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1 Introduction.
s to present several results on the controllability of sume

The main goal of this work 1 e e the semilinear problem

nonlinear parabolic problems,

_ =vYy | Q:QX(O,T)
(sm{y;t’lﬁy”m ot anx(0T)

y(-,0) = vo(*) on {

where sz 1§ a DOoundel eg lla set C)l lR W 1S al ()pe 13 subset 0{ Q Xw deno thﬁ
1 s an N tes
Cha,raCt-eUStlc fll!lCt!UIl Of Wy I > G 15 ﬁxed a]ld the lnlbla-l datul[l Yo 18 g}i’en mn a functl.ﬂ&l

P e e e A i and the control is represented by
i ven by the real function f c 5 ’
the?a?r?cltlgihg eea rLg?:;vmr-cls(Og,]T)). f)\’s usual, the study of the semilinear problem is care
out by considering previously some suitable linear problem
y—Ay+ay=vxe inQ
1y y=0 on L

y(,0) = yol-) on £,

where a € L°{(Q) 1s given.

Due to the smoothing effect of parabolic equations the notion of controllability (ezact

controllability) must be relaxed: We say thatf th'e appmzimgt;) conérosllibi(l)ité;h:;o;;c{gg
holds for the problefn (SL) (respectively (L)) if given ya € L g‘, ) arl. £ :
v € L*w x {0,T)) and y(T : v) solution of (SL) (respectively (L)) satisfying

(T = v) = pallezgey = €
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We start, in Section 2, by collecting some abstract and constructive proofs of the
approximate controllability for the linear problem (L). The nonlinear case may yield
different answérs according to the behaviour of the function f near the infinity. This is
presented in Section 3 jointly with some remarks about other nonlinear problems.

2 The approximate controllability for linear prob-
lems.

The study of the approximate controllability for linear parabolic problems has been devel- -
opped on different levels of abstraction {a survey contaming many references up to 1978

is due to D.Russell [30]). A very elegant proof of tiis property for the formulation (L} is
due to J.L.Lions -

Theorem 1 ({22])
The approzimate controllability holds for problem (L).

Proof.
By linearity we can assume y(T : 0) = 0. Let us show that if g € L*(Q) satisfies

(y{T:2),9}=0 VYve Lw x (0,T)), (1)

then necessarily ¢ = 0. In that case the conclusion comes from a corollary of the Hahn-
Banach Theorem. Here (,-) denotes the scalar product over L?{f2). Define ¢ as the
unique solution of the time-reversed problem

{—z,bt—Adl-}-m/J:O in
=10 on &
(-, T) =g(") on (2.

Multiplying by v, integrating by parts and using (1) we get that
// Poy,dedt =0 Yo € LHw x (0,T)).
0x(0,T)

In particular, ¥ = 0 on w x (0,T). Using the Unique Continuation Theorem (due to
Mizohata [28] for a € €*(4)) and Saut-Scheurer [31] for a € L*(Q)) we deduce that
=000 x (0, T)andsog=0o0nfl g

Other variants of the Hahn-Banach Theorem can be used to prove approximate con-
trollability results under some contraints on the controls and/or the state. For instance,
in many physical applications only nonnegative controls are admissible. The density of
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the range set {y(T : v)} when the control acts on ¥ was first proved in Diaz [8]. A similar
result for the formutation (L) is the following

Theorem 2 ([8))
Let I be a dense subset of

12w x (0,T)) (= {v € LAw x (0,T)) 1w 2 0 ae.}).
Th'cn {y(T : v} : y solution of (L) ,v, € U} is a dense subset of y(T : 0) + L3().

