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Abstract
We use rearrangements methods to estimate the minimal height of a liquid in
a tube. We also use comparison techniques in order to give upper and lower bounds
for the critical volume which gives rise to a free boundary. The main motivation comes
from a conjecture posed by R. Finn in 1986.
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1 Introduction

In this paper we discuss the equilibrium surface of a liquid in a cylindrical tube of cross—
section D and horizontal basis. Its height is denoted by u{z, ¥} and is determined by means
of the principle of virtual work. (see e.g. [5}). If £ > 0 is the capillarity constant,y € [0, 7 /2)
the wetting angle and V' the prescribed volume of the liquid, the total energy is

1 .
J[u] :f\/lJr |Vul? de dy + §n/u2dmdy——cos*yj£uds.
D D aD

The height u(z, y) is the solution of the variational problem

(1) J[v] — min, ueff::{weBV(D):wzo,fwdmdyzv},
D

where BV (D) is the space of bounded variations functions.
It was shown in [6] that (1) has a unique solution u € C*(D) which is locally analytic in

Dt:= {(z,y) : u(z, y) > 0}, has the property that divTu € L®(D"), Tu:= ﬁ,

and satisfies the Laplace equation and the capillary boundary condition

@) {divTu:rerA inDt, u>0 inD,

(Tu, n) =cosy ondD.

Here n is the outer normal to D and ( , ) denotes the scalar product. The constant A
is a Lagrange multiplier which is easily obtained from (2) by integration by parts. More
precisely we have

(3) A Lcosy —kV),

1
=
1
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where
At = meas DT and L= ~;é‘afs.
ap
If no volume constraint is imposed then the height ug is a solution of (1) with K replaced
by K¢ = {w € BV(D)}. The minimizer is positive and satisfies divT's = ku in D. The
volume ¥V of the liquid is then
{4) Vo= Lcosy/&k.

The maximum principle applies and implies that uy takes its maximum at the boundary
and its minimum, say o, at an inner point. It is well-known [6] that there exists a critical
volume V¢ such that Dy = D — Dt = {(z,9) € D : u(z,y) = 0} is void if V > V. It
is readily seen that Dy # ¢ for V' < V*©. By shifting the solution ug(z, y) of the problem
without volume constraint, it follows that

(5) Ve=Vp—ad, A:= measD.

The case & = 0 is peculiar. It corresponds to the capillary problem without gravity. A
solution exists only if AA" = cosy L [5].

Equation (2) can also be used to describe a fluid in a tube with a pressure different
than the one of the surrounding media. In this case A is determined by the difference
of the pressures. The aim of this paper is to estimate u and in particular «, by means of
rearrangement methods [1]. It was motivated by the following conjecture of Finn [5]: Among
all eross—sections D of given area, the disk has the minimal a. For references on this and

related problems we refer to [2], [3], [4], [5], [7], [8]. We also construct an upper solution to
localize D™.

2 Rearrangement Inequalities
Let us first introduce some notation connected with the solution u(z, y) of problem (2).
Given @ €eR™ let

D(a):= {(z,y) € D : u(z, y) < @}
a(i):= meas D(i) is the distribution function. The increasing rearrangement of u is
defined by i(s):= inf{f : a(t) > s}. The boundary of D(4) consists of the sets

T(a):= {(z,y) €D : wize,y)=1u} and To(a):=DNaD(a).

For i € (o, mingpu), To(i)is empty.
The goal of this section is to derive a differential inequality for the rearrangement (a).
The divergence theorem yields

: [V
(6) f divTude dy = 5 + cos 7y f ds
1+ 1Vul?
D(3) (@) IVl To(&)

on the other hand we obtain from (2) and Cavalieri’s principle

(7) /divTuclmdy = &K / wdz dy + Aa
D(&) D{a)

o

= K f {s)ds -+ Aa =: v(a)

0



INEQUALITIES FOR THE CAPILLARY PROBLEM... 3

Define g(t) = \/lti_tz It is an increasing function in IR* which is convex for 0 <t < v/2 and

concave for ¢ > 1/2. Denote by go(t) any function which for positive ¢ is increasing, convex
and satisfies

(1) qft)<qt) for £>0, ¢0)=0
(1) gqo(t)/t —» cosy  as - oo.

