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S N ANTONTSEV, J I DIAZ AND S I SHMAREV

The support shrinking in solutions of
parabolic equations with non-homogeneous
absorption terms

1. Introduction

1.1 STATEMENT OF THE PROBLEM. This paper deals with the propagation and
vanishing properties of local weak solutions of nonlinear parabolic equations. Let 2 ¢ RY,
N =1,2,..., be an open connected domain with the smooth boundary 82, and T > 0.
We consider the problem

2 (Jul*~tu) = div (f-f(:z:,t,u,Vu)) — B(z,t,u) + flz,t)
in Q=0x(0,7), (1)
u(z,0) = up(z) in £

assuming that the functions A and B are subject to the following structural conditions:
there exist constants A > 0 and p > 1 such that

Y(z,t,5,0) €EQx R x RxRY M|plr < (4 :zt.sp)p < Ma|pl?, (2)

Y(z,t,5) € D x Rt xR sB(z,t,8) > Maa(z,t)[s|M, (3

with a(z,t) > 0 a given measurable bounded function satisfying
“Le [Ny, p<d< (4)

In (2)-(3) M;, 1 =1,2,3, are positive constants. The additional (and crucial) assumption
in all further consideration is:
A< a. (5)

The right-hand. side f{z.t) of equation (1) and the initial data up(z) are assumed to
satisfy

wp € LoH(Q), f e LUNAQ), fa-t/aHI(Q), (6)

We are interested in the qualitative properties of solutions of problem (1), understood
in the following sense.

Definition 1 A measurable in @ function u{z,t) is said to be a weak solution of problem

(1) ¢

a) € L (0. T; WhP(Q)) N L= (0, T L+(Q));
b} limio [[u(z,t) — wo{z)||Lasym) = 0;

c) for any test function g(:z, t) € Wheo{0,T : WyP(Q)), vanishing at t = T, the integral
identity holds

[Q{|u|"_1u(;,—(fi,V()——BC-I—fC}da:dt+/;2{u0|°“1u0((a:,0)da:=O. (7)

So far, the theory of problems of the type (1) already accounts for a number of existence
results. We refer the reader to papers [1, 9, 13, 18] and their references.
The class of equations of (1) includes, in particular, the following model equation

mw=A (|Ul"‘"1v) — Malo[" v + f(z, 1), (8)
To pass to an equation of the form (1) with the parameters & = 1/m, A = v/m, p = 2
amounts to introduce the new unknown v := |u|=sign u. Assumption (5) holds if, for
instance,

m>1, ve€(0,1).

In this choice of the exponents of nonlinearity the disturbances originated by data propa-
gate with finite speed, (see [17] and references therein). Moreover, it is known [20, 21, 16}
that in this range of the parameters the supports of nonnegative weak solutions to equa-
tion (8} may shrink as ¢ grows. It is known also, [8, 12], that solutions of the Cauchy
problem and the Cauchy-Dirichlet problem for equation (8) may even vanish on some
subset of the problem domain @ despite of the fact that ug and the boundary data are
strictly positive. These properties were derived by means of comparison of solutions-of
(8) with suitable sub and supersolutions of these problems.

It is to be pointed out here that in our formulation the function A(m t,s,p) is not sub
ject to any monotonicity assumptions neither in s nor in p. Next, we are not constrained
by any special boundary conditions. Lastly, as follows from Definition 1.1 the solutions
of problem (1) are not supposed to have a definite sign.

Our purpose is to generalize the referred results and to describe the dynamics of the
supports of solutions of equation (1) without having recourse to any comparison method.
We propose certain refinement of the energy methods in the literature (10, 24, 25, 5, 6,
7,4, 3). This techniques allows us to make certain conclusions about the properties of
the supports of local weak solutions to problem (1) which rely only on some assumptions
about the properties of initial data or even use only the information on the character of
the nonlinearity of the equation in {1).

The results we obtain below may be illustrated by the following simplified description.
Let v{z,1) be a local weak solution of the model equation

v = By([o[™ ) = Jo[ "o,



where A,(-) denotes the p-Laplace operator given by
Ay = div (|Vv1”_2Vv) , p>L
Then:

(i) if0 <y < 1,m(p~1) 2 1 and v(z,0) is flat enough near the boundary of its support,
the so-called “waiting time” of v is complete, ie., V t € [0,T] supp v(-,t) C
supp v(+,0) (we also may say that there is no dilatation of the initial support);

(ii} if v, m, and p additionally satisfy the relation m 4+ < p/(p — 1), we have shrinking
of the initial support, i.e., the above inclusion is strict: supp v(-,t) CC supp v(-.0)
for t > 0 small enough;

(iii) under the assuraptions of item (ii) on the exponents but without any assumption on
the initial datum, a null-set with nonempty interior (or dead core) is formed, i.e.,

W >0 Vistr O\ {suppu(-,t)} #0.

