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1 Introduction.

Let  be a bounded open subset of RN of class C?™, T' > 0, w a nonempty open subset of
Q, f a continuous real function and k € IV such that 0 < 2k < m. The main goal of this
communication is the study of the approximate controllability of the Dirichlet problem

ye + (—A)™y + flAFy)y=h +ox, nQ:=0x(0,T)

, &

(‘]‘) 5—1/%,-:0 : j:O,l,---,m—l o]_]_E:ZBQX(O,T)
y(O) = Yo n Q,,

where v is a suitable output control, x. is the characteristic function of w, v is the unif
outward normal vector, h € L?(Q) and yo € L*(Q). Due to the factor y, the confrols are
supported on the set O :=w x (0,T).

Definition 1 We say that Problem (1) has the epprozimate controllability property at time
T with state space X and control space Y if the set of solutions of (1) at time T', when v
span Y, is dense in X.

We obtain the following result on approximate controllability.

Theorem 1 Assume that f satisfies the following conditions: there exist some positive con-
stants ¢; and ¢y such that

(2) |F(s)

and
(3) there exists f'(sq) for some so € IR.

<ep+els] forallse R

Then problem (1) has the approzimate controllability property at time T with state space
L*(§) and control space L*(0).

Remark 1 For the sake of simplicity of the notation we chose L*(O) as control space but
following the proof it’s easy to see that if we change the norm in (27) we can also choose

L=(O) if k =0 and L®(0,T; H*(Q) n HE(Q)) of k > 1.

1partially supported by the DGICYT, project PB93/0443.
2partially supported by the DGICYT, project AMB93/0199.



Condition (2) is a sublinear hypothesis (for large values of s). Nevertheless, we shall
prove that when f is superlinear the approximate controllability property does not hold in
general, as explained in Section 6. Therefore, if for instance f(s) = |s]”"Ts, Theorem 1 gives
a positive approximate controllability result for 0 < p < 1 and the results of section G a
negative approximate controllability answer for 1 < p < oo. A similar negative answer for
second order parabolic problems was given in Diaz and Ramos [6].

Definition 2 We say that a function

y € L*(0,T; Hy" () 1 C([0, TT; L))
is a solution of problem (1) if y satisfies the differential equation in D'(Q) and y(0) = yo.
Remark 2 The existence of solutions is also obtained in the pmc’)f of Theorem. 1 by using the

Kakutani’s fized point theorem. The uniqueness can be easily proved if f is nondecreasing or
Lipschitz, but that is not necessary in our arguments.

Remark 3 Notice that as 2k < m then if y is any solution of (1) AFu € L*(Q) and so,
by (2), f(A*y) € L*Q). Besides the boundary conditions are satisfied in the sense that
y(t) € H*(Q) for a.e. t € (0,T).

2 Preliminaries.
We consider the spaces
V= L*0,T; H*(Q)) and its dual V' = L*(0,T; H ™()) |
and denote by < -+ > the duality product between H™™(2) and H™(2) and by (-,-) the

scalar product in L#(Q). The norm of V is defined by

m

Iy} =3 [ 109yl dedt
j=0"%

where

(4) D7y = 57 (D7)

Jox[=j

(the sum extending to all z-derivatives of order y). By Poincaré’s inequality we have that
©) il < [ |DmyP et
Q

We sumumnarize some well-known properties of these spaces in the following two lemmas,
We refer to Lions [9] or Lions and Magenes [12] for Lemma 1, and to [9] or Simon [15] for
Lemma 2.

Lemma 1 The space {y € V : y € V'} is continuously imbedded in C([0,T}; L*(Q)). If
y,z €V oand yy, z € V' then

T T
(6) f <y + (=AYy,z > dt — ] < =z A (=AY 2y > di
0

= (y(T), 2(T)) - ((0), =(0))



- ‘
f <y + (—A)"y,y > dt = f |D™y|? dz dt
0 a
1 . 1 .
+5/Qy(T, zy dr — ifny((),:v)zdzv.
Lemma 2 The space {y €V : y, € V'} is compactly imbedded in L*(Q).
Lemma 3 If0 < 2k < m, the space
W= {y € L*(0,T; Hy™*M(Q); yo € L*(0, T5 H™™+(Q))}

is continuwously imbedded in C([0,T); H*(Q)). Besides, if y, z € W then

T T
- [ <ot oy (=a)ye> d- [ < -z (-a)yz(afy> d

= (4(T), (~A)=(T)) - (9(0), (—A)*2(0))

Proof. To see that W is continuously imbedded in C([0,T], H**(f1)) is as in the previous

lemma. The equality can be proved by taking z € C>(2) and by using that C°(§2) is dense
in HPTH(Q).