Examples
(1) go(t) = cosyt?/(1 +t) (This function was proposed by Talenti [8]).
_ Q(t) le (07 tU)
(2) 20(t) = { cos vt + ¢(tg) — cosyip t >t
where ¢y is the positive root of ¢/({y) = cos~y. Put
| |Vu|  onT(i) _ds
tm - { m Onro(’&,) b) den - t,nl

and P, = § dpn. The latter definition makes sense if |Vu| # 0 on I'(4). According
aD(a)

to Sard’s lemma this is true for almost all @ > 0. The right-hand side of (§) can now be
estimated as follows

(8) v@) 2 [ aoltn) dom
' 8D(a)

Since qp is convex, Jensen’s inequality applies and yields

(9) v(a) 2 P go(L(8D(a))/ Pn)
This is true for all n and also if we let m tend to infinity.
P,— P= i as m— 00.
[Vl
I'(a)

From the coarea formula it follows that

__da

=i

(10) P

By the isoperimetric inequality we have L*(8D(&)) > 4wa. Since gg is monotone,
(11) Pqo(L(8D(d))/P) = go(V4mei'(a)) /@ (a).

Finally we obtain the rearrangement inequality

(I) &£V(a) + Aa > @L\Li——jgﬂ, Via):= f udzdy in (0, A).
D)

Let us now discuss the case of equality. Consider a solution @* of

a

QD(\/4_TFE’EL*’((1.)) “(a): = i (s) ds
sy V)= [a()

0

(12) KV (a) + X'a=
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After the change of variable 77* = a and u*(r) = @*(a), @ = wr?, (12) becomes

u’

(13) K (r) 4 A (r) = % (M) n (0, R).

If we impose the boundary conditions u*’(O) = 0 and uw*'(R) = cos 1, *R? = A, then u* can
be interpreted as the radial solution of

(1) div(g(| Vo) Vu) = w4 X in D" g(t):= 20

where D™ is the circle of the same area as D. The existence of such a solution is guaranteed
for the examples given before. u*' is positive regardless of the sign of A*.

REMARK 2.1. It can be shown that for smooth boundaries the function @(a) is absolutely
continuous,

3 Comparison of the minimum height

Let u(z, y) be the solution of (1) and let up(z, y) be the solution of (1) without volume
constraint. Besides of (1) we shall consider the following “comparison” problem

(15) fG'(|VU|)d:cdy+%/‘vgdmdy——cos'y j{ vds — min,
D D= ap*
where v € K* = {w € BV(D*.), w>0, [w'dedy=V*}.
D)‘i

Here G’ =tg(t) = go(t)/t. The corresponding Euler equation is (14) with the boundary

condition
g(|Vu")0u"/On = cos~y.

The solution of (15) will be denoted by u*. Accordingly we write «j for the solution of (15)

with K* replaced by K§ = BV (D*). In the sequel the * refers to quantities related to (15).

THEOREM 3.1. The solutions of problems (1) and (15) without volume constraints
satisfy o > .
Proof. From (I) and (12) we infer

(16) W[V (a) - Vo(a)) > D0VArato(@)  go(vinais (a))

iin(a) a5 (a)

Integrating (14) over D* and taking into account the boundary conditions satisfied by the
minimizer of (15) we find V' = L* cosy/&. By (4) and the isoperimetric inequality V5 > Vj.
Put §(a) = V(a) — V*(a). By the previous observation §(A) > 0. From (16) it then follows
that §(a) > 0 for all a. In fact, suppose that §(a) takes a negative minimum at a;. Then
0 < §(a1) = th(a1) — @5 (a1). By (16) and the monotonicity of go(£)/t (which follows
immediately from the definition)

&(V(a1) = V7(a1)) 2 0

which is a contradiction to our assumption, Since V(a) > V*(a) and V(0) = V*(0) = 0 the
assertion is now obvious.
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REMARK 3.1. The soluiton of (15) without volume constraint never cotncides with the
corresponding one of (1) even if we choose for qy the function given in the second ezample.
This follows immediately from the fact that ty is always smaller than the value for which
q(t)/t = cos~y. The inequality in Theorem 3.1 is therefore never isoperimetric.