In order to compare these results and the theorems below, recall that o = L and
A = I. We also remark that the above results remain true when the diffusion is linear,
e, p=2and m = 1, but in the presence of the non-homogeneous strong absorption
term: v € (0,1), a(z,t) is admitted to vanish at some set set of zero measure.

1.2. FORMULATION OF RESULTS. Let us introduce the following notation: given
T>0,t€[0,T),z0 €0, p>0, and nonnegative parameters ¢ and u,

P(t,p) = {(z,5) € Q : o=zl < pls) = p+ als — )", 5 € (¢, TV} = P(t, p; o ).

It is clear that the choice of the parameters o, p, p, T determines the shape of the
domains P(t, p). We distinguish three cases.

a} ¢ =0,pu=0,p>0;in this case P(t,p) is a cylinder B,(zq) x (¢, T);

b) >0, p=1, p>0; P(0,p) renders a truncated cone centered in the point zo € §
and with the base B,(z¢) := {2 € Q: |z — zy| < p} on the plane t = 0;

¢) o>0,0 <y <1, p=0; then P(t,0) becomes a paraboloid.

To simplify the notation we will omit the arguments of P wherever possible. Treating
separately cases a), b), c) we indicate specially which of the parameters are essential and
which are not. The domains of the type P(t,p) will play the fundamental role in the
definition of the local energy functions

E(P) :=/

P(tep

P — A1
)|Vu(:1;,'r)| dzdr, C(P):= /P(t,p) |u(z, )| T dzdr,

- A1
CulP) = /PM a(z,t) u(z, )| dzdr,

b(T):=ess sup fu(z, s)|*Tde,

SE€(6T) Y lz—zo|<pta(s—t)#

associated to any of local weak solutions of problem (1).
Let us assume that

E. ) <K, K = const, {9)
allpo+ayti-ag)
whernce _ 1
COER/ ) < o |2 ) < KC,. (10)
allLa+aii-ng

We now pass to the precise statement of our results. The only global information we
need will be formulated in terms of the globa! energy function

Diu(-, )= 6T, D) + [ (94 +aful**) det,

where
b(T, ) :=ess sup lulz,t)|* dz.
te(0,T) 4

Qur first result referres to the situation when the support of u {an arbitrary local
weak solution of (1)) does not display the property of dilatation with respect to the initial
support supp ug and the support of the forcing term supp f(-,t). Assume that

ug=0 in B,(ze) for some xg € ) and pp > 0 (11)

F=0 inthecylinder P = P(0,p0) = P(0,p0:0,0) (= B, (xo) x (0. T)). (12)

a.nd claim the convergence {near p = pg) of the auxiliary integral

1Ry (DA /=1
I= fmo (o= po)” [“uoﬂzﬂlfﬂ‘p(mo)) +|sa 1/(1“)|lw+iwmo.p))] dp < o0, (13)
where
B=(1—60)(1+k), 6=- (1 + ﬁ ) b= W (14)
with some . (0 o(1 + a) ) s
p-1-M(1-6))"

Note that condition (13) implies certain restrictions on the vanishing rates of the functions

[wollcats(p, (o) 2nd [|F(- 2) & CFA| Lixsniinp, o0y 25 £ — Po.



Theorem 1 Assume (2),(3),-_(9) and
A<agp-1 (16)

Let up and f salisfy (11), (12) and (13). Then there exists positive constants M (de-
pending only on the constants in (2), (3), po, dist(zo,80) and the difference lambda — A)
such that any weak solution of (1) with bounded global energy, D(u) < M, possesses the
property

wz,t} =0 in By,(xzo) x (0,T).

Under some additional assumptions on the structural exponents «, A, p and the func-

tion f one may get a stronger result which means that the support of (-, t) shrinks strictly
with respect to the initial support.

