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1 Introduction.

In 1955, John von Neumann wrote: Probably intervention in atmospherie end
chmate matters will come in o few decades, and will unfold on o scale difficult
to imagine at present ([26]). Today one phase of this programme is almost
a dream come true: the "rain making” research initiated by I. Langmuir and
coworkers have originated already sucessful experiences (see Dennis [4]). While
is not easy to evaluate the significance of the efforts made thus far, the evidence
seems to indicate that the aim is an attainable one.

The main goal of this work is to carry out a theoretical study on the remainig
part of the von Neumann programme: the control of the climate. Our modest
poal is to study such a general philosophy by considering simple climate models
which introduced in 1989 by M.I. Budyko and W. D. Sellers are today well-
accepted in the Climatology literature.

In a first part we recall some of the important facts on the modelling the
Earth climate by the so called Energy Balance Models and some of the results
on their mathematical treatment. :

In a second part we consider the question of the controllability of those mod-
els. Continuing our previous research (see Diaz (8]) in wh ich it was shown how
the absiruction phenomenon leads to the general uncentrollability of the Sellers
model, we show here that a chance still remains: the restricted (approzimate)
controllubility. We will show that a very large class of desired climate states are
attainable (in a weak sense) by introducing suitable spatially localized controls
on the climate system.

2 Energy Balance Models.

Climate models have different characteristics than weather prediction models:
the time scale is completely different (centuries versus days or weaks) and their
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So, according to the time variable the mode]s
dynamical madels. With respect to the spa

ce variable the models are called
as 0-D zero-dimensional (if only

the mean Earth temperature is analized), 1.D
latitudinal or vertical models, 2-D horizontal or meridional plane models

0 up the most sophisticated 3-D General Circulation model.
models have been also considered in the literature by

and
More complex

coupling the study of the
rent phenomena from the Glaceology, Celestial

[18], North [27] and Henderson-Sellers and Mc Guffie [

In this work we shall pay attention to a general 2-D horizonta] energy balance
model which takes into consideration the main structure of the 1-D models
introduced (independently) by Budyko [3] and Sellers [30].

If we represent the Earth by a compac
boundary M and we denote by u(t, z) th
Earth surface temperature, our model js
equation

t two-dimensional manifold without
e annually {or seasonally) averaged
formulated as the reaction-diffusion

o, z)uy(t, z) — div(k(¢, z)grad u(t,z)) = R.(t,z, u(t,z)) — R.(t,z, u(t, z)) (1)
where the heat capacity e(t,z) is a positive function largely determined by
oceans (recall that the 70 per cent of the Earth's surface is covered by oceans).
After averaging ¢ ~ 1.05 x 10%Jm=2K-, The diffusion operator jn (1) has &
double justification:
div(k grad u) = div(F, + F,)

with F, = k. grad u the conduction heat flux
Meteorology and Oceanography it is usuall
T are the velocity and temperature of the
the velocity is eliminated using the eddy d

and F, the advection heat flux. In
¥ assumed F, = —vT whera v and
fluid. In planetary scales O(10*Km)
iffusive epprozimation
divFy > div(k,grad u) (2)
a positive number (and more gener-
rential operators div and grad must
Riemannian metric, An important
who pointed out that in the case of rotating at-
proximation really leads to 5 nonlinear diffusion

where the eddy diffusion coefficient is again
ally a positive function). Obvicusly the diffs
be suitably understood with respect to the
variant.is due to P.H, Stope [31]
mospheres the eddy diffusive ap

()E}CI&"()K Oi the fotm
dzl‘(“c gi(d t!g d [L) (3)
1()r SO le’ﬁ 0 (se or IIl €q {10 ( ) € THOIINEe
e 31 f mula. 2-24). terms ()1 HaLlon 2 th I Ill near
€ at ( )> ( Y nt e mncereas:
operaLor 3) rmeans that the edd dlﬂu&lon COeﬁcle k must ease as ”le

i raged temperature increa.ses..
gra?f‘intsi:rhznae?;y ibsorbed by the Earth R, is assumed to be of the form
e