Proof. ' ) ‘
We start by giving a proof for the case w = Q. Again, without loss of generality we can

assume y(T : 0) = 0. By linearity F := {y(T :v):y solution of {L).v € U} is such that
F is a convex set. Then, assumed that there exists yi € L:‘;__(_Q)\ F, by the. Hahn-Banach
Theorem (in its geometrical form) we can separate 1 from F, i.e. there exists o € R and

g L*() such that
! ( ) (y(T : U)vg) <a< (ylrg) Vv € . (2)
Taking v = 0 we deduce that a > 0. If 4 is given as in the previous proof, multiplying
by y, integrating by parts and using (2) we conclude that

/ fudzdt <0 ¥ €.
g

Th < 0 in Q which implies g £ 0: A contradiction with {2). )
A selgztdc)hﬂof the%mof for the general case w C {1 is as follows: assume that there exicis a

g € L1(0) such that g ¢ F. By the Projection Theorem there exists a unique u € F such

that -
(g—w,p-u) <0 VpeF.
Moreover, as I is a convex closed cone we can take p=¢+u and p = 0 respectively and
obtain

(9 —u,e)<0 VYee T (3)
(g —u,u) =0 (4)
Now, let g € C({0, T} : L%{0)) be the solution of the problem
—q—Og+ag=0 in@Q
{ g=>0 on X (5)
g(-T) = g(-) —u() onf

3

Multiplying (5) by z, with z € F arbitrary, we obtain
0 an(g(m) ——u(:c))z(z,T)d:t:f qudodt
wx {0,T)

for any v € U, From th ti
particular, e assumption on & we deduce that ¢ < 0 on w x [0,T]. In

0<glz)<ulz) aezew
and
g<0 ondwx(0,T).
Then by the Strong Maximum Principle {on the domain w x (0, T)) i ‘
he X we deduce that eith
g=0o0n(3x{0,Tjor g <Donwx{0,T). But g =0 implies that g = = which contra:’ﬁc‘tai
that g ¢ F. Moreaver, we have o

0= (g - 1) =f quodzdt,
wx(0,T)
where we can assume, without loss of generality, th = : i i
y, that u = »(T : v), withvo €Y. N
g < 0 onw x (0,T) we conclude that vy = 0 on w x {0, T). gI'his frzz’plies tll)l?a.t u= O?r?g
and from (3) we have that ¢ < 0 on 2, i.e. g = 0 which is a contradiction, g

The rest oh this section will be devoted Lo the question of the construction of a sequence

of control {vg}remv satisfying that y(T : v) — Son €
- ! ; : U4 a8 k — co. A first id
Lions [23] is to consider the auxiliary control problem rst idea introduced in

inf{Ji(v} 1 v € LI (w x (0, T))},
P 1,12
(Pe) { To(0) = 30/ Baiuniorry + SIU(T 2 9) = yalltagay-
Theorem 3 {[23])

Assume (for simplicity} yo = 0. Then a) Problem (P;) h : 1

= 0. a5 a unique solution vy and
¥(T: v) — ya as k — oo, b) We have the characteri ik‘ = —k y
satisfies the optimality systenz clerzation vy kpix. where (yk, pr)

1 — Ay +ay + kpyx, =0 in Q
(pp){ ~P- Sp+er=0 in Q
y=p=0 on ¥

y(-,O) =0, p('aT) = y('iT) - yd(') on (.

Idea of the proof.
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a) The existence and uniqueness of v; solution of (P;) follow from well-known results
([22]). By Theorem 1 given € > 0 there exists v, € L¥(w x (0,T)) such that

[lw(T : v) — el € %

Then, as Jp{vg) < Ji(v,) we have
2

ke
Elly(T s ve) — valiiam < Heelliaqxomy + vy

and so y(T : vx) — ya in L*(Q) as k — co.
b) Next, it is enough to remark that the Euler equation associated to (Px) is

f vpvdzdi + k/ (W(T : ve) — va) y(T 1 v)dz =0 Yo € L(w x (0,T))
wx (0,T) )

and that this is satisfied for the function —kprX. assuming that (yx, p) satisfies (P7). o

Remark 1

Systern (P}) can be treated directly i.e. without using the fact that (P%) is the opti-
malify system of the problem (Py). So, in Lions {23] the existence and uniqueness of a
solution (yg,pe) of (Pz) are shown, as well as that yx(T) — ya in L¥(Q) as k — co. We
lso remark that the system (Pj;) remains still the optimality system of the problem

(PF)  inf{Ji(v): v € Liw x (0,T)}.