Theorem 2 Assume (2) — (5), (16), (9) and let

144 <ot (17)

p—1
Let ug satisfy (11). Assume

S =0 in the truncated cone P = P(0,p0 : 0,1) for some o >0 (18)

and let (13) be true. Then there exist positive constants M, X > X and t such that

each weak solution of problem (1) with global energy satisfying the inequality D(u) < M,
possesses the property

wz,t) =0 in P(0,p0:0,1)N{t <t}

Remark 1 It is curious to observe that the assertion of Theorem 2 has a local character
in the sense that different paris of the boundary of supp uy may originate pieces of the
boundary of the null-set of u(z,t), which display different shrinking properties. Having
a possibility to control the rate of vanishing of uy and f(z,t), one may. design solutions
of problem (1) which have prescribed shapes of supports. For the madel equation {8) this
phenomenon is already known as “the heat cristail” [23,Ch.3, Sec.3]

The last of our main results refers to the case when the jnitial datum need not vanish,
that is, the parameter py in the conditions of Theorems 1 and 2 is assummed to be zero.

Assuming f = 0 we show how the strong absorption term causes the formation of the
null-set of the solution.

Theorem 3 Assume (2) — (5), (16) — (17), (9). Let f = 0. Then there exist posttive
constants M, t*, and p € (0,1) such that any weak solution of problem (1) satisfying the
inequality D(u) < M possesses the property

u(z, ) =0 in P(t*,0:1,4).

IR

2. Differential Inequalities

2.1 FORMULA OF INTEGRATION BY PARTS. It follows from results of [| that for local
weak solutions of equation (1) the following formula of integration by parts holds:

a

o+ 1 JP({t=T}
- i A = *Hdrdg
e /a,P (nr, A) udldf + P ./;‘P nlu|

iy i = |u|“+‘dx+j;(i,vu) drch-I—_/Pqude

o
o+ 1 JP({t=0} :
= i 2 st da. (1)

]uolqﬂdz‘.—l—/})ufdmdﬂ

Here dI" is the differential form on the hypersurface P N {t = const}, i, and n, are the
components of the unit normal vector to &P, |7 |> + [n.|* = L.

2.9. THE ENERGY DIFFERENTIAL INEQUALITIES. DOMAINS OF THE TYPE ¢). Now
we derive differential inequalities for the energy function £ + C which later on will be
utilized for the proofs of Theorems 1-3. We begin with the most complicated case c)
where the domain P is a paraboloid determined by the parameters x4 € (0,1), ¢ > 0, and
t: )

P=Pt)={(z,7): le—wol = pl(r) S olr =), 7€ (LTI}, t€(0.T).
We assume that f = 0 and that P does not touch the initial plane {t = 0}. These
assumptions simplify the basic energy equality (1) ¢y + 49 + 43 = j1 + J2.

Let us estimate the first term j;. It is easy to see that

1

0 — t)\HE, — nad,
(a2 + (0 — ¢)21-u))1/? (( ) - )

= (ﬁmnT) =

where €, and €, are unit vectors orthogonal to the hyperplane t = 0 and the axis ¢
respectively. .

Let (p.w), p > 0, w € 8By, be the polar coordinate system in RY. Given an arbitrary
function F(x,t), we use the notation = (p,w) and F(z,t) = ®(p,d, ). There holds the
equality '

' T .U(B»t) i -
1) ::—_/PF(::;.G)d:cd@,.:_[t dﬂju pN"ldpLB‘ ®(p, 5, 0)]J | dw,

where J is the Jacobi matrix and, due to the definition of P, p(0.1) = o(8 — £)* . It is
easy to check that:



dI(t) o{6,t) N 1

dt _/ dpf
0,)p" 1 '

[ oo, o0yt [

/a,P puf(z, 8)dldd. (2)

(p,5,8)|J\|dw

o=t

B(p, &, 1)) J |dw

-t

Treating the energy function F as a function of ¢, with the use of (2), (2), and the Hélder
inequality, we have now:

IA

{71

/ (ﬁz,l)udwe‘ < My [ |||V~ uldrds
8P aP

dE (p—1)/p T Iﬁ" Ip 1/p
kd P
Mz( dt) (ft A (jaa,,w, lul dI‘) da) . (3)

To estimate the right-hand side of (3) we use the following interpolation inequality:
givenv € Wh?(B,) and A <p~1,

] 1-4
[olls.s, < Lo (IVollp8, + o [0lxe1.m,) - ([0lns,) (4)
with a universal constant Ly > 0 not depending on v(z) and the exponents

