ON THE BOUNDARY LAYER FOR DILATANT FLUIDS

5. N. ANTONTSEV

Lavrentyev Institute of Hydrodynamics

Lavrentyev Prospect 15, Novosibirsk, 630090, Russia
and Universidade da Beira Interior,

R. Marqués d’Avila e Bolama

G200 Covilha, Portugal

J. 1. DIAZ

Departamento de Matemdtica Aplicada,
Universided Complutense de Madrid,
28040 Madrid, Spain.

S. I. SHMAREV

Lavrentyev Prospect 15, Novosibirsk, 630090, Russia
and University of Ouiedo, ¢/Calus Sotele, s/n
33007, Owiedo, Spain

1 Introduction: the boundary layer and the von
Mises transformation.

This paper deals with the boundary layer associated to a class of non Newtonian
fluids, 1. e., Huids for which the stress tensor T | at given temperature and pres-
sure, 18 not a linear function of the spatial variation of the velocity L = Vv .
This class of fluids is relevant in many contexts: chemical engineering (polymer
melts, polymer solutions, suspensions, lubricants, paints, ete.)}, liquid crystals, ori-
ented media, fibrous media, animal blood etc. (see, e. g., Schowalter [28] and
Narasimhan [17]). The above notion of non-Newtonian fluids fails to bound the
subject. An important subclass is the so called purely wviscous non Newtonian
Auids.  To introduce this notion we start from the Retner-Rivlin principle of
material objectivity

T = —PI + ¢1(11, Io)D+ao(lz, I3)D?,

where P is the pressure, Iis the identity tensor and I; (i = 1,2, 3) arc the principal
tnvariants of D = %(VV%«VVT), the symmetric part of L. The special case of
@1 identically constant and ¢2 = 0 corresponds to the case of incompressible
Newtonian fluids. The more general case of ¢4 = 0 and non-constant ¢, defires



the class of purely viscous non Newtonian fluids (also called generalized Newtonian
Auids). It is useful to introduce the shear siress function

() = 5é1(e)n

where x represents the shear rate. The Power-law or Ostwald-de Waele model is
the one associated o the case of

(k) = K 5P &

where p > 1 is given as a constitutive property of the fluid. If p = 2 we find
again the class of Newtonian fluids. The case of p > 2 corresponds to the so called
dilatant fluids and the case 1 < p < 2 to the pseudoplastic fluids.

The Navier-Stokes system associated to a two-dimensional stationary flow of a
incompressible dilatant fluid is
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where v = (u,v) is the velocity, P the pressure,

and .
[D|2 =ul 4+ §(uy +ug)? +1;3A

In 1904, L. Prandtl [22] studied the influence of viscosity in a Newtonian flow
at high Reynolds number in the presence of an obstacle. If we assume that the
flow is exterior to a body (here represented by the interval (0,X) in the x-axes) and
that a representative value of the modulus of the velocity is V, then the Reynolds
number is R= VUX (we can assume, for simplicity, that p = 1). The transition from
gsero velocity at the wall to the free stream velocity (velocity of the outer flow)
(U(x),0) takes place in a very thin layer: the boundary layer. To study such a
layer, Prandil used some simplifications. For instance, it is natural to expect that

§
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where § is the boundary layer thickness. Tt is not diflicult to see that this property
is equivalent to the condition
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Using dimensional analysis it can be shown that under this condition

or

<< 1.
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So, following Prandtl, we can assume the Bernouilli equation for the outer How to
be

U () () = o (a).

Neglecting smaller terms, the Navier-Stokes system leads to the following problem:
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(P5) 92 1 5y = "
u(0, ) = uo(y) y >0,
u{z,0) = 0,v{(x,0) = vo{x) x € (0, X),
u(z,y) = Ulz) as y — o0 z € (0, X).

where @ = {(x,y):0 <z < X,0 < y}. In most physical problems vg(z) = 0;
nevertheless, the case vg(z) < 0 is also relevant in the so called suction problems.
To study problem (PS}, several reformulations are proposed in the literature. The
key point is to work with the siream functien ¢ given by

2]
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Notice that the level lines of 4 coincide with the current lines of v = (u,v).
The first mathematical treatment of (PS) is carried out by studying the third
order ordinary differential equation satisfied by ¢ (see Schlichting {27] for the
case of Newtonian flows). The second possibility is to introduce the von Mises
transformation. |34]

P = (=, y) i € (0, 00),
w(z,¥) = vz,y) = e(0,X).

In this way, we arrive at the scalar problem

p—2
S v/ (|3 g+ vedE - WU =0 5 e (0.X)v e (000),

(Py) w{l, ) = woly) % € (0, 00),
w(z,0) =10 z € (0.X),
w(z, ) — Uz) » as ¥ — 09,

where wo{1h) is defined through ue(y). The P.D.E. appearing in (Py,) is a nonlinear
degenerate parabolic equation in which the x variable plays the role of time and
i stands for the spatial variable. Some existence and uniqueness results for this



problem are due to Oleinik [18], [19] (case of p = 2) and Samokhin [26] (case of
p > 2). The assumptions of those papers are the following:

U{z) >0 forz e (0, X),
up(0) = 0 and ug(y) > 0 fory >0,
up(0) =0, (uh,uf) € Lc‘i((),oo)2

U0)UL(0) — 1)0(0)%31 + v % =0(y?) (consistency condition).

du
dy

We also mention the results by Oleinik [19], Serrin [29] and Peletier [21] on the
asymptotic behavior when X=4o00.

2 The results
The main goal of this work is to study the coincidence set

{(rc,i/',') cw(x, ) = Ug(m)}

for the case of dilatant fluids. The boundary of this region could be called the
exact boundary layer.