This is shown in Diaz-Henry-Ramos [8]. The statement of Theorem 3 remains the same.
The proof of b} uses the fact that the Euler equation of (P}) becomes now the variational
inequality

-/wx(D,T) v(v — vg)dzdt + kL (y(T: ve) — ya) (W(T 1 v) — y(T:vg))dz =0

Vo e Li(wx (0,T). o

A second constructive method use some duality arguments which are inspired on the
HUM HHﬂbert Uniqueness Method), introduced by J.L.Lions for the study of the eract
controllability. We start by formulatin the approximate controllability property in the
following terms: Given € > 0 and yu EgLQ(Q) find a contral v € L¥{w X (D,T%) such that

y(T : v) € ya + B, where B denotes the unit ball in L2(2).

As pointed out in Lions [25], it is easy lo see that, as a matter of fact, there are
infinitely many controls v driving the system from the initial datum yo to the ball ys+¢B
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it:ettly[:e_'l;(;nde‘;d,%le]t § e (O,g) arr?‘il:rary. We take v = Tp arbitrary in L% {w x (0,8))
t s = : v). Then, accordi i d “T9)
do s L), Them @ tgry;rfgﬁe%fg 1 there exists a control 9 € L¥*{w x (6.T))

o) :{ Ti(z,t) forz€wand 0 <1<,
b5(z,1) forrewand 6<t<T

satisfies the required property (i V
ire perty (it leads to the system for yg to a stat vg) i :

;I: ggr;sifgizrﬁ:? 11;}_ 12 Btheer]‘ hnatura{)llto ask for t'he optimalygontrol gr?vgijrgg t:.hl:aﬁ)s;fgtglr{n-*_fj'oBr)n‘
o to th L?(Q)fﬁnd . The problem possed in Lions [25] is the following: Given e > 0
(P.) inf{”v“m(wx(o,-r)) 1y(T:v) € ya +€B).

If |lyaflLagey < € this problem has the trivi i = i ‘0
ol = € this problem I Slate rivial solution v = 0 (since (T 1 0) =0 € yy + B).
lyallizm > e
Theorem 4 ({25])
Problem (P,) has a unique solution v, € L*w x (0,T)). Moreover, v, = px.,, where j

_is the unique solution of the auzilary problem

—o—Apt+ag=0 inQ
g=0 on X
ol T)=eof) om0 } (®)

and pg = o 1s given by the minimization problem
{ : inf{I(g0,y4,€) : 00 € L2(Q)},
(0s 14, €) = § fux(ory 0°dedt +€llel2ay — fo yagodz. (7)
(Here p is the solution of the problem (6)).
Idea of the proof.
Define the functionals

1 -
Fo) =3[ vdedt, Glo)=1{° if f €y +eB
wx(0,T) 400 otherwise

Le£(Lwx(0,T)): 1)), Lu=y(T:v).
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Then problem (P¢) is equivalent to
inf(F(v) + G(Lv) v € L*w x (0, TH}

Using the Fenchel-Rockafellar Duality Theorem {see e.9. Ekeland-Temam [18]) we have
that

faf(P(v) -+ G(Lv) i v € LA(w x (0,T)} = ~iaf {F(L7e0) + G*(=go) : 00 € LD}

where in general ¢° denotes the convex dual of a proper function ¢ : H —] — 0o, +oc) on
a Hilbert space H. It is not dificult to see that

L og= —fXw» G 80= fnyagodr +elloollizmy, F =F,

and the conclusion holds. o

This second constructive method was sisternatically developed in Fabré-Puel-Zuazua
[12],[13]. By introducing suitable variants of the functional I(gg, ¥4, &) and studying the
tssociated minimization property they obtain the approximate controllability in LP(S2)
for 1 <p < oo and Co(f1). Moreover they show that the wanted controls are of the iype
‘quasi bang-bang’ (i.e. they take only the values —k and k, for some suitable k > 0, except
a set of points which at least has empty interior).