We proceed to study the problem

Yy + (—A)"y + a(t,z)A%y = h in Q

i :

(9) YV g , 7=0,1,---,m—1 onX
ovi
y(0) = wo in 2.

Besides of h € L*(Q) and yo € L*(}) we assume that
(10) a€ L2(Q) and ||afjpeg) < M.
The following Proposition collects some basic results about problem (9).

Proposition 1 There exists o unigue function y € V.10 C([0,T]; L*()) with y, € V' which
solves Problem (9) and satisfies the estimate

(11) llly + llyellv < € (1rllz2) + lvellz2@)) -

where the constant C' depends only on M (provided that Q, T and m are kept fized). Besides,
the solution y also satisfies that

(12) y € L8, T; H*™(Q)) and y, € L*(6,T) x Q) forall5€(0,T).



3 A functional associated to a backward problem
Following Lions [11] and Fabre, Puel and Zuazua [7] [8] we consider
(13) e>0,ys € L), a € L™(Q)

and introduce the functional J = J(-;a,vy4) : L*(Q) — IR defined by

1 2
(14) J(%) = 3 (/o \tp(t,m)ld;vdt) + el 12y — fnydtpo dx
where (¢, ) 18 the solution of the backward problem

—p A (=A)Y"o +alt, 2)A0 =0 in Q:=0x(0,T)

&
(15) W:O , 7=0,1,-- m—=1 onX:=390x(0,T)
v/
@(T) = r(°) in 0

with (¢} given by r(¢®) = " if k = 0 and by the solution of
(=AY = ¢ in
'y :
=0 57=0,..,k—1 ondf)

Qi

if k> 1. We point out that » € H**(Q) N HX(Q) and ¢ W.
As usual in controllability theory we shall need to use a property of unigue continuation
for solutions of a linear problem (in our case Problem (15)).

Lemma 4 Let w be o nonempty open subset of 0. Assume that
p € L*(0,T; Hy* (@) 0 C([0, TT; L*(9))
is a solution of Equation (15) in D'(Q) and that ¢ =0 in O =w x (0,T). Then ¢ =0 wn Q.

Proof. From Proposition 1 (applied with the time inversed) we deduce that ¢ € L*(0,T —
& H*™(Q)) for all § € (0,T). Then Lemma 4 follows from Theorem 3.2 of Saut and Scheurer
[14].

The following two results are easy adaptation of the similar ones given in [7], [8] for second
order parabolic problems.
Proposition 2 Under the assumption (13) the functional J(+; a,ya) is continuous and strictly
conwez on L*(Q) and verifies

0, .
(16) i inf LGV

|20 |2~ c0 =P -

Besides J(;a,y4) atlains its minimum ot o unique point $° in L*(Q) and

(17) =0 & |y <e.



Proposition 3 Let M be the mapping

M: Le(Q)x L*(Q) — L*Q)
(a(t, x), ya) — Y

If B is a bounded subset of L=(Q) and K s a compact subset of L*(Q2), then M(B x K) s
a bounded subset of L*(1)).

Definition 3 Given V : X — IRU {+oo} a convex and prope function on the Banach space
X, it is said that o element py of V' belongs to the set OV (wo) (subdifferential of V atxy € X)
if

V(zg) — Viz) <(po,zo—~z) VzelX
Remark 4 In the conditions of Definition 3, xg minimizes V over X (or over a conves
subset of X) if and only if

Proposition 4 Under the above conditions, if V is a lower semicontinuous function, then

po € OV (xg) if and only if

(po,z) < lim V(zo + hz) — V(o)

h—ot h

(< +o0) VazelX.

For a prdof see, for instance, Proposition 3 of page 187 and Theorem 16 of page 198 of
Aubin-Ekeland [3].

Remark 5 If V is differentiable its differential coincides with its subdifferential.

4 Approximate Controllability for the linear associ-
ated problem.
Lemma 5 For every o® € L*(Q), ¢° # 0 if @ is the solution of (15) verifying o(T) = r(p"),

we have that
J (% a,ya) = {€ € L3, T v € sgn(p)xo satisfying

[ @)@y = (] |<,; . |d2) (/ov(t,w)é?(t,w)dE)

z)dz — [ ya(2)8°(2)da VE° € L)),

where 0 is the solution of (15) verifying H(T) = 7(69).