4
Ry = QS(z)B(u) = (4)
l {f radiation
1 he annual average amount o
i Solar constant (ie. . . ; i
e @ lsuflkilte tinie passing through a unit area perpendu:}ﬂar to c;:ha: S];l‘i isozlay; :
o the gerth orbit). Averaging @ ~ 1.370 W/m?*. S(z) is the distri pusion of
atl e dfirt'on over the Earth and A(u) is the planetary coalbei;io ze(pr)es.;e aSSUngd
fraction ab i ture. Usually B{u) is
temperature
i bed according the average : ' med
fra(:mn algsncilecreasing function of u taking constant values a; 1a,nc; (cz) 'if- EL :
- tive s d less than one) for small and respec?l\.rely large lzra L; ! O.se ‘
POSltlt"e jnnpletely clear how is produced the transition: Budyko [3] prop
is not co
i inui = —-10°C
discontinuity at u 3
ay over ice-free {z e M ult,z) > ig% (5)
Alu) = { a; ovér ice-covered {z € M :u(t,z) < 10}

i i 1 ise function
\ continuous linear pilecewise
t to that, Sellers [30] propose a ‘ et
In' ilontr::ry large ’increasing rate near —10. We remark tl;lf;u;r; tiss;ss(t S
erns d models the terms ( S(z) are replaced by a more gener function Si;lce
ffVeraget” eriodic in time. This is of relevance in the study ohacf ﬁtinental
. pover the summer is a necessary condition for the growth o t;o ey
SIIIO‘YC::Z for instance, the ones of Antarctica and \C/%Vrezlland (sieou te work by
North : d its references). We also poin
] and Short [28] and its : hat the
Nojhﬁrﬁeg? ilouds is one of the most important open problems in the study
mode
ergy absortion. ' ' ciclly and
the;‘c;}?z;;ngzmmitted energy flux R.(t,z,u) is cletermmedtems;m(:)r 13;1 e
depends on the amount of greenhouse gases, cl(};ld::: and w:. ::ithi n the
to assume that R. increase 5 &
here. It seems natural : but the
fa.‘L‘mv(;:ginegrrs-ite: is controversial: Sellers [30] propose a Stefan-Boltzman
incr
fa 198 (8)
R, =ou'(1-m tanh(W)) . )
1 ivity an
here u is represented in Kelvin degrees (here ¢ > 0 is ]che :ﬁ?‘fmn glrl and
:7vl > 0 the atmospheric opacity). Budyko {3] replaces it by
type radiation ansatz R A+ Bu | -
tem-
imati = 15°C (the actual mean
ich is a li ximation of (6) near u :
Whlc? 15 )EL ?I[;i:rAallp;O W/m? and B = 1.9 W/°Cm? We point out that the
ure). = ‘
It)::rz R, takes also in account the anthropogenerated changes
3
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- of solutions of the associated st

_in the atmosp

For our mathematjcal study we can simplify the model assuming ¢ =k = ],
On the other hand, it is useful to treat the possible discontinuous function g
(as, for instance, the one given in (5)) in the class of maximal monotone

of R? (see e.g. Bresis [2]). So our problem can be formulated in the fo
terms

graphs
llowing

(?) { U — Apu -+ gu) € QS(x)A(u) + flt, =} in (0,00) x M
u(0, ) = uy(z) on M

where g is a continuous and nondecreasing function. H
Re(t,z,u)= g(u) — fle,z)), Se C(M) with S(z) > 0 for

& maximal monotone graph of J? such that

ere we are assuming
any £ € M and § is

D(f) = R and there exist m and M satisfying }

O<m<bs M Ve B(r), Vr e R. )
We recall that Ay, represents the Laplacian aperator on A4 - H M =52 (the
unit sphere of JR*) and we denote by ¢ and A to the colatitiide and the longitude
then
1 8, . Bu - 1 8%
Aar = Sinqs(%(smqi%-) + sing 'B—A_?) (%)

The mentioned one-dimensional models arise whe
on the same latitude circles. Introducing the v
then (9) leads to the degenerated operator

0 u is assumed to be constant
ariable z € (0,1) by = = cosdh

g | Ou
—((1 - 222y,
| 5o -a %) (10)
We point out that from the climatological view point one of the majn sub-
Jects of research is the bifutcation diagram (with respect to () of the number

ationary problem and their stability (see the
surveys mentioned at the begining of this section),

.For a mathematical approach we send the reader to the works by Hetzer
[19], Hetzer and Schmidt [20], Xu [32), Dias [6] and Diaz and Tello (12], [13).

