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1. Introduction.

Climate models have different characteristics than weather prediction models: the
time scale is completely different (centuries versus days or weaks) and their main goal is
also complementary (prognostic in the weather prediction and diagnostic in the case of
climate models). Climate models were introduced in order to understand past and future
climates and their sensitivity on a few of relevant features (which a quantitative analysis
reduces to some parameters).

Two of the most important ingredients of the models concern the Solar radiation R,
(short-wave energy from Sun) and the Earth radiation R, (long-wave radiation escaping
into space). The consideration of other features under different degree of accuracy in-
troduces a hierarchy in the class of climate models. So, according to the time variable
the models are classified into equilibrium and dynamical models. With respect to the
space variable the models are called as 0-D zero-dimensional (if only the mean Earth
temperature is analized), 1-D latitudinal or vertical models, 2-D horizontal or meridional
plane models and so up the most sophisticated 3-I) General Circulation model. More
complex models have been also considered in the literature by coupling the study of the
Farth temperature with different phenomena from the Glaceology, Celestial Mechanics,
Geophysics, etc. (see the monographs of Ghill and Childress [1987], North [1993] and
Henderson-Sellers and Mc Guffie {1987]).

In this work we shall pay attention to the mathematical treatement of some horizontal
energy balance models generalizing the models introduced (ndependently) by Budyko

[1969] and Sellers [1969].



[f we represent the Earth by a compact two-dimensional manifold without boundary M
and we denote by u(t, ) the annually (or seasonally) averaged Earth surface temperature,

our model is formulated as the reaction-diffusion equation
c(t, z)u(t, z) — div(k(t, z)grad u(t,z)) = Ru(t, =, u(t,z)) — Re(t,z,ul(t,z)) (1)

where the heat capacity ¢(f,z) is a positive function largely determined by oceans (recall
that the 70 per cent of the Earth’s surface is covered by oceans). After averaging ¢ ~
1.05 x 10%Jm 2K -1, The diffusion operator in (1) has a double justification:

div(k grad ) = div(F, + )

with F, = k. grad u the conduction heat flux and F, the advection heat flux. In Meteo-
rology and Oceanography it is usually assumed F, = —vT where v and 7" are the velocity
and temperature of the fluid. In planetary scales O(10*Km) the velocity is eliminated

using the eddy diffusive approzimation
divFy o div(kegrad u) (2)

where the eddy diffusion coeflicient is again a positive number (and more generally a
positive function). Obviously the differential operators div and grad must be suitably
understood with respect to the Riemannian metric. An important variant is due to P.H.
Stone [1972] who pointed out that in the case of rotating atmospheres the eddy diffusive
approximation really leads to a nonlinear diffusion operator of the form

div(k}|grad u|grad v) (3)

for some k7 > 0 (see Stone [1972] formula 2.24). In terms of equation (2) the nonlinear
operator (3) means that the eddy diffusion coeficient k, must increase as the gradient of
the averaged temperature increases.

The solar energy absorbed by the Earth R, is assumed to be of the form

B. = QS(x)B(u) (4)

where € is the Solar constant (i.e. the annual average amount of radiation energy per
unit time passing through a unit area perpendicular to the Sun’s rays at the Farth orbit).
Averaging @ ~ 1.370 W/m?*. S(z) is the distribution of solar radiation over the Earth and
B(u) is the planetary coalbedo representing the fraction absorbed according the average
temperature. Usually #(u) is assumed to be a non-decreasing function of u taking constant
values a; and a; (both positive and less than one) for small and respectively large values
of w. [t is not completely clear how is produced the transition: Budyko [1969] proposes a
discontinuity at ©w = —10°C

ay over icefree T EM u(ta -10
B) = { / re { (t,2) } )

>
a; over ice-covered {z € M :u(t,a) < =10},



In contrast to that, Sellers [1969] proposes a continuous linear piecewise function with a
very large increasing rate near —10. We remark that in seasonally averaged models the
terms ().5'(z) are replaced by a more general function S(t,z) "almost” periodic in time.
This is of relevance in the study of ice ages since snowcover over the summer is a necessary
condition for the growth of continental glaciers as, for instance, the ones of Antarctica
and Greenland (see the work by North Mengel and Short [1983] and its references). We
also point out that the modeling of clouds is one of the most important open problems in
the study of the solar energy absortion.

The mean emmitted energy-flux R.(¢,z,u) is determined empirically and depends on
the amount of greenhouse gasés, clouds and water vapor in the atmosphere. It seems
natural to assume that K. increases with u but the increasing rate is controversial: Sellers

[1969] proposes a Stefan-Boltzman radiation-law

19°
= 4 — , ]
R. = ou®(1 — m tanh( 0 )) (6)

where u is represented in Kelvin degrees (here o > 0 is the emmisivity and m > 0 the
abtmospheric opacity). Budyko [1969] replaces it by a Newtonnian linear type radiation
ansatz

R.=A+ Bu (7)

which is a linear approximation of (6) near w = 15°C (the actual mean temperature).
Here A = 210 W/m? and B = 1.9 W/°Cm®. We point out that the term I, takes also in
account the anthropogenerated changes.

In order to simplify the model we can assume that M is the unit sphere of J#° and that
the heat capacity coeflicient is ¢ = 1. We are interested in formulations including the non-
linear diffusion proposed by Stone (see (3)) and also the case of a possible discontinuous
function [ (as, for instance, the one given in (5)). If we denote by ¢ and A the colatitude
and the longitude then the 1-D model is obtained by introducing z € (0,1) by = = cos¢
and calling u(z,t) to the mean annual temperature average on the latitude circles around

the Earth. The model under consideration will be the following

uy — (p{@)|ug P ?uy ) = Ro(z,b,u) — Re(z,t,u) 2 [t >0,

(P)q pla)|ugP~?u, =0 redlt >0,
u{z,0) = ug(x) €l
where [ = {—=1,1). The consideration of the two-dimensional problem on a compact

Riemannian manifold without boundary M is the main objective of the works Diaz -
Tello [1993], Diaz - Tello [1996] and Bermejo - Diaz - Tello [1996].

We point ouf that many of the results of this work will be obtained under the general
assumption I < p < co and so they are also of application to the classical models intro-
duced by Budyko [1969] and Sellers [1969] corresponding to the choice p = 2 and the one
due to Stone [1972] where p = 3.



A list of structure assumptions is the following:

p(z) = k(1 — z*) with k& > 0, (8)
Ro(w,t,u) = Q(z,t)8(u) where Q'€ G([—1,1] x IR,) satisfies
0 < @(z,t) and J is a nondecreasing function such that (9)

Bu)l < M Vu e R, for some M > (,

R.(z,t,u) is a continuous function on z, Lipschitz on ¢ afld Re(z,t,-) } (10)
is nondecreasing as function on u, for any fixed (z,t) € I x R,.

The rest of the work is organized in the following way: The notion of weak solutions
of problem (P) is introduced in Section 2. It is proven that if vy € L®([) there exists at
least one bounded weak solution of (P). This is obtained by two different methods: via
a compactness abstract method and via a regularization argument. Due to the presence
of the degenerate coefficient p(2) the natural energy space is given by V = {w € L*(]):
w; € LP(1 : p)}, where LP(I : p) is the weighted-Lebesgue space associated to p.

The question of the uniqueness of bounded weak solutions is studied in Section 3. The
answer is positive for the Sellers model (it is enough to require § be a locally Lipschitz
continuous function). As in the case of the homogeneous model (see Diaz{1992]) the
Budyko model may have more than one solution. This is explicitly shown in the Subsection
3.1 by means of the construction of a counterexample. Nevertheless, in the Subsection
3.2, it is shown that there is at most one solution of the Budyko model in the class of
solutions satisfying a “nondegeneracy property”. The free boundary generated in the case
of Budyko type models is considered in Section 4. Finally, Section 5 is devoted to the
study of the approximate controllability of the problem.