Proof. It is an easy modification of Proposition 2.4 of [8].

Before continue we need to introduce the control u, given by u, = |@|p oy (v €
sgn(@)xe) if k =0 and by means of the solution of

{ (~A2)ua(to, ) = [Bloroyvlte,)xo  in ON {t = to}

)J et 0,7
s _ g j—,ki—1 woon(t=ty O 0T




if £ > 1. Here we point out that (since || v ||fe(g)< 1)

18 wel™Q) wd | llm@= @ o) Hk=0

and

(19) ua € L¥(0, T H%(Q) n Hé”(ﬂ)), | va HLco(o,T;sz(Q)an(n))S Cll @y k=1
Now we are ready to prove a linear version of Theorem 1.

Theorem 2 If |yql2 > € and @ is the solution of (15) verifying @(T') = @°, then there exists
v € sgn(P)xo such that the solution of

yo+ (=A)"y + a(a, Ay = h +waxo in Q

‘ 'y .
(20) 5 =0 (=0 (m 1)) on %
y(0) = »o on {2
verifies
~0
y(T) = ya — e
( ) | 7Y |2

and then | y(T) —yq |2= €.
Remark 6 If yo =0, and i = 0, the case |yy| < € is trivially solved with the control u, = 0.

Proof of Theorem 2. By linearity we can assume yg = 0 and kA = 0, since in other case we
can take y(7' : 0) the solution of the problem with null control and after we can take the new
desired state v} = yg — y(T : 0) € L*(}) for the problem with ¥y = 0 and 7 = 0. Now, by
using the subdifferentiability of J(.; a,y4) at @° (3 0 by (17)), we know (see Remark 4) that

0 € a'](@o)a
which is equivalent, from Lemma 5, to the existence of v € sgn(@)xo, such that
£

(21) %l ( /O v(a;,t)ﬁ(m,t)(lmdt) rar fn ()6 () dae

——fﬂyd(w)GO(m)d:B.
On the other hand, as y € W, if we “multiply” by (—A)*0 in (20) we obtain by (8) and (15)
that
(22) (W(T), %) eeyrziay = 130 (o) ( [ v(m,t)@(m,t)dmdt)

(Here we point out that, in order to be able to integrate by parts, we are taking into account
that 0 < 2k < m). Then, from (21) and (22), we obtain

—~0
W(T),6%) oy w2y = (v — Eig—ﬂlw ")z @yurry) ¥ 00 € L)
~0

and we conclude that y(T) = yq — 5~‘~;~6~|-—.
P12



5 Controllability for the nonlinear problem.

For the nonlinear case we shall need to use a fixed point Theorem for multivalued operators:

Definition 4 Let X, Y two Banach spaces and, A : X — P(Y) a multivalued function. We
say that A is upper hemicontinuous at xg € X, if for every p € Y, the function

z ~+ o(A(z),p) = sup < py >yxy
yEA(x)
is upper semicontinuous at xg. We say that the multivalued funcion is upper hemicontinuous
on a subset K of X, if it satisfies this properties for every point of K.

Theorem 3 (Kakutani’s'ﬁxed point Theorem). Let K C X be a conver and com-
pact subset and A : K — K an upper hemicontinuous application with conves, closed and
nonempty values. Then, there exists ¢ fized point xo, of A.

For a proof see, for instance, Aubin [2] page 126.
Proof of Theorem 1. We fix yqs € L?(f)), € > 0 and we define

f(s) — f(s
8 — 8p
Then, from the assumptions, we have that ¢ € L*(IR) N C(IR).
Now, by using Theorem 2, for each z € L*(0,T; H3*(Q)) and & > 0 it is possible to find
two functions (z) € LYQ) and v(z) € sgn{p(z))xo such that the solution y = y* of

ye + (—A)"y + g(AP2) APy = h — f(so) + g(A*2)s0 + uxe in ¢
My

(23) 55 =0, 0=01-m-1 | on
y(0) = o on {1,

(\;vhere U = Ugaky)) sabisfies

(24) W(T) = yalrz (o) S e

Besides

(25) { (=) I oy v(z), = € L300, T; HEF(Q))}  is bounded in L®(Q)

since, following the proof of Theorem 2, ¢(z) is the solution of (15) with initial value
M( (g(A*z2),y3) ) (see Proposition 3) and potential g(A*z), where yi = yo — y*(T : 0),
with y*(T : 0) the solution of (23) at time T for the control u = 0. Therefore, by applying
Lenuna 6, we obtain that y3 belongs to a compact set for all z € L2(0,T; H2*((1)) and so, by
using Proposition 3 and Proposition 1, we obtain (25).