Theorem 5 ([12 ,{139 )

Let o € L=(Q) and denote by & = LP(Q)) withl £ p < either X = Co(§2) (the
space of unifermly continuous functions in {1 tha vanish on 90 endowed with the norm
of supremum) and X' = L () (% +# =lifl<p<oop =0 if p = 1) erher
X' = M(Q) (the space of bounded measures on §}) respectively. Let yq € X such that
liyall > &. Given go € ¥' consider the auziliar problem

—p—Dp+ag=0 inQ
p=0 on & (8)
Q('aT) = QO(') on

and define the functional
1 2
J{ o0, == / dzdt — < ‘.
{20, ¥4:€) 5 ( wx(O.T)!Q‘ zd ) + efl goll ¥ Ydy 00 XX

Then:
1. J(ya,E) 15 @ real strictly convex continuous and coercive function. In particular, it

achicves its minimum at @ unigue point go € X'
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2. If & denotes the soluti _ . . '
solution of solution of (8) for po = fo there exists w € sign(d)x. such thal ihe

Ye — Ay + ay = @)L exeTWXe @

y=20 on %

y(+,0) =0 on 1
satisfies that |ly(T) — vally <. o

Remark 2

In Fabré-Puel-Zuazua [14] the opti
; ua [1 ptimal control probl P, i
apgroxama_te controllability is studied but assuming tll)lrat ve?L(’(;)xatséo'%‘lf)teg iorﬂée LE-‘
and replacing [[v|L2 sy by Elvllif(ux{O,T))‘ o , CETEe
Remark 3

Many of the above result i i i i
s et i Isn remain valid for other linear parabolic problems. This is

fi—AF= =V§+Tx, inQ

div :LT: q in Q
LI= 0 on L
§(-,0) = #o(-) in )

oL » "
gher.e 7€ (L {w x EO,T))_? . The approximate controllability is now formulated as the
V;nmty‘ Ot{ th‘: seilt {y(T 19): 7 € (LPw x (G,T)})n} inH= {u'? € (LA 1 divd = O}
e point out that the property holds even for controls ¥ of a ‘
v . th =
(see Lions [27] and Fursikov-Imanuvilov [17]). The vesryv sc}f",\eciall3 ggspj c:)f the(zgn?r’o(ig

¥ = (v, 0,0) leads also t it ; i i 1
(o ) o a positive answer for suitable domains Q of R® (D{az-Fursikov

3 'll‘he approximate controllability for nonlinear prob-
ems.

In order to fix ideas we shall stud i :

: y the approximate controllabili ili
pgoblem (SL) of the Introduction. Results for other nonlinearrgr:bllehr;); iclw‘rﬂtéie semﬂ'lf\ear
a l'.}lie end cl)fthls Section. i be mentioned

s we shall see below, the it i i
domain of controllability w sa,tis?ia:s /.us=a IS gf Slféeée?lt. pature according to whether the
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3.1 The special case w = (1.

The most {avorable situation for which the approximate controllability holds corre-
spond to when we can introduce arbitrary actions (contrels) at any point of the domain.
In that case it is possible to give a positive answer even in the case for which the existence
and uniqueness of the solutions are not assured by the general theory. As pointed ou: at
the Introduction, given yq¢ and £ > 0 the approximate controllability holds if we find a
control v, and a function y. such that i} y. satisfies (SL) and i) |y(T) — vall < e Thus
we merely need to justify the existence of a solution y, corresponding to the control v,
but not the existence and uniqueness for an arbitrary control v € L2(0, T : L*{()).

Theorem 6 ([6])
Let yp € L®(Q) N H(R) and assume f:R — IR to be continuous. Then the approri-
mate controllability properly holds for the problem (SL).

Proof.
Given g € L2(€) there exist two regular functions u, and z, such that u, € L3(Q) 2

satisfies (L) with e = 0 v = u and verifies [}z.(T,-) — yallLrqy € & From standard
regularity results we know that z € L0, T : HY(Q)) nH}(0, T : LX) N L=(Q). Then
definying ve = (z:)1 — Dz + flz,) and y. = z. we have that v, € L*(@) and v. satizfies
the required condition. o )

Remark 4

Theorem 6 admits an arbitrary version ([6]) which is of special interest when the
general theory does not assure the global existence of solutions (as, for instance, is the
case if f(s) = —|s|P~!s with p > 1) or the uniqueness of solutions ()case of f(s) = —|s|P7*s
with 0 < p < 1 or the three-dimensional Navier-Stokes problem). A pionneering resuit
(assumming some additional conditions) can be found in Henry 19]. o

A more complicated situation arises when the controls (even actuatin;; in the whole
domain) are subject to some constraints. Here we adapt the so-called cance lation method,
introduced in Henry [19], to the case of nonnegative controls.

