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Abstract

We present the mathematical analysis of a cold ice sheet flow
model. The model combines the assumptions of slow, gravity driven
non-newtonian viscous flow as appropriate to the solid state creep of
ice. In order to prove the well-posedness of the maodel we introduce
a wealk formulation of multivalued type. The existence and location
of the free boundary generated by the support of the solution are also
considered and a waiting time property for the response of the ice
sheet is proved.

1 Introduction

Modelling ice-sheet low dynamics has been a challenging problem since the
beginning of the century. Nevertheless the application of the shallow ice ap-
proximation is quite recent and respond to the empirical observation that
typical ice sheets (Antarctica and Greenland, for example) have thicknesses
miuch less than their horizontal extent and respond to this type of problems.
The Antarctic and Greenland ice sheets are the two mayor present day ex-
amples of ice sheets. During the last ice age (ferminating about 10.000 years
ago) lce sheets existed in North America ( the Laurentide ) and northern
Burope (the Fennoscandian), the ice extending into Sonthern England and
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Northern Europe. These ice sheets interact with climate, and may be re-
sponsable for sudden shifts in climate in the recent geological past. The ice
sheet model is the simplest of its type, and assumne a noulinear, temperature
independent flow law. The governing equations of conservation of mass and
momentum, together with the kinematic wave equation for the top (free) sur-
face have heen scaled, using appropriate depth, length, stress and velocity
scales. The resulting model can be formulated as a free boundary problem
associated to a nonlinear diffnusion equation for the thickness i of the form
ah 0 ah ., dh

R T =
ot 8:‘5(]?' |c7:v1 dx

) =a over I(t) (1.1)

where I(#) denotes the (nnknown) region where h(t,.) > 0 and a(x,?) is
the (dimensionless) accnmulation rate. In particular ¢ < 0 represents an
ablation. Eqnation (1.1) represents a two-dimensional ice sheet. The three
dimensional model is obtained by veplacing % by ¥V or V- as appropriate.
The usual situation for (1.1) is that @ is positive over an interval, and nega-
tive outside this. An exaustive asymptotic analysis in his natural language
of matched asymptotic expansious was developed in [F]. Here we are infer-
ested in the mathematical treatment of such a problem. In order to prove
the well-posedness of the model we start by introducing some weaker formu-
lations which, in fact, are equivalent to the formulation (1.1) under suitable
regilarity on i, This is presented in Section 2 where we collect some results
in the literature. In particular we obtain the well-posedness in a suitable
framework for the weak formulation by applying the recent results by Diaz
and Padial (1993),(1995). The rest of the paper is devoted to the study of
the free houndary., We obtain different estimates on its location and we an-
alyze its behaviour for initial times (b near zero). Move details on these type
of results can be found in [S] where the behaviour of the free boundary for
large times is also considered together with additional information about its
location.

2  Weak formulations

The original strong formulation can be stated in the following terms: let
T > 0 and D be an open bounded interval of R. Given an accumulation
rate function a(t, 2) defined on (0,7) x D and an initial thickness fg{x) > 0



on D, find two curves Sy, 5 € CU([0,T7), with S_(¢) < S4(¢), Q) :=
(S_(t),54:(1)) € D for any ¢t € [0,T], and a sufficently smooth function
h(t,x) defined on the set Qr := Uyg(o,r) ) such that

2= L (WL falte) i Qr
ho= 0 on{S_-(£)}U{Ss(t)} te (0,7) (2.1)

h(0,2) = Hp(e) on D

aud h(t,z) >0 on Qr.

Here the exponent n represents the Glen exponent and it is usually as-
sumed n = 3. It is well-known ([D]) that this class of degenerate equations
are typical of slow phenomena and satisfy the finite speed of propagation
property: assuming, for instance, ¢ = 0 if 1(0, z) has compact support then
L(t,z) has also a compact support in IR, for any ¢ € [0,T]. So, if ¢ = 0,
the domain Q7 can be found through the support of the solution A(t,x) of
the nonlinear parabolic equation over the whole space (0,7) x IR and sat-
isfying the initial condition A(0,2) = he(x), @ € R. Unfortunately, the
physically relevant case, ¢ # 0, is much more complicated. Indeed, the fi-
nite speed of propagation still holds if «(z,.) has compact support in R (for
fixed ¢ € (0,T)). Moreover, in that case, it can be shown that support
h(t,.) C support a(t,.) and so a(t,.) vanishes on the free boundary. Never-
theless, in glaceclogical models it is well known that nsually «(¢,.) < 0 near
the free boundary (i.e. near the houndary of the ice-sheet) and so there must
exist another reason (other than the degenerate character of the equation)
justifying the occurrence of the free boundaries S_(#), 54 ().