Remark 1 By the weak maximum principle, it is well known that necessarily
w(z, ) < U x)in (0, X) x (0,c0). In fact, if p = 2, it can be shown (see Oleinik
[19]) that the strong maximum principle also holds and thus w(z, ¢) < U2(z)
in (0, X) x (0,00), i. e. the coincidence set is empty. We recall that there are
several attempts to make the boundary layer concept more precise. For instance,
in Schlichting [27] it is defined as the zone where u=0. 99U. We must mention
also the integral method introduced by von Karman [33] in order to estimate the
boundary layer thickness 8.

Our main results are the following

Theorem 1 (Existence of the coincidence set).
Assume p>2, vo(z) <0, and there exists g € (0, 00) such that wo(w) = U3(0)
for any 1 > tpo; Then there emists C > 0 and u € (0, 1) such that

w(z, ¥} = Ug(rz:) for any (x,) such that ¥ > g + Oz

Theorem 2 (Waiting distance along a streamline)
Assume p > 2, vo(z) < 0 and that there evisis o > 0, C > 0 and ¢ € (0,1)
such thal,

T W2(0) — wolr))%dr < C(wo — )7
for any 4 € (Yo — &, +oo).
Then, there ewists zg € (0, X) such that

w{z, Pg) = U?'(I) for any = € [0, zq] .



Sketch of the proof of Theorem 1. It is based on a general Energy Method
first introduced by one of the authors [1] and later improved and devcloped in (2],

31, [}, (5], [6], [7], (8], 9], (11}, [12], [13), [14], [15], [16], [20] and [30] (see also [10],
23], [24], [31] and [32]).

First step. We introduce the homogenized unknown

z(z, ) = U3(z) — w(z,¥).

We remark that by the comparison principle z{z, %) > 0 on (0, X) x (0, 00). We
also point out that arguing as in {18], or [26], it is possible to obtain the a priori
estimate

0« < UQ(.”IT) —z{z,P) < Caforany =z € (0, X), ¢ € (0,00},

for some constants €7 < Cg. On the other hand, it is easy to see that z satisfies

-2
gz u/ U2 — 81/1( awp 3—1‘7))4—1)03—;:0 z € {0, X),v €(0,00),
(P2) 2(0, ) = U(0) — wo(4) ¥ € (0 o),
o, 0) = 02(z) v e (0%)
z(z,1h) — 0 as 1 — oo,

We remark that z(x, %) = 0 on the coincidence set. .
Second step: Integration by parts formule. We introduce the one-parameter energy
domain

o= (0, =) x (p, 00)

where p > 4o is arbitrary. Multiplying by » and by integrating (formally) by parts
we obtain that

%fooz‘) L b )dih -l—jo fp (s 1/)) 31/,-(? )
%f;(—vo( s, p)ds = lfoo 200, ) dyp — fD wz

d s d-w -+

ds

31, ’ 51/1 !V’

where
W2 (z) — 3z(=, )
2,/0%(x) — z(m,zj))-

B(w,ab) =
It is easy to see that
0< Cy<8(r, ) <Cqforany ze(0,X),v e (0 0.

Third step. We introduce the energy funciions

1 OO
b(z, p) = ess sup 7/ 22w, p)dyp
P

0<s<n
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Applying the Holder inequality, we get that

T
/ wz
]

Now we need a technical result
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Lemma 3 (Trace-interpolation inequality, [16]). Let o € (0,1) be given by o =
{p+2)/3p. Then

(/ |25, )P ds)F < CealoVP(EYP 4 51 /op1/2)op(1=0)/2,
0

End of the proof of Theorem 1. By using the above inequalities we can find
an exponent p € {0, 1) and a positive constant C7 such that

EF<(E+b < C?’I‘( =i}/ (p— 1)(__(3~ ).
ap

This inequality implies the conclusion due to the following easy result

Lemma 4 ([1}) Let y € C({0, t1] x [0, po + 8]}, y > 0 such that
y(t,p)) < thﬁ(f#ﬂ)
ap

for a. e. p € [0, po+ 8] and for any t € [0, £1],where w > 0 and ® is a continuous
nondecreasing function such that (0) =0 and

/ ds <
00
o+ ®(s)

Then there exists to € (0,11] and a function p(t) with 0 < p(t) < po + § such that
y(t,p) =0 for any t € [0, t5] and any p € [0, p(t)].

Remark 2 A different proof of Theorem 1, based upon the comparison principle,
and under additional conditions, is due to [26].

Idea of the proof of Theorem 2. Using the same type of arguments and the
assumption at = = 0 we obtain the differential inequality
o J(1—
B < Cop (o= ) + Cylao — )/
n
for any ¥ € {¥g — £, +00). The conclusion comes now from an analvsis of this
differential inequality



Lemma &5 ([2]) Let y € C([0,t4] x [0, po -+ 8]), w = 0 such that

w
@y(t,5)) < O (1) + Gl — o))
fora e p€ [D,~~po+5] and for any t € [0, 11], wherew > 0 and & is as in Lemma 4
and

3> 0 and £ > 0 such that G(s) < e®(n,(s)), a.c. s € (0, p)

with

T ods
(s} =0, (s), @LT=/ :
Ur (S) 1 (S> ﬁ( ) o+ ‘LL‘I)(S)
Then there cmists t* € (0,#1]) such that y{t,p) = 0 for any t € [0,¢%) and any
P € [OI pO]

Remark 3 In the case of pseudo-plastic fluids {1 < p < 2}, it is possible to apply
another kind of energy method (now using a suitable global energy) which leads
to a different estimate on the location of the exact boundary layer: if X is large
enough and U(x)= 0 Vz > zy for some xy > 0, then there exists z¢ > =y such
that w(z, ) = U%(z) = 0, Vo > zq, Y3 € (0,00) (see also [25]).
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