3 Controllability and Obstruction.

The main goal of this section is to study if possible ahtropogenerated actions
n the climate system allows to carry the average temperature from a given
distribution ¥(0,z) to a desired distribution yy(z) after a given period of time

T. Such type of questions was already considered by J. Fourier (15] and some of

- von Neurmann [26)
en this question and
s already introduced
ciety is obvious. It is

the study of the irreversibility of the antropogenetic change:

here since the beginings of the Industrial So

also clear that many of the actual world decission on greenhouse gases emmision
e alsf’ tinsstsgrlszziy;)f the question under conside.ratiovn can b.e thc—;
. 'mathe'matlcaan open submanifold of M, T > 0, an initial distribution ot
P “’ M — IR and a desired temperature y4 : M — R, we wan
s oon uol‘v : (0,T) x w — IR such that y(T' : v) = yg where y(- :::l)
P contfot' n-of I;roblem {'P) replacing f(¢,x) by f(t,m? + v(t, ) Xw w}ll z
e acte fot;' function of w. When the answer is positive we say thal
e ﬂ?e Chara‘:ltebl;s 1I(ihwm'theless, the parabolic character of the equation of (P)
.('P) oy controlle 5-1 rizing effects making impossible our goal fzxceph for a very. .
l'mp‘hes lass rF iu ?1'ed states yq. A relaxed statement comes in a nai.:nrgl ;lvayd:
e da%s otc izntrollability. Given € > 0 we seek now a control v, (de I}zn
the‘appmm(;n;’) x w) such that d(y(T,v:),a) < €. In the sz.ove exgresjl i
prA ts the distance measured in some space of functions defined o
di-,) replieSEg;(M) ar, more generally, LF(M) with 1 SP.S oo)... - )
o ’(_'L?}fual 3t’ure of ou,r sl;atial domain M leads to some ad(}xtmnal (and tezn?;:; )
ties i ion which still gives a repres ‘
Fﬁfﬁcumes " om; St";i{- i: Is:rlxr;lrzlii)f;;rlr;ilas&uations corresponds to thez caﬁse Qn
‘def'j' e vepine enf\l/( by an open regular bounded set 2 of Ez {(here I canaé
e fel;’laci ﬂ?l‘}y with N € IV). As boundary condition on (0Q,T) x
e e ‘of Neumann type since it leads to a set of test functions
e e o o?et'on véry similar to the cne corresponding t.o thfz case of a
ol w'eak form'lfl le without boundary. Another unrelevant simplification is
Riemannfaﬂ min (1) 0'I‘hus the new formulation is the following: given w aj?{ opeﬁ
s 0 5 (T o) repeemats he solation o
that d(y(T : v.),ya) € & where, in general, y(T :v) re
problem

. H A Q
v~ Ay + gly) € QS(x)Bly) + vxe  in (0,T) x
O on (0,7) x 39
(P 72 =0
7 o on Q,
y(0,) = w(*)
i t it vector to Q. !
WheIre . lietizjsu v:;rllin(Dfaz [8]) it was shown that the. answer lto thef ?ﬁf:’:;_
at: ca:)rljtroliability property depends on the asyn}ptotié: behax;:soi\:;:vz the non
? ities of the equation (and not on its regularity). So, a p
inear: ‘
collected in the following result

: Assume y([ 1}4 € LZ(Q) 5 satisfying (8) and g a nondecreasing _functwn
3 0, i |
t s Ci+ Cals Vse R, s M 11
8 th ‘g( )I S 1 Zt‘l 3 I l > ( )
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for some nonnegative constants Cl, Cy and M. Then problen, Pu) i3 approzi-

mate controllable in L}(Q), i.e. there ezist ve € L*(0,T) x w) such that

f y(T: Ve) —yq ”L?(Q)S E.

The above theorem can be easily extended to the case in
L*() by LP(2) with 1 € p < 00 or C($2). The main idea of the proof is the
application of the Kakutan; fixed point theorem similarly to the worlk Fabré,
Puel and Zuazua (14] (see also Henry [18], Lions [21) [23], Diaz [7] and Diaz and
Ramos [10] [11] for other related works), :

We point.out that Theorem 1 applies to the special case of the Budyko

model since there 9{y) = By and (11) fails for the Sellers model (assume m = ()
in (6) and also « > 0 in order to reduce the study
). In fact, it was shown in Diaz [8] (see also [5]

which we replace

to a nondecreasing function
) that if we assume

9y} = My/"'y for y € R and same A > 0 and p > ] (12)
then an obstruction phenomenon appears

Theorem 2

Assume (12) and that d satisfies the interior and exterior sphere condition,
Let yo € L(Q). Then, there exists 4 function Y, ¢ C([0,T] x (1 ~ @)) such
that for any v e LZ((O, T)xw) and any solution y(¢, x v) of (P,) we have