Lemma 6 The set
{yi, =€ L*(0,T; H3*(1)},

with 5 defined above is relatively compact in L*{Q).



Proof of Lemma 6. We can split the set of solutions y*(- : 0) of

ye + (—A)"y + g(AR) ARy = b — f(s0) + g(AFz)s0 in Q

Ay .
—él—;:(],j:(],l,n'm——l on X
y(0) = o on 1,

by v*(- : 0) = u + v, where u is the solution of

uy + (—A)™u = h — f(sq) in @

DIy )
5;}20,):0,1,---771—1 on X
uw(0) = yo on 2

and v is the solution of

v+ (=A)"0 + g(AF2)(AFu + Afv) = g(AFz)so in Q

v ,
b—f—;—O,J—O,l,---m—l on X
v(0) =0 on .

Then, by applying Proposition 1 and the results of Lions-Magenes [13] (see page 78), we
obtain that there exists K > 0 independent of z such that

o [arem@gy< KL+ || o llze@) + | A llz2@))-

Finally, we take into account that H'*™(Q} is compactly imbedded in C([0,T]; L*(})) and
we conclude the result.

End of the proof of Theorem 1. Thus

(26) K= sup | w(2) |21 (0)< 0.
=€ L2(0,T;HE Q)

Obviously, as we had seen in (18) and (19) u = uyar,) satisfies
(27) I sy Ko
Therefore, if we define the operator
A+ L0, T5 B (Q)) = P(L*(0, T; H3 ()

by
A(z) = {y satisfies (23), (24) for some u satisfying (27) },
we have seen that for each z € L%(0,T; H#*(Q)), A{z) # 0. In order to apply Kakutani’s

fixed point theorem, we have to chek that the next properties hold:

(i) There exists a compact subset U of L2(0, T'; HZ*()), such that for every z € L*(0, T; HZ* (1)),
A=) CU.

(ii) For every z € L?(0,T; H*(Q)), A(z) is a convex, compact and nonempty subset of
L0, T; HE(2).



(iii) A is upper hemicontinuous.
The proof of these properties is as follows:

(i) From Proposition 1 we know that, there exists a bounded subset U of {y € V' : y, € V'}

such that for every z € L*(0,T; H¥*())), A(z) € U. Now, to see that we can choose U
compact we shall prove that the set

Y = {y satisfying (23) for some z € L*(0,T; Ha*(Q)) and u verifying (27)}
is a relatively compact subset of L0, T; HZ*()). But this is easy to prove by using that
(28) {yeV : y eV} c L¥0,T; H¥*()) with compact imbedding
(see Aubin [1]).

(ii) We have already seen that for every z € L*(0,T; Hg¥(R2)), A(2) is a nonempty subset
of L2(0,T; H*()). Besides A(z) is obviously convex, because B(ya,e) and {u € L*(Q) :
satisfying (27)} are convex sets. Then, we have to see that A(z) is a compact subset of
L2(0,T; HZ*(). In (i) we have proved that A(z) C U with U compact. Let (y"). be a
sequence of clements of A(z) which converges on L*(0,T; H3*(Q)) to y € U. We hLave to
prove that y € A(z). We know that there exist " € L*(Q) satisfying (27) such that

v+ (=AY + g(AF2) ARy = — f(s0) + g(A*2)s0 + u"x0 in @

Oy )
(29) 813/!-7 =0,757=0,1,---,m-—1 on X
y™(0) = yo on {)

ly™(T) — yal2 < e

Now, by using that the controls u" are uniformly bounded, we deduce that u" — w in the

weak topology of L*(Q) and u satisfies (27). Therefore, if we pass to the limit in (29) we
obtain

ye + (=A)"y + g(A* APy = L — F(s0) + g(A¥2)sp +uxo in Q

a9
aLij:O,j:O,l,"',?TLml on X
y(0) = yo on 1.