CoROLLARY 3.1. If V* Vg < V —Vy, then the solutions of (1) and (15) satisfy o > o*.

Proof. Tet V. = Vy + h4d and V* = V + h*A. By our assumption, o > h*. If
h > —ap:= minug, then « = uy+h is the desired solution. If b < —ay, & = ug—ay is a super
solution and by the comparison principle [5}, minu = 0. Consequently a = min{ag + A, 0)
and o = min(eg + h*, 0). Since af + A" < ag + h, the proof is completed.

CoROLLARY 3.2. Assume V < V(D) and V"' -V <V — V4. Then AL > A].

'r'oof Suppose that the 4, < A%. @ satisfies the inequality (I) with (cf. (3))
A = (Vo — V) and @* satisfies (12) with A* = r Tesss (Vo — V*). By (4) and
the isoperimetric inequality Vo > V. Thus because of our assumption V' > V*.The
same arguments as for the Theorem 3.1 apply because A < A*. Hence V(a) > V*(a) in
(0, A). By assumption 0 = @(a) = V'(a) < V*(a) = @*(a) in (4 — 45, A — Ay). Since
V(a) = V*(a) = 0in (0, A — A7) this is impossible.

OBSERVATION 3.1. As already noted the level lines T'() are closed for it € (@, mingp u).
According to o result of Payne and Philippin [7] the function

AF cos covy

1260

P=2(1-(1+|Vu?)” 5

takes its maztmum al the points P on 8D where u(P) = mingp u(z, y). This together with
Bernstein’s result that |Vu|® takes its mazimum on the boundary implies that

Vul* < ctg’y in D(B), B=minu.

If ctgy < /2, then (I) with qo(t) holds in (e, B). If this suffices to establish Finn's conjecture
at least for angles close to 7 /2 is still an open question.

4 Additional remarks

As we have seen before the estimate o > o provides an upper bound for V* in terms of k,
v, L and A. We shall construct a lower bound by means of an upper solution.

The crucial tool is the following comparison lemma due to Concus & Finn (see [5]). If
0D =T+ T, Ty NT; = @ and @, u are two functions satisfying

divlu — ku > divia — ki in D,

& > u in Lo, (n, T2) > (n, Tu) in Ty, then @ > u in D.
A suitable candidate for #, already used by Finn [5], p. 113, and Gerhardt [6] is
@ = c— (R? — r*)1/? which satisfies

(17) divTﬂ:% for r<R, (Ta,n)=1 for r=2R.

Ife= ;;%, then Z satisfies the comparison principle for ug [5]. Consequently, if 7 is the
inradius of D,
2

(18) < —.

RTg
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This together with (5) implies
(19) Ve >

Lcosy 24
K RTq .

% can also be used to localize the set DT in case of a small volume V. This idea has already
been applied in [4] in the case of fixed A and will be repeated for the sake of completeness.

Let P € D be a point such that dist(P, 3D) = p and let B, be the disk of radius p
centered at P. Then the function @ = p — (p — 72)'/2 satisfies

2 2
divIia=-<&u+ - inB,, (Ti,n)=1 ondB,.

p p
It is therefore an upper solution for the solutions u of (2) with A > ﬁ This construction is
independent of the particular position of P. Hence u = 0 on {P € D: dist (P, 0D) = p}.

By the comparison lemma, v = 0 in {P € D: dist (P, 8D) > p}. Hence
(20) DY c D,:= {Pe D:dist(P, D) < p}.
In view of (3) we must have

(21) A Lceosy — kV) > ~2~

1
= a
Since AT < A,:= measD,, (21) holds for all V such that kV < Lcosy — ?féﬁ’«. We have
thus established the following result.

THEOREM 4.1. If V < (Lcosy—24,/p)s™", then a free boundary occurs and DY C D,,.

Remarks

5,

(1) Since lim,_0 4,/p = L, the assertion makes only sense for p > py > 0.
(2) Let B = maxoccry(Lcosy —24,/p)s™". Then V°© > f.
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