Iy(tv": ()l < Yoo(t,-'lf') for (t,z) e (0, TJ X (- ). (13)

The obstruction function Yoo in (13) was constructed in [8] such that
Yo{t2) = 400 on (0,7) % Qw
Q‘%f-(t,:v) ={ on (0,T) x ag. -
In consequence, condition (12} implies that problem
proximate controllable since if [yalz)] > Yo (T, z) a.e.
subset D of ) ~ & then for any v € L*((0,T) x w)

{(P.) is not (in general) ap-
Z in a positively measured

”y(T, l)) - yd“L’(ﬂ) -.>_ ”Ym(Ta )— yd”LE(Q)

and 50, if € > 0 is small enough, it is imposible to choose v satisfying the required
properties. We remark that a Previous uniform estimate (independetly of the
cantrol) for superlinear equations but when the control acts on the boundary
was due to A. Bamberger (see Henty [18]). Due to the relevance of the Sellers

model, a natural question arises: is problem P, approximate controllable in o
smaller class of desired states Ya?

8 i it to the above
i ibuti i k is to give a positive answer
n contribution of this wor . posi e
’It‘;}'lenm;‘lor the sake of the exposition we shall simplify, even more, the mode
question.

under consideration to

= Ay+AMyPty =vx. in(0,T)x 0

(P 2 =0 on (0,T) x 8%
p an
v(0,4) = yo(*) . on {l
' d

The extension of the following results to the case of proble'm éPM), assume
(12), is merely a technical matter and can be carried out as in [8}.

ists in 1 i imate (13)
i 1 ts in improving the estima
b oint of our approach consis m the
b; Tl;}t::.:lg?lrg lsrzfni sharp obstruction functions. This is the objective of the next
y 0

result

ition 1 _ . v
Progizse:z yo € L) there emist ¥ ,, Yoo € C((0,T] x @ — ) such that Y.

s o weak solution to the problem

Y =AY+ ANYPPL=0 @ (0,T)x(2~3)

0,T) x dw

Y .=—c on (0,

La_g on (0,T) x 89
an

Y (0,) = yo() on {1

i3 "o = + T) x Ow.
and Y .‘mtisﬁes the same conditions CICE:Dt that Y o0 o0 0N (0, )
-2}

Idea of the proof. As'in Bandle, G. Diaz and J.I. Diaz (1], given N € IV we
a . ~
define Y u as the (unique) solution of th(? problem
Y, AY £ A¥P2Y =0 in (0,T) x (2 —B)
Yl =-N on (0,7} x Ow
?l—; 0 on {0,7)x 09
(0, ) = Supl(o)-(-N} on %

where {yo)-{z) = inf {yo{2),0}. Using the ma.ximur'n principleﬂand_ t)l)le;zi;utmhz;
i 1 it is easy to see that there exists 2, € C((O,T)?< ( -—w, ;
P <¥,<Y¥,<0. Then wecan define Y (t,z) = th'_.,JG }_N(t,:f)' an

f;odiéiiiéy_a?;u;u:nlts—it is proven that ¥ satisfies the requiered conditions.

: - Y : ly similar.
The arguments for 1", are completely

. G
We point out that if we assume, formally, ) =0 1}1 Pw‘then the obsr’tr;xz ion
functiorll)s of Proposition 1 is sharper than the ones given in Theorem 2, i.e.

Y oo(t2) € ~Y wlt,2) ¥ ooft,2) € Vool z).

N are in a condition to state our resiricted approzimate controllability
ow we

criterion:
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Theorem 3 v ‘ .
- Let yg € C(T) and consider ¥a € C(T) such that

Y oolTi2) <yyla) < Foo(Thz) VoeQ—am, (14)

Then for any € > 0 there exists v € C([0,T] x @)

such that if y(t : v) is the
corresponding solution of (P,) we have

l¥(T: ) - yd”c:(ﬁ) e (15)
The above statement is an obvious consequence of the following more general
result:
Theorem 4

Let yo € C(N) and let e > 0 fized, Consider y; ¢ C(Q) such that
Y ofT,2) ~ € < yuz) < Foo(T, 2) + ¢ VreQ-m (16)
Then there exists v, € C([0,T) x @) salisfying (15),

Remark. The assumption (16) is optimal.