- pN-—r(N-1)

p—1—2A
r€[L,Np/(N-1), 8= mé(o 1), &= (l+-1—)—-———-——1\’)

(1+A)
(see, e.g., Diaz-Veron [14]). Let us introduce the notation
= » = Al
)i= [ Vulde, Cultip)i= [ e,
s0 that

T
E= / (0, p(6,1))d0, C:/L C.(8, (68, 1))d0,

and malke use of the Holder inequality

1/r (142} gr .
Tds < b 1FA . a1
(/Bn || d'v) < (/E,,lul d:L') (/Bp Ju dw)

a—A
a—r+4+1"

(14+a)(g—1)/gr

where

¢ = efi+M1l+aq

To estimate the second factor in the right-hand side of (3}, we choose r satisfying the

inequalities

p(1+ ) pN
1<1+)\<——-~——a_,\+p<r<l+a<N_l.
It is easy to check then
(@— A)r g 1-4 (__1_ _1)
e =] - — [ 1 ‘I_ \
pear a+l—7 i p qr qr p
e (Tl .1), (1-7)p € (0,1). (5)
p—1 gr p—1
Then, by virtue of (4),
: p/(3+1) p(1-8)/»
f [u]Pdl’ = Lo f |VulPdz + o7 (/ lu|’\+1dz) ) (/ ] dw)
38, B, B,
]
< K po% ([ qul"da:+/ |u|’\+1dm)
- B, B,
p(1-8)/qr pla=1)(1—8)fqr
® (/ |u|’\+1dz) (] iu|”+’d:r)
B, B,
< I{p&ép (E +C )5+(1“5)P/q1' b(q—l)(l-é)P/qT’ (6)
where

-1\’
K = Lymax (p55”, (ess sup lu[’\“du:) )
{¢.7) Y Batoy

i
SEAE 1) ey AL (B
Lgmax (pg‘”, (mea.sB,,(T,) () (b(f))aﬂ(m ‘)) ; p < po.

AN

Returning to (3) and applying once again the Holder inequality, we have from (6)

(p-1)/p T _ Vidvarer 1/p
I , I < L ( dE) (/ ln:r.l [& 5ip (E +C. ) ) b(q 1)(t—6)pfq dr
hl = -

dt [pufp?
(p—1)/p
< LA(%) (—ﬂ%g-) plamta=dar (E+C‘)“‘f -

for a suitable positive constant L and the exponent p = 1/[1 - p(1 — )]

Alt) = g L #d 1/W<o<>. (8)
(t) L / |P1t”"1p ( ) T



To satisfy (8) one has to take u small enough, since the condition of convergence of the We now turn to estimating the lefi-hand side of (1). By (2)-(3) we have at once that
integral A(t) is:

I R O CEe ) . e mrCi, me D
(1 — p){2p—1) + pébp > —(1 «9)(1—— TR ) il+i2+z32n+M1E+MaCa2M‘|D (E+C+4)", m—1+A>1, (12)
So, we have obtained the estimate of the following type: My = Ma( M, Mz, m).

Since the right-hand side of (1) is an increasing function of T, we may always replace
(9) iy by “%Tb(T) in the left-hand side of (1). Gathering now (1) with j3 = j4 = 0 and (11},

E + C)) (r—1)/p
(12), we get:

i1l € Ly A(t) D(w)a=V0=07r (4 oy~ (~d( -

where L, is a universal positive constant, D(u) is the total energy of the solution under

. . . a m T ) P 11—
investigation. My DV (E +C+ b) < LE+C+b)b / [l (Op(1=r)) r
Let us estimate jo. For this purpose we use the interpolation inequality l+e t

. ~ i ar ‘ d(E“i’C) {p=1}/p
”'U“cr+1.65,, < Ly (”vvljpﬂp+P6|[U||.\+I‘E,,) ol ITESD (10) + Ly A(f) pla-1(-8)/q (E+C) (u —a ) .