2. On the existence of solutions.

It is well known (see, e.g. Diaz-Herrero [1981] for the special case of p = 1 and
R, = 0) that if p > 2 the degeneracy of the diffusion operator makes impossible expect
the existence of a classical solution of (P) even for a regular initial datum wy. In order
to make precise the notion of solution we shall study, we start by indicating that the
eventual discontinuous character of the function A, will be treated by assuming that

Ro(z,t,u) = Q(z,t)B(u), with @ as in (4) and 8 a

maximal monotone graph of 22 such that |z| < M (11)

for any z € fB(u), for any u € IR and some M >0
(i.e. for example, 8 is given by a nondecreasing real function b as B{r) = {b(r)} il b is
continuous in r or A(r) = [b(r—), b(r+)] if b has a jump at the point r: see Brezis[1973]).
A usual way to verify the differential equation (at least weakly) is to multiply by a test

function followed by an integration by parts. In doing so we obtain
T,

f'1‘1,(:1:,’[')40(:5,T)d:z:« / /'u.(m,'t)vt(:i;,t)cl:ltd,'t‘
I Jo Ji
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+/ / ) [z, ) [P 2w (2, oz, t)dadt

T L
= / /{Q z,1)z(z,t) — Re(z,t,u)}v(z, 1) dLC[t—I-—[’(lo (z,0)dx (12)
for some function z(z,t) which satisfies that '
z(z,t) € Blu(z,t)) ae z€landt € (0,T) (13)

For several purposes it will be useful to take the solution u as a test function. So, for ¢

fixed, the integrals -
fp\uxlpd:c and /|u[2dm
T h
must be finite. Then a natural “energy space” associated to () is the one defined by

V={we L*I): w, € L"({ : p)},

where LP([ : p) is the weighted-Lebesgue space
(1 p) = v 1[0 = [ pl@)lo(@)Pde]s < oo},
It is easy to see that V' is a separable and reflexive Banach space with the norm
e lv=ll w 2y + 1| ve oo -

Any weak solution must satisfy u(-,t) € V for a.e. ¢ € (0,7). It is not difficult to see
that in that case |u (-, t)[P"?u.(:,t) € LF'(I : p), with p' = p/(p—1). We also remark that
because of the physical modelling of the problem we shall restrict our study to the class
of bounded functions.

Definition 1 . By a bounded weak solution of problem (P) we mean a function u €
C([0,T) : LHI)) N L*(I x (0,T)) such that u € LP(0,T : V), Re(-,-,u) € L'({ % (0,T))
and there exist z € L=(I x (0,T)) satisfying (13) and the identity (12) holds for any
ve LPO0,T: V)0 Lo x (0,T)) such that v, € L (0,7 : V'),

The main purpose of this section is to prove the following result
Theorem 1 For any ug € L*(I) there exist at least one bounded weak solution u of (P).

The proof of the above theorem can be carried out by means of different methods. Here
we shall present two different type of techniques: (1) a compactness abstract method, and

(i1) a regularization method.

2.1. Fuistence vie a compactness abstract method.

<



Problem (P) can be considered as a perturbed problem associated to

ue — (p(2)|uePPuz)e = 0, 2z €(—1,1),2>0,
(P*) < pla)|uglP?u, =0, oz =+1,t >0,
u(z,0) = ug(z), z € (—1,1).

The abstract Cauchy problem associated to (P*) is given by

du g ‘
(CP*) E(t) + Au(t) =0, in L*(), fort >0,
u(0) = up

where we are identifying u(t) € L*(I) with u(-,t). The operator A : D(A) — L*(I),
with D(A) C L*(I), is described in the following result giving also the existence and
uniqueness of the solution of (CP*).

Proposition 1 . (a) Consider the functional ¢ : [*(I) — IRU {+c0} given by

1 f :
= | pla)luglPdze ifueV
ol = { plyP Nl (14)
=4 otherwise.
Then @ # +oo, @ is convex and lower sem‘icontz‘nuous.
(b) Let A(u) = dp(u). Then D(A) C V, D(A) is dense in L*(I) and
Au = —(p(2)|ug]?"2ug)y for any u € D(A). (15)

(c) For any ug € L*(1) there exists a unigue function v € C([0,T] : L*(I)), for T > 0
arbitrary, such that w(t) € D(A) for a.e. t > 0, t%% € L*0,T : [*(I)) and satisfies
(C'P*). Moreover if ug € LUI) with 1 < g < oo then u(t) € L(I). Finally, the

application S(1)ug = u(t) is a semigroup of coniractions on L*(I).

Proof. (a) To prove that ¢ # 400 and that ¢ is convex is obvious. The lower semicon-
tinuity of ¢ can be shown, for instance, using the reflexivity of the space LP(] : p), and
that the norm is Ls.c. for the wealk convergence.

(b) Tt is clear that V = D(p)(= {w € L¥I) : p(w) < oo}) is a dense subspace of L*([)
(notice that C§°(I) € V). Then as D(d¢) C D(p) and D(dyp) = D(ip) (sce Brezis [1973])
we have that D(dp) = L*(I). On the other hand it is a routin matter to see that ¢ is

Cateux differentiable in V' and that

4 M) — ol : ‘
< @'(W), h >viy= ki\S(l) (1t ;\) () = ./[ pla e P P ushyde.

As dpo(u) is a maximal monotone operator we obtain (15).
(¢) The existence of u with the indicated regularity is now a consequence of the abstract

Hille-Yosida theorem given in Brezis [1973]. If wg € L%(]) we multiply the equation by
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the test function |u|?*signu (more precisely, by a smooth approximation of this function)

and a simple integration by parts shows that

%[lu\"dw <0,
I

which gives the result.

Theorem 1 can be obtained from an abstract perturbation result (see Vrabie [1987] and
Diaz-Vrabie [1987]) assuming that the operator A = Jy generates a compact semigroup.
By a result due to H.Brezis (see the reference in the book of Vrabie [1987]) this condition
is equivalent to know that l

“for any K > 0 the set {w € L*(I) || w |22y +o(w) < K} } (16)

is relatively compact in L*(1)”.
This is proved in the following auxiliary result:

Lemma 1 . (i) Let p given by (8) end assume p > 2. Then for any q € [1,p/2) we have
that
Vc{we L*):w, € LYI)} (17)

with continuous imbedding. Moreover, for any v € [1, 00] we have
VvV c L"), (18)

where the imbedding is continuous and compact for any r € 1, 00].

(it) If 1 < p <2, then we have the continuous imbedding V C L(I) for any ¢ € [1,00) if
p=2 and any q € [1,p*) with p* = 2p/(2 — p).

(iie) If 1 < p <2, the imbedding V C L*(I) is always compact.

Proof. (i) Let w € LP{I : p) and q € [1,p/2). By the Holder inequality with p; = p/q and
P =p/(p—4q)
f.rl'w(?ﬁ)lqdfC = /1 |w()|2p(z)"7p(e) /7 da <

< (./[|w($)]pﬂ(ar)da;)"/v </[ ﬁ@q)(ww.

/ dx < 1 L dx
I p(;z;)q'/(P—Q) - [{g/ﬁ*q f_i (1 .._:Ez)q/p——q <50

But

since (1 —2%) > Cd(=,8I) and q/(p — q) < 1. This proves the first part of the statement.
This also shows the continuous imbedding V' € Wh'(1) and so (17} Lolds by a well-known
result (see, e.g., Brezis [1983], Theorem VIILT7). Then V € W3(]) for any g € [1,p/2)
and by the mentioned result the imbedding (17) is also compact for r = 400, The prool
of (i1} can be found in Adams [1980] or Rakotoson-Simon [1993]. Part (iil) is shown in

Meyer [1967] for p = 2. His prool can be extended to any p € (1.2} using part (ii).
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Corollary 1 . Assume (8), (10), (11), (14) and p > 2. Then for any ug € L*(I) there
exists a function u € C([0,T] : L*(I)) such that u(t) € D(A) ae. t € (0,7], t%%lti c
L*0,7 : LMI)), w(u) € LY0,T : RR) and it satisfies (P) a.e. t € (0,T) on L*(I)
as well as in the sense of (12). Moareover, if ug € V then % € L*0,T : L*(I)) and
we C([0,T]: V). Finally, if ug € L®(I) then u € L=(I x (0,7)). |

Proof. The existence of u satisfying (P) a.e. ¢ € (0,T") on L3(]) is a consequence of the
application of a suitable fixed theorem for a compact operator (see, e.g., Vrabie [1987],
Corollary 2.3.2). The application of such results is guaraﬁteed by Proposition 1, Lemma
1 and the assumptions (10) and (11). This function obviously satisfies trivially (12) (take
integrals on (7,7") x I and make 7~ 0). The boundedness of u, assumed ug € L*(I), is

proved as in Proposition 1 if the right hand side of the equation is a bounded term.