The new model we present here is based upon the fact that we can extend
the function A(t, ) outside of Qr by zero on (0,T) x D\ @r and that this
extension still satisfies a nonlinear equation (this time of multivalued type)
having the great advantage of being defined on an « priore known domain
(0,T) x D. This type of problem is known in the literature as an obstacle
problem (in our case the obstacle function is 4 = 0) and 1t arises in many
contexts related to friction, elasticity, thermodynamics and so on. The asso-
ciated Complementary Formulation is the following: given D, a and hyg



as before, find a sufficently smooth function h such that:

hy — %(h”“gﬂn_i%) —a(t,z) =0 in (0,T)x D
(hy — %(7?1"4'2153{5&”_1%) —a{t,z))h =0 in (0,7)x D
h > 0 in(0,T)x D
h = 0 on (0,7 xaD
h(0,2) = helz) on D
(2.2)

It is obvious that if a regular function H verifies the strong formulation then
its extension by zero over [0,7] x D\ Qr (which we will denote again by
H) satisfies trivially the complementary formulation, assuming that a(t, )
satisfies the condition

a(t,z) <0 on(0,T) x D\ Qr. (2.3)

2.1 A Comparison Principle

Defining ¢(r) = |#»[""'r, r € R, n > 0 and (s) = -T—j-;%"flﬁ" with s > 0 and
m = 2(n+1)/n the above obstacle problem can be also formulated as: given
D C R, ae L® and hy € L™ with compact support, find a sufficently
smooth function i solution of

he — oQp(h)e)e —alt,z) >0 in(0,T)xD
h > 0 in(0,T)xD
(hi — (p(M)a)e —alt,z))h=0 i (0,T)x D (2.4)
ho= 0 on (0,7') x 0D
R(0,2) = holx) on D

Putting u := h™ = (), and u'/™ = h = ¢~ (u) 1= b(u) we have (V(p(h))) =
H(Vu) = |Vul 7’ Vu. The mentioned multivalued formulation is the follow-
ing: determine a function u(¢, z) solution of
blu), — div(Vu) + f{u) alt,) n Q=D x(0,00)
ult, x) =0 on E=0Dx(0,400) (

u(0,2) = up(x) on D

[Nl
[S31
S
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where ( is the maximal monotone graph
Br)y=0 i r<0, p0)=(-00,0, fr)=0 i r>0.

A more general framework is obtained by assuming that D C IR 1s a regular
domain, ¢ a real continuous strictly increasing convex function such that
H(0) = 0, and 3 as before. Given hy € L™(Q) and a € L™(Q) the results
of Diaz-Padial ([DP]) lead to the existence of a (unique) solution wusing the
class of hounded variation functions
. L u .
BV, (Q) = {ue L'(Q): = € My(Q)}
i

where My(@Q}) is the space of bounded Radon measure over ). We notice
that if n =~ 3 then p ~ 4 and m =~ § > 1 and the principal difficulty
in onr case is due to the regularity of the function (or distribution) bu),.
Existence of solutions for b(u), € L¥' (U, T; I/V““l’f’/(ﬂ)) only need uy € L=(£).
Comparison (and unigueness) for weak bounded solutions of (2.5) has been
obtained first by [DT] assuming b(w), € LY0,T; LYQ)) and muproved by
[DP] under the more general hipotesis b(w), bounded Radon measure: ie.;
b(u) € Mp(@Q). For onr purposes the following Comparison Principle (details
may be found in [P]) is enough:

Theorem 2.1 Let b, (aq,uo, ), (@2, to,) verifying the above structural hipote-
sis and let 3 o mazimal monotone graph in R*. If uy y wa are two solutions
of (2.5) associated to the data (a1, uo,) and (as,uo,), with aq and cy belong-
ing to LYQ) (ca(t,z) € Blur)(,2) and az(t,2) € Flu)(t, z) a.e.(z,t) €

respectively) then, Vi €]0, T[] we have
3 Y

.L [b(ui(t, x)) — b(us(t, ;z:))LcZ;L‘ < {/.[b("u,ol(:z:)) — b(ugg(w))Ld:r;

0

t
- WS, &) —dal S, l.’:l.' .
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3 On the free boundary

3.1 Existence and location
In this section we will prove the existence of a null set
N{i(t,.)):={x € D/ hit,x) =0}
for the unique solution h(t,x) of problem
he — App(h) + B(h) 2 a(t,z) in Q=D x(0,c0)
h(t,z)=0 on £ =08D x (0,+o0) (3.6)
L(0,2) = ho(z) on D

We are able now to analyse a great munber of geophysical fenomenouns re-
lated to location and evolution of the free boundary and associated with the
behaviour of the function «(t, ). We will use a technique based on the com-
parison result of section (2) consisbing in the construction of appropriated
local super-sub solutions having compact support. We define, Ve > 0 the set

Ne(a(t, ) :={(t,x) € D x {t}/ a(t,x) < —¢} (3.7)
and also S.(a(t,.) := h \ N.{a(t,.). We have

Theorem 3.1 Let h € C’(C:)), h > 0 a solution of (8.6). Let € >0 such that
the set N.(a(t,.)) is not empty. Then there emists Ty > 0 such that ¥t > Ty
we have

N(u(t,.)) D {(to, z0) € N(alto,.))/ d(wo, Qi \ Ne(u(to,.))) > R}
Proof: We consider the set N.{(a(t,.) and define the function

Wty ) = 7 (| — zol) + 9 (UR)))

where . 1
s p—1, ¢
n(r) = cri = — 3.8
)= e, =22l (3.5)
and U(#) the solution of the mitial value problem
1. €
U -+ E/f(U) 2 ) (39)

§



(‘j(()) = HH[]' Loon (310)
It is easy to see that U(t) = [=5t 4 |[ho|[o~]T whence

2
[f(t) =10 Vi Z T[) = —||I}’.{)|
€

Lo(2)

On the other hand A,(n) = +£ whence (in N.(a(t,.)))

Apth(h) + B(h) =

= 71“ () + T E = A+ B () +p(UD)) 2
' (U) U

B (=1 () + 9 (U(2))) dt

= Uit %MU) — A+ %ﬁ(w" () > —¢ > alt, )

N

1. 1.
= D+ BT ) + 5AU) =

Using (Proposition 2.4 [B]) the following estimate holds

~{
Bl L) < lhollLego) + /ﬂ lallzeomy = M(2). (3.11)
Then .
iz M0 2 [lio (3.12)

HE o () + 'a/:(U( 1)) = M) des g +p(U) 2 p(M(t)). In particular this
is true if ¢|w — .’L'O|P T > :/)(ﬂ/[( 1); by (3.8) the above reads

( M (

i

(=) (fmﬁ

and (3.13) implies & > h on dN.(a(t,.)) At £ = 0 we use the monotonicity of
ht:

la — ag| >

=R (3.13)

/NI,(‘U, w) = () + p(U(0))) = T (n(a) + D(]|hol|n=)) =
5 (ol = ol 2 hof) 2 0

Summarizing we have, that if @ € N.(a(t,.)) such that |z — xo| > R then

hy —Ayp(h) +3(h) € a < fu, — Agj'r/)(ﬁ,) -+ ,U(fz) i N (alt,.)) (3.14)



h{t,x) < hit,x)on ON.(a(t,.)) (3.15)
ho(z) < fr,(U, x)ouN,(a(0,.)) (3.16)

It follows from comparison results for problem (3.6) that
0 <t x) < h(t, x) (3.17)

and we end up observing that A(t, xo) = 0Vt > Ty = 2|hg

{N.(a)/]|z — wo| > R}.

e and wo €

3.2 The waiting time property

The following property applies if the initial data is sufficently 'Hat’ in the
"ablation region’.