T

with a universal positive constant Ly > 0, the exponent

Let us now choose X satisfying the inequality
_{e+)N=r(N=~1) p

- ; 14X ;
(N+r)p Nr a4+l 1<1n=——1:)\£?‘{(a~/\,ﬁ)7 (13)

and § from (4), which holds for each v € W'*(B,). Now we choose the exponent r in (4)

as follows and assume T — ¢t and D(u) be so small that

l4+d<r< ﬂfmf . M
B ® rs{a+1)/8p\" iy
L(b(T, ) ft (K P dr < 2

&

whence,

8

lq—r )E(O?l)» S C ) Sk}

qr

The we arrive at the inequality

fi:(l+a)(§+ (l+a)=s+&>1.

m T . ON™ < L A(£)D (m+1)(q—l](l—§)/qr(E- + C)l—*y _([(E -+ C) (p=1)/p
Similarly to the previous estimate, using (10) we have: (E+C)™ < (E+CHH(T, Q)™ < L2A(1) D{u) ' dt '
sla+1)/p whence we get the desired differential inequality for the energy funclion Y(2) := £ + C:
_/jB ful**tdz < L ('/E [Vul|Pdz +/ |u|A+1d:z:) (m—1+7)
- " ” P g vy, v=to (14

er (g=1}/gr {(1-s){at+1) ]
I / fu* d _/ |w|*H Jostet)/ip. _
By B, : with

Here K is defined in (6). Using the Holder inequality and reminding that always e(t) = (Ll (M”)(q—l)(l-é)/qr A(t))pﬂp—”* L, = const > 0
[n.] < 1, we arrive to the inequality

/lT in.|dr /93

)

- —r 1-x . —
L (E + O b(T,\Q)) (b(T,Q))n_l (]T (A’s(a+1)/0P)1/(l )ClT) ) Hl) ‘ v (M +- _’YP_) < 1.
t p—1 p—1

for M, := D(u). Note that ¢(t) — 0 as t — T. According to (5) py/(p — 1) < L thus we
may take, additionally to (13},

|72

|u|n«+1d[\‘
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2.3. THE ENERGY DIFFERENTIAL INEQUALITIES. DOMAINS OF THE TYPES A}-B),
In these cases the differential inequality for the energy function £ + (7 is derived in same
way that in the case c) but with certain simplifications due to the choice of the domain

P.
Let us begin with the case b). Let

P={{z,t): lz—z| < p+0b, o€ (0,7)}, p=po>0.
The unit outer normal to §,P has the form

1
V=it

and if we treat now the energy function Y := E + C as a function of p, we have:

dv d T +a8 _
__d_f(;"_) - %{fo dafup o ldrfagl || (IVul”+|u|A+l)L=(r‘u)dw}

- /UT do [351 {(p +o8) ] (IVul? + [u ) Iz(p,,go‘u,}

= /B,P (fVuIP + |u|’\+1) drds. - (15)

=

dw

Following the above scheme for estimating the term j, in (1) and applying (15), we
arrive at the following inequality

, K [dE\UIP tiedrer [T o 1y
] € m (ETD—) pﬁ(? (b(T))(q 19{1-8)/q (/(; (B + C;)‘“’”“ 0)/qrd0)
Let r be such that 0 + (1 — 8)p/gr = 1. Such a choice is always possible, since
0._}_(1«_9)1321 & r=___p(l+oz)’
qr pta-—A

and the last equality is compatible with the conditions p>1+A a> A and the starting
choice of 2 7 € [14 A, ¥+ ). The estimate for J1 then takes the form

K 550 dE\ P-1e N
1] < % (Ef_) (b(T))(q—l)(l-ﬂ)/qr—z(E + C)5+1/p
v o .

with an arbitrary € € (0, (g—D(1 - é)/qr)
The estimate for j, is the same that of the case c}. The only difference is that now
we need not claim that T is small. The value of the coeffcient in the estimate for j; is

controlled now by the choice of &, since n, = —a/v1+ o2 Due to (11) we have 7 =10.
At last, we estimate jy with the help of the Hélder and Young inequality

jo S 7C 4 L(r) [ a™ P A dgas.
- P
Cathering these estimates with (1), (12}, we arrive to the inequality

Y(p) < c(p)Y () (Y'(p))* ™V + F(p), 2> po

{(g-1){1-8)/gr~¢

with the coefficient c(p) = P K (D(w)) and the right-hand side term

F(p) =

a4
a+ 1 JRx

lug|** dz + L(T)/Pa"l/’\if](’\"'”/"dmdﬂ.
)

It is easy to see now that the function
7= yp(1+£)/(p—1)(p)

satisfies the inequality

m

:1+5

Pl ate-ug p/(p-1)
1) < Ll ) 4 IOV ), p> o,
Z'e) £ S (
In the case a), the desired inequality (16) for the energy function 'Z(p) = (E +
¢ )p(1+e)/tr-1) defined on the cylinders P = {(z,t) : |z — 20| < p, t> 0} is a byjproduct
of the previous consideration, since the term 7. of the right-hand side of (1) vanishes.