Remark 1. The above method can be applied to two-dimensional problems (on a compact
Riemannian manifold without boundary): see Hetzer [1990] (for the Sellers type model)
and Diaz-Tello [1993], [1996] when ¢ = 1 and Bermejo - Diaz - Tello [1996] when ¢ €
Le(M) (for the Budyko model). '

2.2. Fzistence via a regularization method.

The existence of a bounded weak solution of (P) can be also obtained by approximating
the multivalued (discontinuous) term f(:) by a regular function £, € C*°(Jt) with the
properties '

Pi(s) > 0 and |B(s)| <M Vse IR (19)

[t is also usefull to remove the degeneracy at 97 by replacing p(z) by

pe(z) = plz) + e (20)

In order to approximate u by classical solutiens of a related problem we also replace the
data ug, ¢ and L. by C™ functions g, @n, Rex such that

Uo,m(:tl) = 0, || Uy,m HLN([)SH Ug ”LW(I)-.
and
Uo,m — ug in LEH(T), as m — oo,
Q. — Qin C(I x [0,T)),
Re satisfies (4), Rox(, - u) — Ro(-,- u) in C(I x {0,T})

for any fixed v € IR and R, (2, t,) — R.(=z,t,-) in C(J) for
any compact J C IR and any fixed (z,t) € T x [0,7].



Given €, m, n and &k positive numbers we consider the problem (F)

Uy — [pe(@) Uz P2 ug)e ~ €tpe = @z, 8)Pe(u) — Re(z, t,u), z € [ x (0,71,
pe(@)(ue|P~2uy + euz) = 0- on 91 x (0,77,
u(z,0) = ugm(z) : on 1.

The partial differential equation is now uniformly parabolic and so by well-known re-
sults (see e.g. Ladyzenskaja-Solonnikov-Ural’ceva [1968], Chapt.V) there exists a unique
classical solution U = u¢mnk. In order to study the convergence, when ¢ N, 0 and

m,n,k — +00 we need some a priori estimates.

Lemma 2 . The solution U of (P.) satisfies (for n and k large enough)
I U oo (rxoan< C, (21)

| peUs |lro, 700y < C, (22)

where C' denotes a positive constant independent of e,m,n and k.

Proof. Estimate (21) is derived from the maximum principle (see e.g. Ladyzenskaja-
Solonnikov-Ural’ceva [1968]). To obtain (22) we multiply the equation by U. Integrating
by parts we obtain

1d

— ‘. 2 P i ‘<

(where we have used (19) and (21)).

Using the a priori estimates and the assumption (11) the proof of the convergence
U — u, f(U) — z with z € B(u) and that u is a bounded weak solution of (P) is
standard (notice that this is not the case if we want obtain more regularity on w, as, for

instance, that given in Corollary 1).

Remark 2. The regularization of the multivalued term SB(u) was already carryed out in
Xu [1991] for p = 2 (see also Feireisi-Norbury [1991] for some refated problems). We also
point out that the existence of a weak solution can be obtained by the method of upper
and lower solutions combined with monotone iteration arguments (see e.g. Carl [1989]
and Diaz-Stakgold [1989] for other related problems).

3. On the uniqueness of solutions: positive and negative answers.

The type of answer to the question of the uniqueness of solutions to problem (P) is
rather different in the cases of the Sellers model (where Ry(z,t,u) is a smooth function)

and the Budyko model (where Ry (z,l,u) is a discontinuous function of u).
3.1. The Sellers model.
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The following result shows the uniqueness and others properties of solutions for the
Sellers model..

Theorem 2 Let p > 1, and assume that
R, salisfies (11) with B a locally Lipschitz function of u. (23)
Then given ug € L=(I) there exists at most one bounded weak solution of (P).

Idea of the proof. First of all we point out that v, € L¥'(0,T : V). This can be obtained
from the definition of bounded weak solutions and the characterization of the dual space
V' (see e.g. Ivanov [1981], Lemma V.2.1). Moreover, if we define w = e™%'u, w satisfies
(in a weak sense) the equation

wy — e~ S () |wy " Pws)z = e %' Q(, t)B(we®t) — e Ry(, t, wet) — Cw.
Since A is assumed locally Lipschitz we can choose C' large enough such that the function
F(z,t,w) = e"“'Q(z, t)B(we) — Cw

is a strictly decreasing function of v for fixed (z,t). Now assume that we have another
solution u* of (P) corresponding to the same datum wug. We take w — w* (w” = e~%'u")
as test function in the difference of the identities satisfied by w and w* (see the definition
of bounded weak solution). We have that ’

< wnlt) = wi (0) w(t) = w' (1) >vv= o [ Jot) — (1) e
(see e.g. Temam [1988)). Moreover, there exists K > 0 such that if p > 2
[ @) b — i), — widde 2 K [ plolfes —wiPdz (20
For 1 < p < 2 the right-hand side term must be replaced by
K [ pa)hs — wl Pl + w3 ) de

(see, e.g., Diaz[1985] Lemma 4.10). Using the monotonicity of Re(-,-,u) and F'(-,-,w) we
obtain that y

— , B . * f 2 :‘ <

pn /{lw(t) w(t)|*de <0

and so necessarily v = u*.

Corollary 2 . Assume (23). Let ug,tig € L=(I) and let w, i be weak solulions of
(P) corresponding to the energy emmision functions Ru(z,l,u) = ~(u) + f(z,t) and
Ra(x,t,w) = v(u) + [(z,1) satisfying the condition (11). Then there exists a constant
K = K(T) > 0 such that

b ) - (0
e (N P R IVOR O/

In particular ug < 1, [ < f imply u < 2.

<

Pminat
o
O

=

L1 ([5) .



Proof. 1t suffices to use now (w — w*); (= maz(w — w",0)) as a test function. Indeed,
by a variant of a result due to Stampacchia we know that (w —w*); € LP(0,T : V).

Moreover

< wlt) = wi (1), (w(t) — w () >ver= 5 [ [[wt) - (0], ds

and inequality (25) follows.

3.2. A non uniqueness result for the Budyko model.

The discontinuity of the coalbedo function f(u) and its role as a source term in the
equation may lead to the existence of multiple (even infinite) solutions of the problem.

This has already been shown in Diaz [1992] for the case of the homogeneous (zero-

dimensional) balance model

du
i Ra(u) — Re(u).

The main purpose of this subsection is to show that this situation may also occurs for
problem (P). Our presentation is inspired in the work of Feireisl-Norbury [1991] (see also
Feireisl [1991]). We fix our attention in the special case of Budyko model i.e., R, and R,
are given by (4), (5) and (7) respectively. We shall also assume that

Q(z,t) = Q and Qa; < A — 105, (26)
Consider a function ug such that

ug € C°(I), uo(z) = up(—2) for all z € [0, 1},
u$?(0) = 0 for k = 1,2, uo(0) = —10 (27)
up(z) < 0if w € (0,1), uh(1) =0

(in this hypothetical case the maximum of the distributed temperature is —10°C' and it is

only attained at the equator). We first show the existence of a ”completely ice covered”

solution u*.

Proposition 2 . Let Ry, R. given by (4),(5) and (7) respectively. Assume that (26) and
(27) holds. Then there exist at least one solution u* of (P) such that w*(z,t) < =10 for
any ¢ € (—1,1) and t € (0,7,

Proof. Let w™ be the unique solution of the problem

uy = (p(@)| e 2ug)s + Bu= —A 4+ Qa;, 2 € [t >0,
(P) o pla)|ugP?uy =0 xedl,t>0,
u(2,0) = up(x) rel

The existence and uniqueness can be shown again by different methods (for instance, it

is a trivial consequence of Proposition 1). The function z = —10 — u* satisfies that
e (P(m)lzrlp_zgz:)w +f(z) =0
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with

flz) = Bz+10B — A+ Qa;.
Moreover z(z,0) > 0 and 2(0,0) = 0. Then from (26) and the strong maximum principle
(see Vazquez [1984]) we deduce that z(z,t) > 0 [l.e. w™(z,t) < —10] for all (z,t) €
(—1,1) x (0,7].