Theorem 7 ([8]) .
Let f be a continuous nondecreasing {or Lipschitz continuous) function such that

f0)y=0. LetU be a dense subset of L3 (). Then the set {y{T : v) : y solution of
(SL) and v € U} is a subset dense of y(T : 0) + L} (2).

Proof. ’

Without loss of generality we can assume yo = 0 and thus y{T : 0) = 0. By Theorem
9, given € > 0 there exists 1. € 74 such that the solution y of (L), with a =0 and yo =0,
satisfies {|y(T : w.) — yalle( < & Now, let @, € LP(Q) with [ju, — fl¢||L2(q) small encugh
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}cz;?aﬁuﬂgl)('é‘ Lo:fc) - y(T : ﬁg)“L’_(ﬂ) <e From the assumptions on f we know that
AT (Q) indeed, if f is not increasing we introduce the change of unk
i = ey for a suitable A € R. Now let v, € If such that 8 e
llve = F(y (- de)Hleaqe < =

Finally, we consider § solution of the auxiliar nonlinear problem

Go— OF+ fly(-:8)+d) =v.+u — 4, inQ

F=0
j on %
§(0) =0 on Q.
Then the function y(-) := y(- : &.) + 7 satisfies (SL) and
l2(T) — wall

. .S I¥(T = de) ~ ¥(T t wlf + [¥(T 2 u) — wall + [|7]] < 3e.
he control v, is find, through the control of the linear

least approximately) of the nonlinear term. g problem, by the cancellation (at

3.2 The case w CC 2 and f sublinear near the infinity.

Whe i

natu;}e L;ngdig tthe a;swers to the approximate controllability question have different

finity. The folfm%'in?g‘:es?lltl?o;hczrlxllc;ﬂtlll:nearb&?rm J o) Js publineat or superlinear at th: iﬁ_
> ! ul e sublinear case. It was obtai 1 n

a global Lipschitz condition on f and later extended in [10] to tﬁ;ngfe]sr::&i]t’agtﬂeﬁder

Theorem 8 ({13],[10])
Let f be a continous function such that

[FEN S Ci4+Cos if |s|> M, for some M,C,,C:> 0 (9
and there erists so € R, Ca,8 > 0 such that
[F(s) — f(s0)| < Cals — 50| for any s € (s — 6,5 +6). (10)
Then the approzimate conirollability property holds for (SL).

Proof.
Define the function

8 — Sg

fs)— fls0) .
0

if 5 = s5.
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R. Given z € L*(Q) and
’ ists J > 0 such that lg(s)] £ K for any s € .
S}E(Il_.g)((ggle\ii Z)S{Sine the auxiliary functions e(- : z) and y(- : z} as the solutions of the

; bl i

linear problems e — De + glz)e = —f(so) + glz)s0 in Q
A on &
e(,0) = uol’) on &

and yi— Ay +g(z)y =vXe nQ
y=0 on ¥
v(0,:)=0 on .

By Theorem 1 we can chose v = u(z) € L*(w x (0, T)) such that
Iy(T) = ya + e{Tlrm = &

Moreover, the function y :==¢e+Y¥ satisfies

y:*GAHg(Z)y=—f(30)+g(2)50+v><w ;I;QE } "
y —

(-, 0) = yal+) on {2,

. () - vallorm < < (12)

Consider now the multivalued mapping A : 1L3(Q) — P(L*(Q)) siven by
Az = {y: satisfying (11) and (12}
i i kutany Fixed Point Thecrem
that A verifies the assumptions of the Ka : ”

Iatnga:o 12;;}20:;}51;3; solution of (11) with z = y and satisfies (12) which ends the p oof
by using the definition of g. o . -

By applying Theorem 2 (instead of Theorem 1) in the above proof we can improve the
conclision of Theorem 8 relative to nonnegative controls.