<l . (16)

- 3. Analysis of the Differential Inequalities

3.1 THE MAIN LEMMA.

Lemma 1 Let a function U(p) be defined for p € (po, R), po > 0 and possesses the
properties: 0 < U(p) < M = const., U'{p) > 0 and

AU*(p) < Gp™°U"(p) + w(p) as p € (po, 1) (1)

where R < o0, 5 € (0,1), A, G, § are finite positive constants, and p(p) is a given function.
If the integral

’ -3
i(p) = [ (o = po) V(0 )do

0

converges and the equation

1/{1-s)
(p — po) 8V (1=3) {(%ﬁ%) - }éi(p)} =M (2)

has a root p. € (po, R), then U{py) = 0.



Proof. Let us consider the function

) A(L = )\ V0
z(p) = (am%) (p — po) 1V U=},

satisfying the conditions

Az =Gp~*s as p € (po, R). z(po) = 0. (3)

Introduce the function

B{p) == exp (;%4/.«:: J'Sdo“/ol (60U + (1 — 8z))° " dﬁ)

and observe that always

1
Us~ 2 E/O (OU + (1~ 62))™" do(U — z).

SU 8 1a(:tlng ot tef 1 q hty fr() Ilequa, 1 y al (l “lli“.l])ly t es Y
oW mwise equa 3 m i l t
‘ ) ( ) ( ) lng he I U.“:

d

o
o (=28} > Loy (4)

Integrate inequality (4) over the interval (g, p):

1 [}
Ulp) = =(p) + WU(PO) - -(:x'“&’l_(,.a—)‘/m, *®(a)p(o)do. (5)

Let us relax (5), having rewritten it in the form

M 2 Ulpe)— = [ o*plo)

X exp (iél— _/: rodr /01 (BU(r) + (1 — 8)z(r))*! d@) do

and then make use of the following relations:

exp (S—C? /: ridr /; (OU(r) + (1 = 9)z(+))* " d@)
< exp (%f;u - 9)"%9/: T‘sz’—l(r)d"r)

e [ 0) oo o 22) - 2

[n the result we have

L[ eele)
0. < Ulpo) sM’“”%‘Gﬁgaw“}

A _ 1/(1-3) .
= M-(p _-pu)(1+6)/(1—s) {(_G_g__!___;%) _ l(g)} .= Flp). (6)

Assuming existence of some p. € (po, ) such that F(p.) =0, we get: U(po) = 0.
[l

3.9, PROOFS OF THEOREMS 1-3.

We begin with the proof of Theorem 1. One has just to verify that the conditions of
Lemma L are fulfilled. Assume uo{z) = 0 in a ball By (zo) and f = 0 in the cylinder
P(0, p), having this ball as the down-base, Let R > 0 be such that P(0, R) C @, and the
integral T defined in the conditions of Theorem 1 is convergent. Assuming the restrictions
on the structural constants listed in the conditions of Theorem 1, we derive for the corre-
sponding energy function inequality (16). By Lemma 1, we see that it is sufficient to point
out a treshold value of the total energy MPOF =1} oioh that equation (2) would have
a solution p.. Recall that in the case of inequality (16) the coefficient G of inequality (1)
depends only on structural constants and the energy M E=1) bt does not depend
on t. So, for the function F(p) defined in (6) satisfies Fi(p) — —oc0 as M — 0 for each
p € (po, B) fixed. Further, G is a linear function of the argument MEUFT 56 that
G oooas M —o0,G—0as M —0. Then from (6), having just compared the orders
of M of positive and negative terms of "(p}, that F(p) > 0 for large M. This means that
F(R), being viewed as a function of M, is always nonnegative for small M , which proves
the theorem. O

The proof of Theorem 2 literally repeats the arguments just presented. The only
difference is that now one has to add condition (11), needed for the derivation of (16).

For the proof of Theorem 3 we assume that the value of T is taken so as to satisfy
P C Q. Remind that the coefficient c(t) in inequality (14) may be estimated from above
by ! := ¢(0). Introduce the function z(T — t) := Y(t). Since it satisfies the inequality

20lE=0(1) < 1(t) ast € (0,T), =(0)=0, =(t)€[0,d(u)},

there remains to apply Lemma 1 with i(p) =0 to complete the proof of Theorem 3.
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