The nonuniqueness of the solutions will be a consequence of the existence of solutions

which exhibit the presence of "free-ice zones”.

Theorem 3 . Under the assﬁmptions of Proposition 2 there exists at least one weak

solution u of (P) such that {(z,t) : u(z,t) > —10} is not empty for any t > 0 small
enough.

To carry out the proof of Theorem 3 we shall construct afamily of auxiliary functions

v* depending on a parameter A > 0 in the following way. We first introduce the partition

(_1’1) X [0:)\] = Q%U Qé\ UQé\ by
Q7 = {(z,t) €(0,1) x [0, ],z > t/)}
Q@ = {(z,t) e (-L,1) x [0,A], -/} <z < t/A}
Qs = {(z,t) € (~1,0) x [0, ],z < —t/A}.

Now we define v* on @7 as the unique solution of the problem

Vg — (p($)|v:z;lp_2vm)1; +Buv=—-A+ Qa'iv (:B,t) = Qi\v
P@Y)R ve(L,t) =0, w(k,t) =10, t e {0, ],
v(z,0) = up(z) z e [0,1].

The existence and uniqueness of a solution of £(Q7}) is an easy modification of the results

of Friedman [1964] (see also Idrissi [1983]). Finally
vMa,t) = =10+ CHN6)(w — t/A)(x + t/A) for all (z,t) € Q3 (28)
oM, t) = v (—z,t) if (z,t) € Q3.
We have

Proposition 8 . [t i3 possible to choose C*(t) in (28) such that
(i) v* e C([=1,1] x [0, A]), vy € C((—1,1) x [0, A]).

(ii) v* is a bounded weak solution of the associaled problem

v, — (p(2)|vaP"%0,), + By = —A + hMa,t) in [ x (0,4),
pla) v P, = 0 on d x (0,2),
v(x,0) = uglx) on [,



where h* € L*(1 x (0, X)) satisfies that h* = Qa; in @} U Q3 and

h(z,t) < Qay —a;)/2 for x € [ and t € (0,Ty) with T\ small enough. (29)
(iti) v (z,t) > —10 on @3 and v* < —10 on QU Q3. A
Proof.(i) The continuity of v* follows from the confinuity of the solution of P(Q7) (any
w € L®(J) such that p(z)w’ € LP(J) satisfies w € C°(J), for any open interval J C (0, 1)).
Moreover, by (27), the solution v* of P(Q3) is regular on the segment {(t/X,t) : t € (0, )}

and the function :

g(t) = vt/ 1)
satisfies that ¢* € C1((0, ), ¢*(0) = (¢*)'(0) = 0 and from (26) and the strong maximum
principle (see e.g. Vazquez [1984]) ¢*(t) < 0 if ¢ € (0, A]. Then choosing

2t

we obtain that v} € C((=1,1) x [0,A]). From the strong maximum principle and (27) we
deduce (iii). To complete the proof we only need to show that the (multivalued) equation

also holds on Q3. So it suffices to show that if u” is given by (27) then the function

W () = v} = (p(a) vzl ?07)e + Bv?

satisfies {29). A strightforward computation yields
Az —t/A)(z +t/A)

W(e, 1) = A2V 4y e 1 9) (e
~(Z2) etk o) - e )] - 40

(where g denotes ¢*). The bound

(z = t/N)(= + /)
2¢%

< C(X) on @3

with C'(\) independent of, allows to choose T\ so small such that the function h* satisfies
(29).

Proof of Theorem 3. We consider a regular approximation g, of g (e.g. 8. € C*(IR))
satisfying (19) and also

p — ay
()

4

a
a; + /

< Bes) Capif s> =10 and a; < Fe(s) < a; + ;ai ils <10 (30)

By theorems I and 2 we know the existence and uniqueness of a solution . of the problem
ue — (p(2) P 2w )y + Bu= —A+QF{(n) inl x(0,T),
ple) P2, =0 on df = (0,71,
w(z,0) = ug(x) on [.
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On the other hand, from Proposition 3, (29) and (30) we know that »* satisfies

v = (p(@) el P0s)s + By £ — A+ QPF(v) in [ x (0,T)),
pl2)|vaP?v, =0 . on 91 x (0, Ty),
v(z,0) = ug(z) : on [.
and then by Theorem 2 we conclude that u¢ > v* on I x [0,T}]. Using the same kind of a

priori estimates as in Lemma 2 we have that u® — u (weakly in LP(0,7 : V) and weakly
in L=(0,T:V)) as ¢ 1 0, with © a bounded weak solution of (P) such that

u>vton T x[0,Th], for any A > 0, (31)

and the conclusion follows from (28).

Remark 3. It is not difficult to show (see Feireisl-Norbury [1991]) that (27) implies that
the solution v of Theorem 3 satisfies u,(z,t) > 0 for any z € (—1,0) U (0,1} and ¢ > 0.
Then by the Implicit Function Theorem there exists a continuous function ¢ : [0, T]
[0,1], defining completely the free boundary associated to u i.e. such that for any fixed
te[0,T] _

{zeTu(z,t) =1} = {~(()} U{(H)} (32)
Clearly ¢ € C'((0,T]). Moreover (31) implies that

C(t) >t/ A for any X > 0.

As ¢(0) = 0 we deduce that necessarily '(t) T 400 as ¢ | 0.

3.3. On the uniqueness of solutions of the Budyko model.

We have proved that the mere presence of a "bad point” zy where u(ty,z,) = ~10
and u;(to, z9) = 0 can be the reason of multiple solutions for ¢ > t5. The following result
shows that if the initial datum ug leads to a solution u never flat at the level ©u = —10

then in fact u is the unique solution. We introduce the following notation:

Definition 2 . Let w € L®(I). We say that w satisfies the strong (resp. weak) p-
nondegencracy property if there exists C'> 0 and €g > 0 such that for any ¢ € (0, ¢o)

Hae € I |w(z)+ 10| <e}| < Ot
(resp. {z € T:0 < |w(z) 4+ 10| < e}| < CeP1).
Theorem 4 Assume p > 2. Let R, salisfying (10) and R, gien by (4) and (5). Let
wg € L™(1).
(1) Assume that there exists a solution u(-,t) salisfying the strong p-nondegeneracy prop-
erty for any t € [0, 1], Then u is the unique bounded weak solution of (P).

(i1) At most there is a wnique solution among the class of bounded weak solulions satisfying

the weak p-nondegeneracy property.



We start by proving that under the nondegeneracy property the multivalued term
,00).

generates a continuous operator from L% (I) into L4(I), for any ¢ € [1, o0)

Lemma 3 (i) Let w, € L%®(I) and assume that w satisfies the strong p-nondegeneracy
property. Then for any q € [1,00) there exisis C > 0 such that for any z,% € L=(1)

(z) € ﬁ‘(w(m)) #(z) € B(w(z)} a.e. = € I we have
2 = 2 llzan< (ay — @) min{C {| w — b |[Fugf® , 277}, (33)
(it) If w,w € L®(I) and satisfy the weak p-nondegeneracy property then
uﬁ%ﬂ—f@DW@%—MﬂﬂﬁéWrﬂmcﬂw—@%wn (34)
Proof of Lemma 8. If || w — @ || 00 (1)> €0 then
2= £ I (o = 092 5 (o = ) s w0 = 0 12
Assume now that || w — @ ||pe(ry< €. Define the coincidence sets
A={zeTl:wz)=-10} A={zel:id(z)=—-10},
as well as the descomposition
Q=AUQ, U Q=AU U_
where
Qr={zel:wE)>-10} Q_={zecl: w()<-10}
and 4, Q_ are defined similarly replacing w by . Let z, 2 defined as in the statement
Then X X i
|z(2z) = 2(z)| < (ay —a;) on AUAU(QLNO)UQ_NQY)
2(z) = 3(z) on (D400 U@_NO)
Thus as |[| =2
2= llzagn < (o — a) ming[ AU AU (2, N Q) U QN QLYo 247 (35)
But we have
(AvAU@NA)UO M) CBo={r e ~10- ¢ <wlx) < 10+ c}
Indeed; it is clear that A ¢ B.. Moreover
n +i(z)ae xz el
~10+¢

Wz)= fw— ||l < wlz) <|| w— 1 || ey
T'hen the inclusion A € B, is obvious. Ifz € ., N_, —10 < w(z) < e+b(a) <
() —w(a)| < w(a) -+ wle) ~

Finally if o € Q_ 00, =10 — ¢ < =10 = Juw(x)

and so z € B,. Il
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w{z) < wlz) < —~10 and = € B.. Consequentely, inequality (33) follows from the strong
‘p-nondegeneracy assumption on w.