Theorem 3.2 let h € C((_Q) w > 0 a solution of problem (8.6) Define § =
Y (M) and B (z0) = {x € D/ @ € [wo,x0 + &)} being M = ||h][pe,
xp = S4(0), é = (”—I}l)(i)z%l and n(|v — wp|) = ¢l — 1EU|T_’?_J_1. Assume that
there exists T* > 0 such that a(t, z) < —¢ a.e.w € By (o) andt € (0,T%). If
wy € D satisfy O < holeo) < o~ Hn(|z — wol)) then

A, 0 <t < T such that Sy = Sy Vi€ (0,T7)
Proof We define the function on the set By (zg) x [0, 7]

= S (e — wol))-

Then ) i )
Ty = A (L) + F(h) > —e 2 a2 hy — Aptp(h) + (1)
On 9B} (wg) x [0,1*] we have to verify that
h<< M <h=1v¢"n (3.18)
and this 1s true if and only if
(M) < =éle— ;'uolvi_il
Ou 9By this reads
P(M) < &7,

3



Using that § = n71(p(M)) then

p(M) < 5[77“1(/:/;(114))]F—L1
= BT <o) = ([d’ My ) < (M),

In conclusion we Lhave

he — A (D) 4+ B(h) < a < hy = Appp(R) + B(R) in B (x0) x (0,#7)
W, 0) = holzo) < hlx) =~ n(lz — zo])) on Bi ()
ht,x) < M < h(z) on B (we) x (0,¢)
(3.

19)
Then a comparison argument gives that 0 < h(t, ) < i(z) and so h(t, zo) =

0 Yte (0,t7).

3.3 On the inital growing of the free boundaries

We are interested in the evolution of function S(t) for 0 < ¢ < 1.

Theorem 3.3 Let h € C(Q), h > 0 a solution of problem. (3.6). Assume
that AT > 0 such that S(1)\ S(ho) C Ne(a(t,.)) VEe (0,T). If, in addition,
h, € L™(Q) then we have the estimate

S(h(t,)) © S(ha) + BUb( (Cha)).
for any t € (0,t0) y some C >0 depending on ||he|n=
Proof: Let tg € (0,7) and xg € S(h(to,.)) \ S(ho). We consider the {(open)
reglon
R(to) ={(t,x)/ 0 <t < to, h(t,z) > 0,2 & s(ho)
and the function
L (z) = ™ (n(]e — wol)) = & Gt

where ¢ is given by (3.8). We have (on R(tq)):

hy — Dptb(h(z)) =@ (3.20)
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he —App(h (z)) = —€ > a (3.21)

One can see that the difference w(wx,t) = h(w,t)— h (x) sabisfies a linear
parabolic equation of the form

wy = A, P wey + Bz, tho, + Cle, tyw = LI

where the coefficients 4, B, C' can be derived from (3.20), (3.21) by a lin-
earization procedure with respect to w. £ is an elliptic operator ([GT]) and
by the strong maximun principle one derives that w takes its maximun on
the parabolic boundary of R(#y): nevertheless on 9,R(1y) \ 85 x (0,%y) we
have:

0 = Alt,z) <h (x)
i.e.; w < 0 while on (49, z0) (€ S(t0))

hﬂ(to, 12}0)"— ;; (ZL'(')) = h(to,:l’!g) > ()

Les wlag, o) > 0 hence there exists a point (2, £) in 85 x (0, %) where w > 0.
This means
ho(r) < hit,x)
_r_
A —uo| " < B, 1)

—_ mip—1

- 1 - ) - -
| & —wg| < ;h(t,;v) o= (n (¢, 7))
and ~
d(wo, S) < d(iy,d5) = | & —xo| < (n~ (R{t,2))) <
< pln~ (Bt 1) — h(%,0))) <
- p—1)m
<p(n7(C 1) < p(n~ ' (Cto)) = [Cto] 7
As g is an arbitrary point of S(tg) we have the result:

(p—].)rn

S C S+ B(Cty 7). (3.22)
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