). Some of those aspects remain true for the 2-dimensional model:

Theorem 2. For any () > 0 there exists at least a stable solution of
the stationary problem (P2) associated to (F). '

Proof. Applying the Weierstrass theorem we show that the function J defined
by (1) has a glabal minimum wq on V. Moreover, as J is Gateaux-differentiable
wg is a (stable) solution of (P2).

Under some suitable assumptions we can prove uniqueness of solutions for
Q large (resp. @ small) enough.

Proposition 3. Assume

(Hg) 37 <1 such that B(r)=m V¥r<r and B(r)=M V2,

(H;p) 3 Q1 >0 such that the solution u? of —Apu+glu) = @5(z)m+ f
. in M satisfies that u®(z) <r, a.e. z € M. Then

i) V@ € (0,Qy] the problem (P3) has a unique solution.

i) 3 Q; > G such that V@ € [Q2,4+0c0) problem (P2) has o unique
solution.

The proof is based on the comparison principle applied to the operator A, + g.

Remark. The bifurcation diagram for the Sellers model (f Lipschitz) and p = 2
was studied in Hetzer (1992]. The extension to p # 2 and § a maximal monotone
graph satisfying (Hjs) is under current research.
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