Let w,w satisfying the weak p-nondegeneracy property. As before we can assume that
| w— @ ||peo(y< €g. Then remarking that

(2(z) — 3(z))(w(z) —d(z)) =0ifz € AN A
and that if w{z) # —10 (resp. d(z) # —10) and € A (resp. & € A) we have that
zef{zel:0< w(@)+10] < e} (resp. {z € 1:0 < [(z)+10] < €e})
we obtain (34).

Proof of Theorem 4. Let % be any other bounded weal solution of (P). Then, as in the
proof of Theorem 2, using the monotonicity of R,

<@ /I(z(:c,t) — &z, 1)) (u(z,t) — (e, t))dadt
for some 2,2 € L¥(I x (0,T)) with z(z,t) € Blu(z,t)), 3(z,t) € B(a(z,t)) for ae.
(z,t) € I x (0,T). Now assume p > 2. Then by (24) we obtain that
d . 5
77 J (O = )Pt | () = 2D 1<
< @ 1F2(t) = 2() Noanll w(t) = a0 g -
Irom Theorem 4 of Rakotoson-Simon [1993] we have the estimate
Fo =< Coll ve e HUIZ v 0, Vo€V (36)
where
Cy = |17,
with (g > 0 independent of [ and

1= ./: ple)de =k /“11(1 — 2 dx = 4k/3.

Then by Lemma 3 and using (a + b)? < 2P(a? + bP) we get

Q I =(t) = 2(t) oo eyl wl(t) = 48 llzeoqn — I} (wlt) = @(6)s 117

Lo(Lp) =

<) = alt) e (QC(GJ —a;) — ”2";%“5) F (G | ult) = @lt) =

5
L2(1)

[uft) —a(t) |

; ; 1 , .
Teo(h) (QCf(ccf —a;) - 27)@},) + Cy || w(t) — aft)
1

16



where

(J; o) dz)""
Cy = U~ || o< C
2 c? (II p('L) ) | ||L ((0,T):L2(1)) 3

for some C3 independent of u and @ (that can be obtained from the estimates as (25) in

terms of the data, || uo ||r2(r), @(ay—a:) and || Re(z,¢,-) {zeoqo,1:02r)y). Assume now that

1
QC(ay — a;) — 550, < 0.
Then we conclude that .
d o .
@ i w(t) — a(t) ”%%[)f Ca || w(t) — () “%2(1) : (37)

Setting U(t) = u(t) — 4(t) |72y we obtain that U(t) < U(0)e"* but as U(0) = 0 we
deduce that w(t) = 4(t) for any t € [0, T]. If (37) does not hold we introduce the rescaling
y = az with o > 0. Given a function h(z,t) we define h(y,t) by A(y,t) = h{az,t). Then
the functions u(y,t) and 0(y, ¢) satisfy

du 3
at ap(pa( )luy| uT )!} - QZ(y, ) Re(i:tyu)
du

. p_2a N v
b? — aP(pa(y)|iy|” Zuy)y = Q&(y,t) - Re("&'!tvu)
in (—a, a) x (0,T), where

Arguing as in the case @ = 1 we have

L1 wlt) = 0) [y +02 1 () = 20Dy

<@ 2(t) = () o (ol w(@) = @t} lneo(-o .0y -

Estimate (36) remains true when one replaces [ by I,(= (—a.a)) and p by ps. So a

simple computation leads to |I,|,, = o|I|, and thus

| v ”L”"( amS o #=2) /QPC | vy HLF‘((~6\',0):pn) '+"(a'|[|p)_1 | v HLL({——a,a):pa) .
Then by Lemma 3
Q1 2(t) — 2(t) Nl (~aayll w(t) = G(E) [leoo(=aa) = || (u(t) = @)}y [17n( -

P —(p=21/2

S wel) = ) oo (- (RC 2y = ai)ar = e

+&@HWC—“UHmwm

Taking o large enough we obtain that U, (¢) =|| w(t) — @(t) || satisfies U, < Uy(0)e Gale)t

)+

and so again w(t) = (t) lor any ¢ € [0,7].

17



If p =2 the estimate (36) must be replaced by

o]

r1,0)S Crll ve e HIE v g (38)
for any r € {1, 00) where
= 1[G
with Co > 0 independent of I (see Rakotoson-Simon [1993]). But as u(t) — 4(t ) € L""’(I)
we know that for any § > 0 there exists n(§) > 0 such that for any » € [n(d),+
[ () = 22) llsery = [ u(t) = 8(0) || < 8 (39)
and so
[ () = () oo < 27 || u(t) = a(t)
< PO | (ult) = 6t))a [z 427D | alt) = 2(0) [l +278°.
Arguing as in the case p > 2 we obtain

%uuay~mwn;msnwﬂmﬂW)me<@0wf—m>“§%?>

foitn 428 <

+Ca| I[P/ 4 2767,

Making ¢ | 0 as Cf is independent of r we obtain (37) and the proof of (i) ends. Part (i)

is obtained in a similar way by using now (%) of Lemma 3.
@

To complete the study of the uniqueness of solutions of (P) we concentrate our atten-

tion on the nondegeneracy properties. The local character of those conditions is pointed
in the next result.

Proposition 4 .(i) Let w € C%I). Assume that the set A = {& € [ : w(z) = —10}
has a finite number of connected components and that there exists ¢ > 0 and a positive
constant K such that for any c € (0,¢0) and 2 € B, = {x € I : 0 < |w(z) + 10| < ¢}

fw(z) + 10| > K|z — z:/Y®"D vz, € §A. (40)
Then w salisfies the weak p-nondegencracy property. Furthermore, if

14

= 0 then w

satisfies the strong p-nondegeneracy property.
(it) Let W5™(1) and assume that A has a finite number of connected components and
thatl there exists €o > 0 such that for any ¢ € (0,¢) 3§ = () such that

lwe(2)| > 6 ae ze{nel:|w)+10] <} {41)

then 1w satisfies the strong 2-nondegeneracy property.

18



Proof. From (40) we deduce that if ¢ € B, then |z —=| < "7/ K. Thus | B < (N/K)er~?
where N is the number of points of dA.
(ii) It is clear that (41) implies that meas |A| = 0. Let [a,b] C T a connected component
of B. = {2 € I: |w(z) + 10| <:c}. Assume that w,(z) > & on (a,b) [the other case
we(z) < =6 on (a,b) is treated in a similar way]. Then w(a) = —10 —¢, w(b) = —10+ ¢
and there exists z¢ € (a, b) such that w(ze) = —10. Then for any © € [z, b] we have

e 2> w(z)+10 = fl wy(8)ds > 6(z — zq).

Analogously, for any z € [a, zq),
e > =10 —w(z) = /IU wy(s)ds > 8(z0 — )

and thus (40), with p = 2, holds.

Remark 4. The nondegeneracy properties of the solutions of (P) can be obtained under

some additional assumptions on the initial datum. Let ug € CY(I) such that
Ao ={z € I : Up(z) = —10} has a finite number of connected components, (42)

and .
Jdeg > 0 and K > 0 such that Ve € (0, ¢g)and any

T € ]3’610 ={z € l:0< |ug(z)+ 10| < ¢} _ (43)

we have |uo(z) + 10| > K|z — 2?7 vz € 9A
Then there exists a 7y, € (0, 7] such that u(t) satisfies the weak non-degeneracy property
for any ¢ € [0,7,) where u is any continuous weak solution of (P). In particular if
and 4 are continuous weak solutions of (P) there exists a 7* € (0,7] such that v = @
on {0,7*) x [. Indeed; let u,% be continuous bounded weak solutions of (P), by the
continuity near ¢ = 0 we deduce that there exist T, Ts € (0,T] such that u(t), 4(¢)
satisfy (40) and that the set where they take the value —10 has the same (finite) nomber
of connected components for any t € [0,7,), [0, T3) respectively. Taking T = min{T,, T3}
the conclusion follows from part (ii) of Theorem 4.