8 :
Coﬁltl?.ysalti\gj[’ygf)lg (9) and (10). Let U be a dense subset of Li(w X (0,T)). Then

{y(T :v) : y solution of (SL), v €U} is a dense subset of y(T : 0) + LA(0). o

Rer’i‘.ll?gl;(:kutany Fixed Point Theorem was also used in Henry [19]]. The applicability of

i i i We also remark that
< i can be found in Carmichael and Quinn [2L. <k
?ﬁge;f%iirﬁ?itﬁl T:gze:llnsove proof can be successfully applied to show the approxin ate
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controllability in LP(Q) with 1 < p < oo and in Co{(2) (see [13]). Finally, we mention the
work [5] where Theorem 8§ was extended to a multivalued semilinear equation arising in
Climatology. o

Remark 6 ’ k
Assumptions {9) and (10) holds if, for instance, f(s) = Als|P™%s with 0 < p < 1

and A € R (notice that this function is not globally Lipschitz). Abstract results on

the approximate controllability for some nonlinear parabolic problems, using also some

sublinear assumptions on the nonlinear terms, are due to Seidman [32] and Naito and
Seidman [29]. o

3.3 The case w CC 2 and f superlinear near the infinity.

When the nonlinear term f(y) is superlinear near the infinity there appears an ob-
struction over the solutions of the equation and the approximate controllability fails. This
fact was first pointed out by A.Bamberger in [19] when

f(s)=MsP%s,  p>1, A>0 (13)

2 = (0,1) and the internal control in (SL) is replaced by the homogeneous equation
and the boundary control yr(O,? = v(t). He uses an energy method to prove that
ly(T : v)llLzga,) € € with @, = (g,1), 0 < & < 1 and C independent of v. A different

technique was used in Diaz (3] for f given by (13), Q arbitrary and the boundary controls

y(t,z) = v{t,z), (t,z} € E. This thechnique can be easily adapted to the case of internal
controls

Theorem 9 ([10])

Let f given by {13) and let w CC 0. Then for any v € L3 (w x (0, T)) arbitrary we
have the estimate

1 1 —
ly{z, 10} £ C(p,n) (W + t—g) a.e. (z,t) € (A\ @) x (0,T)
where § = ;_2:;, d(z) = dist{z,0w) and C{p,n} is a posilive constant independent on v.
Proof.

We introduce the function

y(t,z) = C(p,n) (

|

1
__.__g+

(=) ) forzel\Tandi>1.

o
Mo
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A careful choice of the constant G(p,n) (see e.g. [21]) allows to check that ¥ satisfles

yi— Ay + Ay ly 20 in (Q\@) x (0,T),

y=0 on I
y — oo on dw x (0,T)
y — +coo on {1 x {0}.

< y{z,t) for any t € (,T]

. ‘o I t: ]
Applying the maximum principle we deduce that yiz,t:0) (.70 : v) and the conclusion

and a.e. z € Q\&. In a similar way we prove that —y(t,z) <y
hOldS. D

Rei‘zszkn;ratter of fact the above estimate can be improved by introducing the function

U,.{z,1) solution of the problem
U, - AU+ AUPU =0 in (2\@) x (0,T),

U=0 on &
U — +4oo on dw x (0,T)
U(-,0) = 1l on 1.

ow (see {1]) the existence of a minimal

Thanks to the assumptien p > 1 it is possible to sh e e K i Theorem

solution Uo. In fact, we have Ug > 0in {2\ @) % (
§ we conclude the estimale

ylz,t:v) < Uk{z,t) forae z€ Q\wandtegl[0,7T]
i i in this superlizear
i in arbitrary in L¥(w x (0, T)). We conjecture that {even in t]
::Ts:r)etzl;ésa;%)igci?;;te cgntrollability property holds if we assume the desired state 34 €
L2(£2) such that B
U_w(z,T) < ya(z) < Ue(z,T) forae z€ Q\w