Indeed, assume v, such that (15)
holds. Then hy the comparison principle

Y oltiz) <yt o:v) < Poltyz) Wt,z)e [0,T) x (2 ~ m)

and so

Zm(T,x)‘“f<y(T# ZUJ—ES yd(r)Sy(T,:v_:u5)+e<"}7—m(T,m)+e

which proves (14).
The proof of Theorem 4 consists of several steps,

the restricted approzimate controllabiliz
controls actuing on the boundary

We start by proving
y for an auxiliary control problem with

Theorem 5

Let yo € C(R=w), ¢ > 0 fized and let
there exists u, C([0,T] x 8w) such that
the problem

4 € C(0 —w) satisfying (16). Then
i §(t,z : u.) denotes the solution of

.f’t—A!'l+,\11]|P~2ﬁ=0 in (0,T) X (2 —w)
{Pa-u) y=u on (0,T) x dw
T =0 on (0,T) x 80
5(0,z) = Yo(z) on Q -1,

we have

T 2 ) = 4 (Yogamn < e

The proof of Theorem 5 uses another auxiliary result:

| o G) and
LerrLl:SlaG be an open regular bounded set of RN, Fora e L=2(0,T) x G)

. : !
: lution of the linear contro
7) gt denote by y(t,z @ u) the s0
v € C(G) given we

prodler A =0 in(0,T)xG
— Ay +ay 1
| gl: u con (0,T) x OpG
(PLIS 2 g on (0,T) x 35 G
dn

Mo )=ut) oG | )
here G = OpGUONG. Lete > 0 and ya € C(G). Then (1) There ezists
where = _
ue € C([0,T] % OpG) such that

W (T, s 2ee) = val Mow) < & ’ (17)

1 2 i
M r there ezists ¢ = (V) > 0 and twe functions ¢ and h such tha
oreover,

wlts5) = hit, 2T = 07 28, Mosgumceony (19)
e h(t,z) € sign(%?-(t,:v')) Y(t,x) € (0.T) x dpG. (19)

; L : .
(i1) If a 2 0 ae. on (0,T) x G, the function u, given in (18) satisfics tha
i) Ifa>0 ae , .

{20)
Nudlcroaxasey £ €

for some C > 0 independent of a.

d]](:e(i 111 |)3| an(l l4 We 5 Y T = C(CT) nd £ 1ts
. tart b deﬁnlﬂg the space i’ al 1 in v

( .8, the set Of Balle measures Of boundEd variation: YOS]d& [33 P- 119).

(lua.l 1

i blem
Given wp € V' we consider the retrograde proble

i i intro-
Sketch of the proof. Part (i) is an adaptation of the duality method intr
etch .

: G
—p, =~ Aptap=0 in(0,T)x
(pt 0 ? on (0,T) x IpG

(PLR)§ 5 -0 m (0,T) x OnG
on
@(T,z) = po(x) on G.

Il Qpo on W 1 1tiv ber
A P 1 that there exists a pOSlti € num

i P 141 5.5 of [14] it can be shown ‘ :

s((; PEII:ldlIl:t;n the dinEen]sion N) such that the solution ' of (PLR) sat:sﬁes
q €

that

We introduce the functional

| L — 191925, 1)ldodt)? + elpallvi— < e @0 v
Hgo:ayai=5( [ [ T —trgal

9 . : (21)
L{go,0) i= (T = t)qg‘fl— € IN(0,T) x 8pG)
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It is clear that J is a strictly convex and continucus function on V.. More-
over using the unique continuation theorem (see [25] and [29]) J is a coercive
functional )

liming J(E0i0ya)

. fealyi—co ooy

(see Proposition 2.1 of (14]) and so J achieves
%o in V. The associated Fuler-
satisfying

(22)

its minimum at a unique point
Lagrange equation implies the existence of A

h € sign(L(pq : a))Xo.11x0pG
and

T a6 i
0= /n aDG(T - t)qé;'hdgdt + €[[a + bolv — [Bolvi]— < 4, g >vv (23)

for any 8y € V' and where § denotes the solution of (PLR) replacing ¢, by 4.
On the other hand, multiplying by 6 the equation of (PL) (with « given by

(18))
/G Y(T, x)bo()dz = — /0 ’ /a y ug(a',t)gg(c,t)do'dt. (24)
From (23) and (24) we get :

< ¥4 = YT )80 >y S elldo + balve = |Bolv) < elfoly

and in consequence

¥4 = Y(T,-), 60 vy <.