Remark 5. Let ug € CY(I) such that ug is an even function, wups(z) > 0 for any
z € (—1,0), ug(0) » —10, u(—1) < —10. Then (42) and (43) holds for p = 2. Moreover,
if 1 is the solution built in the section 3.2 for p = 2 then u(t) satisfies the strong 2-
nondegeneracy property for any ¢ € [0,7]. Finally, if p = 2 problem (P) has a unique
bounded solution on [0,T] x I. Indeed; it is an easy modification of Lemma 6.2 and
Corollary 6.3 of Ieireisl-Norbury [1991]. For some other criterium on ug see Diaz - Tello

[1996].

Remark 8. It should be interesting to know if the techniques on non-degeneracy prop-
erties for the parabolic obstacle problem (see,e.gz., Pietra-Verdi [1985]) can be applied to

obtain the p-nondegeneracy properties for the solutions of (P).
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4. On the free boundary for Budyko type models.

This section is devoted to present some qualitative properties of the solutions associ-
ated to the Budyko type model.  The discontinuity of the albedo function assumed in the
Budyko model generates a natural free boundary or interface ((¢) between the ice-covered
area ({z € [ :u(z,t) < —10}) and the ice-free area ({z € I : u(z,t) > —10}). The free
boundary is then given as ((t) = {z € I : u(z,t) = —10}. In Xu [1991] the Budyko model
for p = 2 is considered. He shows that if the initial datum ug satisfies

ug(z) = uo(~2), ug.€ C’S([—l, 1)), ui(z) < 0 for any = € (0,1)
and there exists ((0) € (0,1) such that (uo(z) +10)(z — £(0)) <0
for any @ € [0,(0)) U (¢(0),1],

then there exists a bounded weak solution u of (P) for which the set {(t) = {( (£)} U
{{-(t)} with = = (,(t) a smooth curve, {_(t) = (4 (¢) and ( () € C=([0,T*)) where T*
is characterized as the first time ¢ for which (4 (¢) = 1. He also gives an expression for the
derivative () (1) (some related results for a model corresonding to p(z) = 1 can be found
in Feireisl-Norbury [1991]). We point out that the uniqueness result (Theorem 4) can be
applied for such an initial datum (see Remark 4).

The size of the separating zone (({) for other models is in fact a controversial question.
So, some satellite pictures (Image of the Weddell sea taken by the satellite Spot on
December 10, 1987: Lions [1991]) show that the separating region between the ice-free
and the ice-covered zones is not a simple line on the Farth (i.e. a point in (=1,0) or
(0,1)) but a narrow zone where ice and water are mixed. Mathematically it corresponds
to say that the set

M) ={z el u(a,t)=-10}

is a positively measured set. In the following we shall denote this set as the mushy region
(since it plays the same role than in changing phase problems, see e.g. Dfaz-Fasano-
Meirmanov [1992]).

Using the strong maximum principle (see e.g. Vazquez [1984]) it is possible to show
that if p = 2 (or more in general if 1 < p < 2) the interior set of the mushy region M(t)
is empty even if the interior of M(0) is a nonempty open set. The main goal of the next
result is to show that this is not the case when p > 2 (as it happens for the Stone model
:p = 3). A necessary condition for 1\/[0(-15)# 0 is that R(x,t,—10) — R.(x,¢,—10) 3 0 for
any a M (1) and ¢ € [0,77]. In the case of the Budyko model R, is defined by (4) and

(5), Re by (7} and the necessary condition can be written in the following terms
A—108 € {ai(z,1),a;Q(z, )] for ae. z € [, ae. t € [0.7] (44)

We shall show that if p > 2 {his condition is also sufficient.



Theorem § . Let p > 2, R, given by (4) and (5) and R, given by (7). Assume (44) and
ug € L%(I) such that there exist xg € I and Rg > 0 salisfying

M) = {z € I : uo(z) = —10} D B(zo, Ro)(={z € [ : |z — zo| < Ro}).

If u is the bounded weak solution of (P) satisfying the weak p-nondegeneracy property then
there exists T € (0,T] and a noninereasing function R(t) with R(0) = Ry such that

M(t) = {z € I 1 u(z,t) = =10} D B(zo, R(t}))
for any t € [0,T%).
Proof. We shall use an energy method as developped in Diaz-Veron [1985]. Given u
bounded weak solution of (P) we define v = u+10. As in Lemma 3.1 of the above reference

multiplying the partial differential equation by v we obtain that for a.e. R € (0, Ry) and
€ (0,T') we have

L 2 P -
3 Jan) lu{z, t)] cl:a+f / ok 2} |vg| (l‘B(lT+B/ / oo R) (2, 7)|*dads
<f / ) |vg|P v, - nvdsd'r-f-// (z,7)z(z,7) — A+ 10B}vdadr =

where S(xo, B) = 0B(zo, R) = {wg — R} U{zo + R} and z(z,t) € B(u(z,t)) for ae.
¢ € B(zg, ) and t € (0,7]. We introduce the energy functions

j / z)|ve|Pdedr
B(wo,R)

b(R,t) = sup ess /( )|v($,7)\2d$.
BI‘Q,R

0<7<t

i

E(R,1)

Using Holder’s inequality and the interpolation-trace Lemma of Diaz-Veron [1985] (since

p > 2) we get
aE (- ]-/P 1/p
I < (BR ) (/ -/:roR 't)l')duh) <

iy [OF e 1/ 541/ i/2\? (1-6)/
< QU [ S (1) (E(R, Y7 + BAEPB(R, 1)) bR, )10

where

0=p/(3p—2)and § = —(3p — 2)/2p.

Using the assumption (44) we have that

2() =[(A~10B)/Q(1)] € B(-10). (46)



Then applying Lemma 3 to w(-) = u(-,t), 2(-) = B(.,t), w(-) = —10 and 2(-) given by
(46) we get that

. ¢
I € (e — @) || @ |lee(rx1) C/O l| v(r) o0 Bz, ) 4T
Using the ineqﬁality (36) on B(zq, R) we obtain
I < (a5 — ai) || @ llpe(rx(omy) C(CLE(R, 1) + tC2( R)B(R, 1)),

where now : , .
Us(eo.r p()dz) | w10 |
of (fB(xo,R) P(m)df)p ={OTRLAD) -

Ca2(R) =

As in the proof of Theorem 4, without loss of generality we can a.ssﬁme (1 small enough.
Then, there exists 7= € (0,7} and A € (0, 1] such that

AME(R V) +b6(R, 1) < I

which implies that

oE
ApH < 1=0)/p2 2
- IR

for some p € (0,1) and for any ¢ € [0,7*) and the proof ends as in Diaz-Veron {1985]
(proof of Theorem 3.1).

Remark 7. The existence of the mushy region (for any value of p € (1, c0)) can be p‘rdved
for a different class of models by taking into account a discontinuous diffusivity (see Held-
Linder-Suarez {1981]). In that case the problem is a variant of the Stefan problem (see,
e.g., Diaz-Fasano-Meirmanov [1992]). We also point out that if we define the mushy region

associated to a temperature u., with u, # —10, by
M(t:u) = {z el ulz,t) =ut,

then the results of Diaz-Veron {1985] and Antonsev-Diaz [1989] allows to obtain the same
type of conclusions than in Theorem & (but without the non-degeneracy assumption on

the solution) for suitable functions @(z, ).

5. Obstruction and Controllability in Energy Balance Models.

In 1955, John von Neumann wrote: Probably intervention in atmospheric and climale
matters will come in o few decades, and will unfold on o scale difficull to imagine ai
present ({1955]). Today one phase of this programme is almost a dream come ftrue: the
"rain making” research initiated by I. Langmuir and coworkers have originated already

sucessful experiences (see Dennis [1980}). While is not easy to evaluate the significance

S
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of the efforts made thus far, the evidence seems to indicate that the aim is an attainable
one. ' ‘

The main goal of this section is to carry out a theoretical study on the remainig part
of the von Neumann programme: the control of the climate.: Our modest goal is to study
such a general philosophy by considering the simple climate models introduced by M.I.
Budyko and W. D. Sellers.

Continuing our previous research (see Diaz [1994]) in which it was shown how the
obstruction phenomenon leads to the general uncontrollability of the Sellers model, we
show here that a chance still remains: the restricted (approzimate) controllability. We
will show that a very large class of desired climate states are attainable (in a weak sense)
by introducing suitable spatially localized controls on the climate system.