(here U_, denotes the solution of the above problem replacing +oo by —co). o

Re{\?’iral.{lsi conjecture that if f represents a superlinear source near the infinity {e.a. f

given by (13) but with A < 0 instead A > 0) there is not any obstruction and the
approximate controllability holds. o

Rer'?ggcﬁe%xs 8 and 9 show that the approximate controllability property holds or not

i i i linear near the infirity.
ine to whether the function f is sublinear or superl i
fTo}rligSé?:tazgii%;g%s \(.:!ith the occurrence of a free boundary for which the answers ale of
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different nature according to whether f is sublinear (the positive case) or superlinear {the
negative case) near the origin (see e.g. [20] and [9]). 5

Remark 10 )
The existence of universal solutions taking values 400 or —oo over dw X {0, T) can ulso
be obtained for many other nonlinear equations such as the nonlinear diffusion equation

v = A (ly7) = vy,
and the quasilinear equation associated to the (m -+ 1)-Laplacian operator
Y= Amny SvXe,  Amayi=div (V")

always under the condition m > 1. Other kind of universal solution can also be obta.ued
(see [4]) for the Burger equation o

Yt — Yrz + Y¥z = UNw-

The uncontrollability for this equation was also shown in Fursikov-Imanuvilov (18] by
using an energy method. We also mention that it is possible to show the exact coutrella
bility for the Burger equation over very special functional spaces (see E|l Badia-Ain Seba
[11]3’. Finally we point out that other nonlinear problems also leads to positive or neg-
ative answers to the question of the approximate controllability according the behaviour
of the data (see in Diaz [3],[4] a study of the parabolic obstacle problem). o

Remark 11

The approximate controllability for the Navier-Stokes equation is, at the present, an
open problem, The interest of this question was already raised in Lions [24] establisting
some connections with the study of the turbulence. A partial result is due to Fernan:lez.
Cara and Real [15] and shows that the subspace spanned by #T : v) is dense in a
suitable Hilbert space. We point out that if the conjecture of the Remark 7 is true tnen
the subspace spanned by {y(T : v) : v € L*(w x (0, T))} is dense in L*(Q) (even for the

superlinear case). g

Acknowledgement. The research of the author is partially suppoited by the DGICYT
(Spain) project PB 90/0620.

References
[1] C.Bandle, G.Diaz et J.LDfaz: Solutions d'equations de réaction-diffusion non-linéaires,
explosant an bord parabolique. To appear in C.R.Acad.Sci. de Paris.

[2] N.Carmichael and M.D.Quinn: Fixed point methods in nonlinear control. In 1is-
tributed Parameter System. F.Kappel et al. (eds.), Springer-Verlag (1985), 24-51.



142

[3} J.LD{az: Sur la controllabilité approchée des inéquations variationelles et d’autre
problémes paraboliques non-linéaires. C.R.Acad.Sci. de Paris, 312, serie I, (1991), 619-
522.

[4] J.LD{az: Sobre la controlabilidad aproximada de problemas no lineales disipativos.
In Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos. Univ, Mdélaga
(1991}, 41-48, .

{5] J.1.Dfaz: On the controllability of some simple climate models. In Environment,
Econemics and their Mathematical Models. J.1.Diaz and J.L.Lions (eds.). Masson (1943).

6] J.I.D{az and A.V.Fursikov: A simple proof of the controllability from the interior for
nonlinear evolution problems. Submitted. :

[7] J.1.Diaz and A.V.Fursikov: Approximate controllability of the Stokes system by ex-
ternal local one-dimensional forces. Manuscrit.

[8] J.1.D{az, J.Henry and A.M.Ramos: Article in preparation.

{9] J.I.D{az and J.Herndndez: Qualitative properties of free boundaries for some nonlirear
degenerate parabolic equations. In Nonfinear Parabolic Equations: Qualitative Prope-lies
of Solutions. L.Boccardo and A.Tesei (eds.). Pitman (1987), 85-93.

PO} J.I.Dfaz and A.M.Ramos: Positive and negative approximate controllability results
or semilinear problems. In Actas del X{II CEDYA. Univ. Politécnica de Madrid (1994).