Besides, v™ = y — y" is solution of

U{'_ n (—A)m’c)" 1 g(Akz)Ak"U” n (u — U”)Xc’) n Q

dru" .
5 =0,5=0,1,...,m—1 on
v*(0) =0 on {1

and satisfies v € HY2(Q) (see [13]). Therefore, v" is a strong solution and if we “multiply”
by »" and integrate, we obtain that

| o™(T) ”iZ(ﬂ)S k_/Q(u —u")xov'dedt -+ 0 asn — oo,

Thus y™(T) converges to y(T') in the topology of L*()) and |y(T') —yals < €. This prove that
y € A(z) and concludes the proof of (ii).



(iii) We must prove that for every zq € L2(0,T'; HZ*(2))

limsup  o(Azn), k) < o(A(z0), k), ¥V k€ L*(0,T; H2(Q)).
L2(0,7; 12k (1))
Zn — 20

We have seen in (ii) that A(z) is a compact set, which implies that for every n € IV there
exists y" € A(z,) such that

o(Mzn), k) =< k2, 1), y"(2,8) > 12 (0,73m-20(0)) x L2 (0,124 (@) -
Now, by (1), (y™)n C U (compact set). Then, there exists y € L2(0,T; HZ*(Q)) such that
(after extracting a subsequence) y* — y on L*(0,T; HZ*(Q)). We shall prove that v € A(z).
We know that there exist v € L*(Q) satisfying (27) such that

yi (=AY 4+ g(A"zn)A“’y” =h— f(so) + g(Akzn)so +uye inQ

ajyn .
(30) 6Tﬂ,:0,_'jz(),l,---,fm——l on %
v (0) = yo on {)

[y (T) — yal2 < e.

Then there exists © € L?(Q) satisfying (27) such that u™ — w in the weak topology of L2(O).
On the other hand, by using the smoothing effect of the parabolic linear equation (in a similar
way to the proof of (ii)) and that g € L*°(IR) N C(IR), we deduce that y satisfies (23) and
(24) with z = z for some u € L*(Q)) satisfying (27), which implies that y € A(z). Then, for
every k € L*(0,T; H%#(Q)),

o(Azn), k) =< k(z,8), y"(2,1) >12(0,7;0-26(0)) x L2 (0,T;H2H))

=< k(,1),y(2,8) > 12 (0,7 m-20(0) x 22(0,7HEH ()

< _SXI(P : < k(2,8), 92, 1) > a0, m—2ra)x L2 0,120 = O (A(20), k),
yeA (=

which proves that A is upper hemicontinuous and conclude the proof of (iii).

Finally, if we restrict A to K = conv(U) (the convex enveloppe of U), which is a compact
set in L2(0,T; H2* (), it satisfies the assumptions of Kakutani’s fixed point theorem. Then,

A has a fixed point y € K. Besides, by construction, there exists a control u € L*(Q)
sabisfying (27) such that

ye + (—A)"y -+ f(Aky) =h+uye in¢

&y .
(31) 5-;;:0,;):0,1,--‘771—1 on %
y(0) = yo on {}

ly(T) — yal2 < e.

Therefore, y 1s the solution that we were looking for.
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6 Non-controllability for superlinear problems.

In this section we assume k = 0. We shall prove a result of non-contrallability for a superlinear
case with @ C Q.

Theorem 4 If p > 1 and yo € L*(f1} the problem

v+ (— ) y+ Py =uxe i Q
y(0) = on §)

with controls w € L*(Q) (or more general with w € L™ (Q) where 7 = p+ 1 > 2 and
so v € (1,2)) and any boundary condition does not satisfy, in general, the approzimate
controllability property at time T.

In order to prove this theorem we need some previous results.

Young’s inequality. If ¢, B >0, ¢ > 0 and ¢ > 1 then

<eA"+ K 7 wi = ¢'(qe)7/9.
(32) AB <eA'+4 K(e,q)BT with e q'(qge)

Notation. If we take R > 0 we can define in R" the functions
Ele) = (R* — [o)/R if |al < B, £r(w)=0 if [a| > R
and the powers £5, of the function &g, where s > 1 is a real number. We can also define
(33) dr(z) =R —|z| if |¢|< R, dr(z)=0 if [z|> R
and then, the following relation holds for all z € IRV,

The following result was proved in Bernis [4].