Our main goal is to study if possible antropogenerated actions on the climate system
allows to carry the average temperature from a given distribution y(0,z) to a desired
distribution ya(z) after a given period of time T. Such type of questions was already
considered by J. Fourier [1824] and some of the most relevant applied mathematicians
of this century (J. von Neumann [1955] and J.L. Lions [1990] [1992] among them). The
connection between this question and the study of the irreversibility of the antropogenetic
changes already introduced in the atmosphere since the beginings of the Industrial Society
is obvious. It is also clear that many of the actual world decissions on greenhouse gases
emrmision norms follow also this philosofy.

A mathematical statement of the question under consideration can be the following:
given w an open submanifold of M, T > 0, an initial distribution of temperatures ug :
M — IR and a desired temperature y, : M — IR, we want to find a controlv : (0,7) xw ~
IR such that y(T : v) = yy where y(- : v) denotes the solution of problem (P) replacing
f(t,2) by f(t,2) + v(t,2)x. with y, the characteristic function of w. When the answer
is positive we say that (P) is controllable. Nevertheless, the parabolic character of the
equation of (P) implies some regularizing effects making impossible our goal except for
a very limited class of desired states y4. A relaxed statement comes in a natural way:
the approzimate controllability. Given ¢ > 0 we seek now a control v, (defined again on
(0,T) x w) such that d(y(7T,v.),ys) < e. In the above expression d(-,-) represents the
distance measured in some space of functions defined on M (usually L?(M), or, more
generally, LP(M) with 1 < p < co).

The nature of our spatial domain M leads to some additional (and technical) diffi-
culties in our study. A simpler formulation which still gives a representative idea of the
treatement in more complex situations corresponds to the case in which we replace M
by an open regular bounded set Q of IR? (here IR? can be also substitued by RV with
N € IN). As boundary condition on (0,7) x 9§ we can chose the one of Neumann type
since 1t leads to a set of test functions for the weak formulation very similar to the one

corresponding to the case of a Riemannian manifold without boundary. Another unrele-
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vant simplification is to assume f = 0. Thus the new formulation is the following: given
w an open bounded subset of Q,yo, yg: Q2 — Rand £ > 0find v, : (0,T) x w — IR such

that d(y(T : ve),ya) < & where, in general, y(T : v) represents the solution of problem

v — Ay + 9(y) € QS(@)B(y) + vxe in (0,T) x O

0
(P) “a% =0 on (0,T) x 90
¥(0,-) = yo(-) on {1,

where n is the outer unit vector to 9.

In a previous work (Diaz {1994]) it was shown that the answer to the approximate
controllability property depends on the asymptotic behaviour of the nonlinearities of the
equation (and not on its regularity). So, a positive answer is collected in the following
result

Theorem 6 (Diaz {1994])
Assume yo, yqa € L*(Q), 0 satisfying (9) and g a nondecreasing function such that

l9(s)] S Ci+ Cals| VseRR, |s|>M (47)

for some nonnegative constants Cy, Cy and M. Then problem (P,) is approzimale con-
trollable in L*(Q), i.e. there exist v. € L2((0,T) x w) such that

| y(T 2 ve) = ya |2y < €.

The above theorem can be easily extended to the case in which we replace L*(f2) by
LP(Q)) with 1 < p < oo or C(Q). The main idea of the proof is the application of the
Kakutani fixed point theorem similarly to the work Fabré, Puel and Zuazua [1992] (see
also Henry [1978], Lions [1968] [1991], Dfaz [1993] and Diaz and Ramos [1893] [1994] for

other related works).

We point out that Theorem 6 applies to the special case of the Budyko model since
there g(y) = By and (47) fails for the Sellers model (assume m = 0 in (6) and also u > 0
in order to reduce the study to a nondecreasing function g). In fact, it was shown in Diaz
[1994] (see also [1991]) that if we assume

g(y) = My|P 'y for y € /R and some A >0 and p > 1 (48)
then an obstruction phenomenon appears

Theorem 7

Assume (48) and that Jw satisfies the interior and eaterior sphere condition. Let
Yo € L7(Q). Then, there exisls a function Y, € C([0,T] x (Q —@)) such that for any
v e LH(0,T) x w) and any solution y(t,z : v) of (P,) we have

ly(t, 2 :v)| € Yo (t, ) for (t,2) € (0, 7] x ( —w). (49)
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The obstruction function Y, in (49) was constructed in Diaz [1994] such that

Yoolt,2) = 400 on (0,T) X Gw
Hea(g,2) =0 on (0,T) x 9.

In consequence, condition (48) implies that problem (F,) is not (in general) approximate
controllable since if |ya(z)| > Yoo(T, z) a.e. x in a positively measured subset D of @ — &
then for any v € L*((0,T) x w)

(T ) ~ yallzzy 2 Yool T, ) — wall ez

and so, if € > 0 is small enough; 1t is imposible to choose v satisfying the required
propertics. We remark that a previous uniform estimate (independetly of the control) for
superlinear equations but when the control acts on the boundary was due to A. Bamberger
(see Henry [1978]). Due to the relevance of the Sellers model, a natural question arises:
is problem P, approximate controllable in a smaller class of desired states 147

The main contribution of this work is to give a posi’sivé answer to the above question.

For the sake of the exposition we shall simplify, even more, the model under consideration

to
ye — Ay + My ly = vy, in(0,T) %0
(P)3 & =0 on (0,T) x 8Q
y(0,-) = yol") on (. ’

The extension of the following results to the case of proble;n (P.), assumed (48), is

merely a technical matter and can be carried out as in Dfaz [1994].

The starting point of our approach consists in improving the estimate (49) by obtaining
some sharp obstruction functions. This is the objective of the next result
Proposition 5

Given yo € L'(Q) there exist Y, Yoo € C((0,T)] % Q — @) such that Y _, is ¢ weak

solution to the problem

Y, =AY +AY|P?Y =0 in (0,T) x (2 —o)

XOO:'“‘"OO an (U,T)Xaw
Le = on (0,T) x 99
Y 00(07 ) = wol+) on §}

and Yo, satisfies the same conditions except that ¥, = +oo on (0,T) x Ouw.

Idea of the proof. As in Bandle, G. Dfaz and J.I. Diaz [1994], given N € IN we define
Y v as the (unique) solution of the problem

Vi =AY + AV P2V =90 in (0,7) % (2 —@)
YV = —-N on (0,7) % Ow
&L =0 on  (0,T) =< a0

Y{0,-) = Sup{(yo)-(*), =N} on £
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where (yo)-(z) = inf {yo{z),0}. Using the maximum principle and the assumption p > 1
it is easy to see that there exists Z,, € C((0,T) x ( — @)) such that Z, < ... <Y, <
Y, <0. Then we can define Y ({,2) = limy_s ¥ u(£, ) and by duality arguments it is
proven that ¥, satisfies the requiered conditions. The arguments for ¥, are completely

sirmilar.
i

We point ouf that if we assume, formally, @ = 0 in P, then the obstruction functions

of Proposition 1 is sharper than the ones given in Theorem 7, i.e.
Y oo(tv :E) < _Yw(tv T) <Y oo(t! m) < ?N(tv:ﬂ)'

Now we are in a condition to state our restricted approzimate controllability criterion:

Theorem 8
Let yo € C(Q) and consider y, € C(Q) such that

Y o(T\2) < yal2) < Vool Ty2) Vo€ Q-1 (50)

Then for any € > 0 there exists v, € C([0, 1] xw) such that if y(t : v) 15 the corresponding
solution of (P,) we have

Iy(T 2 ve) = yallom) < e (51)
The above statement is an obvious consequence of the following more general result:

Theorem 9
Let yo € C(Q) and let € > 0 fived. Consider yq € C(Q) such that

Y (To)—e<yaz) < Yo (T,x)+e Veel-w (52)
Then there exists v. € C([0,T] x @) satisfying (51).