El‘l} A .El Badia and B.Ain Seba: Contrélabilité exacte de I'équation de Burger. C.R.A:ad.
ci. de Paris, 314, serie I, (1992}, 373-378.

[12] C.Fabré, J.P.Puel and E.Zuagua; Contrélabilité approchée de 'équation de la chaleur.
C.R.Acad. Sci. de Paris, 315, serie I, (1992), 807-812.

[13] C.Fabré, J.P. Puel and E.Zuazua: Approximate controllability of the semilinear heat
equation. JMA Preprint Series, (1992).

[14] C.Fabré, J.P.Puel and E.Zuazua: Controlabilité approchée de ’équation de la chaleur
linéaire avec des contréles de norme L° minimale. C.R.Acad. Sci. de Paris, 318, serie [,
(1993), 679-684.

gls] E.Fernandez-Cara and J.Real: On a conjeture due to J.L.Lions. To appear in hon-
inear Analysis. TMA. ‘
[18] A.V.Fursikov and O.Y.Imanuvilov: On the approximate controllability of the Stokes
systems. To appear in Annales de la Faculté des Sciences de Toulouse.

[17] A.V.Fursikov and O.Y.Imanuvilov: On the approximate controllability of certain
systems simulating a fluid flow. Preprint (1993). .

[18] Y.Ekeland and R.Temam: Analyse Conveze et Problémes Veriationelles. Dunod,
Gauthier-Villars, (1974).

143

[19] J.Henry: Btude de la controlabilité de certains équats ; bse d’
Untversisd Borie V1 (1678 uic de certemns équations paraboliques. These d’Etat,

[20] A.S.Kalsghnikov: Some problems of the qualitative theory of non-linear d .
second-order parabolic equations. Russ. Maih. Survs. 42, (19%7), 1651—‘2‘2%(.5&1 eeenerate

[21] 5.Kamin, L.A.Peletier and J.L.Vizques: Classification of si i :
nonlinear heat equations., Duke Math.Jau?*., 58, (lggsé),cgolﬁ%los. singular solutions of 2

ngjti.l%é?%i;gﬁn(t{gé%)‘Optimal des Systems Gouvernés -par des Equations auz Derindes

[23] J.L.Lions: Remarques sur la contrélabilité a hé d
T pprochée. In Jornadas K -France
sobre Conirol de Sistemas Distribuidos. Univ. depMeilaga, (19951,(17'?:';88415})&”0 Francesas

[Zﬂ J.L.Lions: Are there connections between turbulence and controllability?. In Analysis ‘
an

Optimization des Systems. Lecture Notes in Control 1 ies
v es in Control and Informétlon Series 144,

[25] J.L.Lions: Exact controllability for distributed s :
) ystems. Some trend d s
progylems. In Applied and Industrial Mathematics. R.Sigler (ed.), Kluwe;e(Ingli)l?E)gft‘:ze

{26] J.L.Lions: Remarks on approximate controllability f i Fini
! I n y for parabolic systems. In Fy
Elements in the 90°%., E.Ofate et al. (eds.), sz‘inger_\,.’erfag?(1991)1 51}’2.520.5 n Fiite

[27] J.L.Lions: Unpublished manuscrit.

‘[289 S.Mizohata: Unicité du prologment des solutions pour quelques opérateurs differen-

tielles paraboliques. Mem.Coll. Sci. Univ. Kyolo, serie A31, (1958), 219-239.

[29] K.Naito and T.I.Seidman: Invariance of the a i
‘ ; : pproximately reachable set under 1on-
linear perturbations. SIAM J. Control and Optimization. 29, %’1991}’&73195650?111 e

[30] D.L.Russell: Controllability and stabilizability theory for nenlinear partial differential
equations: recents progress and open questions. STAM Rew. 20, (1978), 639-739.

[81] J.C.Sant and B.Scheurer: Unique continuation f i i 3 ]
Buiations: 66, (098, 18550, q n for some evolution equations. J. Differenti

[32] T.LSeidman: Invariance of the reachable set under nonli i
J.Control and Optimizations, 25, (1987), 1173-1191. rlinear perturbations. SIAM