6allv- -
In order to prove part (i) we denote by %o, and Bg 4. the positive and negative
parts of @g. Let ¢ the solution of (PLR) corresponding to the initial datum 3,
and let 1. and let ¢ the solutions of (PLR) essuming a = 0 in the equation and
corresponding to initial data Po+ Po, respectively. Then, by the comparison
principle we have 1 _ L@ <Py, ¥ <0 and ¥+ 2 0in (0,T) x G. Besides

) <
"y(Ta ) - yd"c(E:') < sup
dogV?!

db- _ B _ oy,
=X s ¥
o 2 Ea vl (0,T) x 8pG. (25)
Then, for any vy € V' we have
I{pa s a,y4) € (o yq) A (26)

where I is the functicnal (independent of a) given by

T

i ,
Hpo: ) 1= § (/onaDG(T —ty max{f%"":(a,tn, 1%‘i¢(a,z)|}dad:)

+e ” Po ”V' -< Ydy@o Zyxyr .

From (22) we deduce that

¢ I(wpo @ ya) >

limin
P

So, there exists M > 0 (independent of a) such that
1

oo y4) = :E: || wo |[v+ assumed || o [[v/= M.

. o - 0
This implies that if ¢o is the minimum of J in V' then there exists M >
independently of @ such that

I o flvis M. (27)
Using (25), (27} and (18) we get (20).

Proof of Theorem 5. From assumption (16) and the construction of ¥, and
YV _ we deduce that there exists Ng € IN such that
oo

Y o(T,x)—2 S ya(z) £ ¥ w(Ty2)+2% Vzeel-w
Let N > N large enough and define
—AN?Y i s € —-N
sy=4 Mslls if -N<s<N
futs) { AN? i s= N.

i 2

Since fy is a (globally) Lipschitz function and bounded, as Hjlv ‘Theorem t1h_,

;n[lti] P:,here exists ul € C([0,T) x Ow) such that if y™(¢,= : ;') denotes the
o . .

O O Ay 4 ey =0 in (0,T) % (R T

yt =ul on (0,T) x dw
& _ on (0,T) x 99
an )
¥y (0,2) = yolx) onf) -

the we have :
iy (T ul) = () e < €

Moreover such a control u¥ can be found as a fixed point of the application
A C([0,T] % (2 —w)) — P(C([0, T] % (2 ~ w)) defined by

A(z) = {y(-, : u) solution of (PL) with a = futz) and u satisfying (17), (18)}.

z

From estimate (20) of Lemma 1 we deduce that if uY is a fixed point of A it

must satisfy .
|| ul leqorxepm < €
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with C' (independent of N) given in (20). Then, by the maximum priciple we

conclude that if N > N, is large enough then the function y*(t, @ : ul) satisfies

V" (tz:uf) < N V(tz)e[0,T] x (T —w)

and so, in fact, y*(0,-

N . :
u f. i .
orem 5. < ) satisfies the requirements of the statement of The-

In order to compl
plete the proof of Theorem 2
auxiliary results. 2 ieorem 2 we need to use some other

Lemma 2 (Diaz and Fursikoy [9]))

Let u. € C([0,T] x Bw) fized. There exists O,

solution ﬂ(t s 0e) of € c([OIT} X @) such that the

ﬁzus on (O,T) Xaw

{ G = AG+ANGI'G =0 in (0,T) x w
#0,) = yo-) o w

satisfies
” 9T :8.) ~ Yd ”c(m;_(__ £.

We would need to regularize the matchin

, ; g between the functj i 5
given in Theorem 5 and Lemma 2 respectivel unctions § and §

v
Lermma 3

_Lct w, be an openlegular subset of w such that d
e::;tsi{y € C([0,T] x Q)N €¥((0, T) x )
V'=¢on[0,7] % (71 —w).

(we, Ow) < e. Then there
such that y* = 4 on 0,7 x &, and

The proof of this result uses standard regularization techniques and the

details are left to the reader. The last technical result is consequence of the

continuous dependence of th i .
initial data, e solutions of problem (F,) with respect to different

Lemma 4

Let y* be the function given in Lemma 3. Define

Vo= = Ay Ay Py in (0,T) x Q.

Then v, = 0 an (0,T) x (Q - @) and i
3 ta'
of (B,) we have &

P ug) is the corresponding solution

ot ) =yt : v,) lem<e Vie(o,T)

Proof of Theorem 2. Let v, be the function defined in Lemma 4. Then using
Theorem 5 and lemmas 2, 3 and 4 we have that

(T 00~ v bey, S ML =UTo w0 llem + 1 9°(T>) = v Dy
< By (T =T o) ey + 1 9T = va e
+ " v (T,) — v ||4.‘(m) A

and the conclusion holds.

]
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