Remark. The assumption (52) is optimal. Indeed, assume v, such that (51) holds. Then

by the comparison principle
Y oo(tz) <y(t,z:v) < Yeolt,2) Y(t,2)€[0,T] x (Q —)
and so
Y o(Te)—e<y(Tiwrv) —e <ygla) <y(Tyev) + e < Yo (T,z) +¢
which proves (50).
The proofl of Theorem 9 consists of several steps. We start by proving the restricted

approvimale controllability for an auxiliary control problem with controls actuing on the

boundary
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Theorem 10

Let yo € C(R —w), € > 0 fired and let yg € C(Q — w) satisfying (52). Then there
exists ue € C([0,T] x dw) such that if §(t,z : u.) denotes the solution of the problem

Go— AFF NG =0 in (0,7) x (2 — w)

¥ = Ue on (0,T) x Ow
(pQ—W) o 0
e on (0,T) x 00
y(olx) :yO(m) on {l -,

we have

N7, 2 ue) - yd(')”C(Q—-w) < e

The proof of Theorem 10 uses another auxiliary result:

Lemma 4

Let G be an open regular bounded set of IRN. For a € L*((0,T) x G) and yo € C(&)
given we denote by y(t,x : u) the solution of the linear control problem

w—Ay+aey=0 1 (0,T)xG

y=u on (0,T) x OpCG
So = on (0,T) x OnG
y(0,-) = yol") on (.

where 0G = OpG U ONG. Let ¢ > 0 and y4 € C(é) Then (i) There exists u, €
C°(]0,T] x OpG) such that

[iy(T, - ue) = yal )l = e

(53)
Moreover, there exists ¢ = ¢(N) > 0 and two functions ¢ and h such that
0%
u(t,z) = h(t,@)|[(T - t) an (t, -)HLl((g'T)anc;) (54)
with 96
ht,z) € sign(a—“”(t,:c)) Y(t,2) € (0,T) x dpC. (55)
n
(ii) [f a > 0 a.e. on (0,T) x G, the function u, given in (54) satisfies that
leellegorxapm < C (56)

for some C > 0 independent of a.

Sketch of the proof. Part (i) is an adaptation of the duality method introduced in

Lions [1991] and Lions [1992]. We start by defining the space V' = C(&) and let V' its



dual (i.e. the set of Baire measures of bounded variation: Yosida [1974] p. 119). Given
g € V' we consider the retrograde problem

—pr—Ap+ap=0 ‘1n 0, T)x G

=0 on (0,T) x 8pG
PLE
( ) b on (0,T) x dnG
o(T,2) = po(z) on G.

As in Proposition 5.5 of Fabré - Puel - Zuazua [1992] it can be shown that there exists
a positive number ¢ (depending on the dimension N) such that the solution ¢ of (PLR)

satisfies that

L{po, a) == (T — t)qgis e LY((0,T) x dpG). (57)

We introduce the functional
Jeorawdi=S([ [ 1T =022 (0, )idrdt + ellgollo= < giripo v v
24Jo Jape dn

It is clear that J is a strictly convex and continuous function on V’'. Moreover using

the unique continuation theorem (see Mizohata [1958] and Saut - Scheurer [1987]) J is a
coercive functional
lim inf M > ¢
leolyi=reo Jpaly
(see Proposition 2.1 of Fabré - Puel - Zuazua [1992]) and so J achieves its minimum at a

unique point @y in V/. The associated Buler-Lagrange equation implies the existence of

(58)

h satisfying
h € sign(L(po : a))X10.T)x9pG
and

7 a0 A .
= /O /BDG(T - t)q%hdgdi + E[!(po -+ 00|V! — ]SOO|V’]— < Yd, 90 Sy (59)

for any 8g € V' and where  denotes the solution of (PLR) replacing ¢g by fp. On the
other hand, multiplying by @ the equation of (PL) (with u given by (54))

T beld
]Gy(T,rL‘)é’o(:c)dn; = —/0 [BDG uc(a,t)%(a,t)dadt. (60)
From (59) and (60) we get
<ya = y(T,), 00 >v < e|Po + Oolvr ~ |bolvr) < €|ty

and in consequence

<ya —y(T, ), 00 >vrv

acy 160l N

In order to prove part (ii) we denote by o 4 and By 4 the positive and negative parts of

p. Let @ the solution of (PLR) corresponding to the initial datum $g and let ¢, and let
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Y_ the solutions of (PLR)} assuming a = 0 in the equation and corresponding to initial
data (g + Po- respectively. Then, by the comparison principle we have p_ < @ < oy,
Y- <0andy >0in (0,T) x G. Besides

on (0,7 x dpG. (61)

Then, for any wo € V' we have

J(o : ¢, 9a) < Lo ya) (62)

where [ is the functional (independent of @) given by

tnsw) = 5 ([ f 0= 0 mest B0l 1 ot

t+e H %o HV' — < Yd, Yo >Vxve .
From (58) we deduce that
lim inf ———[((’QD  ya)
!(Po|vt—+00 |(PO|V'
So, there exists M > 0 (independent of ) such that

> E.

€
I[{¢o:ya) > 5 | wo |l assumed || @ ||v:> M.

This implies that if @g is the minimum of J in V' then there exists M >0 independently
of a such that

I o flve A1 (63)
Using (61), (63) and (54) we get (56). | |
Proof of Theorem 10. From assumption (52} and the construction of }mm and Y o, we
deduce that there exists Ny € IV such that

Y §(T2)~ 2 <yal2) <Y n(T,2)+2 VYVazeQ-@
Let N > Ny large enough and define
—AN? if 5 < —N
fu(s) =23 AsPPls if —N<s<N
AN? if s> N.
Since fy 1s a (globally) Lipschitz function and bounded, as in Theorem 1.2 of Fabré -
Puel - Zuazua [1992], there exists u) € C([0,7] x dw) such that if y~(t.2 : 1)) denotes

the solution of

v — Ayt + fv(y) =0 i (0,T) x (2 —m)

y*=ul on (0,7 x dw
% =0 on (0,7 = df
y (0, 2) = yolz) on 1 —@



the we have

ly™ (L, wll) = () lle@ne < &
Moreover such a control u¥ can be found as a fixed poi.n"'t of the application A : C({0,T] x
(0 —w)) = P(C([0,T] x (1 — w)) defined by

A(z) = {y(-,- : u) solution of (PL) with a = fw(z) and v satisfying (53), (54)}.

Z

From estimate (56) of Lemma 1 we deduce that if uY is a fixed point of A it must satisfy
|| ul llego1xe0 < C

with ' (independent of N) given in (56). Then, by the maximum priciple we conclude

that if N > Np is large enough then the function y*(¢,z : ©l') satisfies

'tz ul Y SNV (t2) € [0,7] % (0~ w)

and so, in fact, y*(0,- : u) satisfies the requirements of the statement of Theorem 10.

In order to complete the proof of Theorem 7 we need to use some other auxiliary

results.

Lemma 5 (Diaz and Fursikov {1994])
Let ue € C([0,T] x 0w) fiwed. There exists 0. € C([0,T] x @) such that the solution
7(t:0.) of
G~ AG+NGPg =6, in (0,T) x w
Y=t on (0,T) x Jw
9(0,+) = wo() on w
satisfies

Il (T : 0e) — ya le@m < €.

We would need to regularize the matching between the functions § and ¢ given in

Theorem 10 and Lemma 4 respectively.

Lemma 6
Let w. be an open regular subset of w such that d(w.,dw) < . Then there exists
y< € C([0,T] = Q) N C*(0,T) x Q) such that y* = § on [0,1] x W, and y* = § on

[0,7] % (O —w).

The proof of this result uses standard regularization techniques and the details are
left to the reader. The last technical result is consequence of the continuous dependence

of the solutions of problem (F,) with respect to different initial data.
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Lemma 7

Let y* be the function given in Lemma 5. Define
ve = yp ~ Ayt APy Sin (0,7) x Q.

Then ve =0 on (0,T) x (Q —w) and if y(¢,- : v.) is the corresponding solution of (P,) we
have

97 () = ylts i ve) lem< e VtEel0,T]

Proof of Theorem 7. Let v, be the function defined in Lemma 6. Then using Theorem

10 and lemmas 4, 5 and 6 we have that

o~

| y(T: ve) — yu ”c(ﬁ) < Ny (T) = y(T, - ve) HC(ﬁ) + 1y (T, ) ~ va ||C(§)
< ™I ) = (T, ve) HC(ﬁ) + 0 #H T, ) —va HC(‘ﬁ—w)
+ 1 v™(T, ) — ya lle@) +e < 4e

and the conclusion holds.
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