Proposition 5 Let s > 2m and R > 0. Then, for each £ > 0 there exist a constant C

depending only on N, m, s and ¢ (thus independent of R) such that the following inequality
holds for all y € H%(IR™):

((—A)mya'Sls%y)H{;’:(RN)ngn(RN) 2 (1 - E)] 'leDmJiz(lz: — C/ (fb 2, zd,L

Remark 7 Since s > 2m, £, € W2™°(R"). Hence £ € C"(IRN) (see e.g. Corollary
IX.18 of [5]) and €4u € HM(IRN) (see e.g. Note 4 of Chapter IX of [5]).

Corollary 1 Let s > 2m and R > 0 such that Br C ). Then, for each € > 0 there exist a
constant C depending only on N, m, s and € (thus independent of R) such that the following
inequality holds for oll y € H™(Q):

(=A)™y, Epy ) r-mi)x Hp* () = (1 —¢) /ﬁR\Dmylzd,L — C’/ ety .

11



Proof. We take 7 € H™({2) such that ¥ =y in ) (we can see that this 7 exists in Theorem
IX of Brezis [5]). Then we have the inequality for 7, but as Br ¢ £ we obtain the result.

Theorem 5 Letp > 1, r = p+ 1, yo € L*(Q) and v € L7(Q). Then any solution y €
L7(Q) N L0, T; B™()) of

(35) ye + (=A)"y + y[Tly = udin D(Q)
y(0) = yo on €,

with any boundary conditions, satisfies the local estimate

sup . y(z,tY de + D™y|? + [yl dadt
m%TA{A ) o129+ )

<K (1 - |u|" dzdt —!~f yédz)
BRI X(O,T) BR1

if Br, C Q and 0 < R < R,. Besides, the constant K depends only on N, m, p, R, Ry and
T.

Remark 8 The set of solutions of the problem in Theorem 5 is not the empty set since,
for instance with Dirichlet conditions on the boundary, we know that there ezists o unique
solution (see e.g. Lions [10]).

Proof of Theorem 5. We take X, = L"(Q) N L*(0,T; H*(Q). Then the equality of the

equation of (35) is in X! = L"(Q) + L*(0,T; H-™(Q)). Then, if s > 2m, we can multiply in
(35) by &gy with the duality product (-,-)x;xx, and we obtain

1 r 5 Y m 8 - §
j?—/BR Ehy(w, Tz + (= A"y, Exy) (o msr-m@)x 20 rsmz @) + (WP 609 1 @) e (@)

1, .
) fBR Shyol@) e + (u, Ery) 1 (@) x (0

Now, from Corollary 1 it follows that

[ %J1T6h+/ o ERUD™ P+ Jy ) dads
< Cf Eryo(e)?dz + C fs 2’” y dadt + C/ fﬂuydxclt.

BRX(O,T) RX 0

(36)

By (33} and (34) we can replace in (36) ég(z) by R — |z| (modifying the constants). Besides,
writing s —2m = 2s/r + (s(r —2)/r) — 2m, we can apply Hélder's or Young’s inequality (32)
with exponents g = r/2 and ¢’ = r/r — 2 and we obtain

| R — [a])" "y dzdt
/an(o,T)( ey de

35/ R — o))yl dedt + K ,-2] R — ||} " dedt
an(o,T)( |l2|)* ly|"dzdt + K (g, /2) BRX(D,T)( |2])° " dxa

with
2mr

r—2

7:

12



Hence, if we choose s > v — 1, the last integral is finite and equal to CR*tV=7, Oun the other
hand, we can apply again (32) and we have

| R—al)uydsdi < [ R—[a])*|y[dndt + k(e,r) | R — Ja|)*|ul" dedt.
Lo Eleluydsde <e [ (RfollyPdede b k(o) [, (R ol dec
Thus, by changing the constants, we deduce that

1 : <
5[ Blalry(e T det [ (= lel) (D" + Iyl o

&

<[ (R-lalypoleyds + B + |
<of @-lrwEra Rt [

Finally, by replacing R by R, and by taking into account that Ry — [z[ > Ry — R and
Ry — |z| < Ry if |z| € R we deduce the result with

(R-@WWW@ﬂ)

54N —~
K = max {C( i O }

m—ﬂ’mrﬂy

Proof of Theorem 4. The proof of Theorem 4 is a consequence of Theorem 5 since, if Ry
satisfies Br, C \w, then

(s T) 22y < K1+ | yo [i72ga)) Vo€ L7(Q)
and if we take yq such that || yq ||z2(q) is large enough we cannot find a satisfactory control.
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