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1. INTRODUCTION.

The approximate controllability for paraboelic problems has received an intensive
sl.udy_in the last three decades. References to the pioneering works devoted to linear
equations can be found in the book of Lions (1968) and in the survey of Russel} (1978).
For numerical aspects see Carthel, Glowinski and Lions (1994), Glowinski and Lions
(1994), (1995). The study of this property for nonlinear parabolic equations seemé
to have its origins in the work of Henry (1978). Since then, manv other results are
today available in the literature (see some references in Diaz (199—521) {1995b)) but
to the best of our knowledge, always restricted to the case of semili,near paraboEiJ‘
eqllfxrjions in which the presence of a dominating linear term allows to arrive to a
positive conclusion.

In Fhis paper we start a series of works devoted to purely quasilinear parabolic
ecgua(.zons, ie., without assuming the presence of & dominating linear term in the
equation. To fix ideas, we shall consider the question of the a.pproiimate controllability
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for the, so called, nonlinear diffusion equation

v — Aply) =+ ey, iInQi=0x(0,T),
(n oly) =0 on 5:=82x (0,7),

y([]) = n Q,

where 2 is a bounded open subset of ™ of class ("4, T > 0, w is a nonempty open
subset of §), ¢ is a continuous nondecreasing real function, i € L0, T : H 1)) and
yo € L2({2) are prescribed data and v represents the searched output control answering
to the approximate controllability property; i.e. such that Hyltiv)—ya [lLym< dfora
given § > 0 and for some desired stale ys € L) (here y(t; v) denotes the solution of
(1) assaciated to the control v). In the rest of the paper we always assume w C Q but
w Z 0 (the approximate controllability when w = {2 is a consequence of the results of
Diaz and Fursikov (1994)). Before continuing, we recall that the class of equations (1)
arises in many important physical settings (see, e.g. the surveys Peletier (1981), Diaz
(1986), Kalashnikov (1937) and Vdzquez (1992)).

This paper is devoted to the case in which  is assumed to be sublinear at infinily.
i.e. such that
(2) ()l < CL+1s) for o] > M,
for some M > 0 {the superlinear case will be considered in a next work). We recall
that this type of conditions are suflicient and, in some sense, necessary in order to
have the approximate controllability of semilinear parabolic equations of the type

(3) v+ (=AY y Fely) =+ e

(see Diaz and Ramos (1997b) for m > | and its references on the case m = 1). More
precisely, if for instance

(4) pla) =I5/ ls se R

and ¢ is superlinear (i.e. m > 1) then an obstruction phenomenon occurs for the
solutions of the Clauchy-Dirichlet problem associated to {3) and thus the approximate
controllability fails for a general desired state yy (see Diaz (1991), (1994), Diaz and
Ramos (1997a) for m = 1 and Diaz and Ramos (1997b) for m > 1). In contrast
with that, we shall prove in Section 2 that an obstruction phenomenon occurs for
solutions of the nonlinear diffusion equation {1) when ¢ is a strictly sublinear function
as. for instance, ¢ given by (4) with m € {0, 1). Therefore, again, the approximare
controllability fails in this situation if ya 1s suitably chosen. Nevertheless, we shall
prove, in Section 3, that although the remaining range of sublinear functions »
(satisfying (2)) which are not strictly sublinear is quite narrow, the approximate
controllability holds for a certain class of functions @ which are essentially linear
at infinity (see assuriptions (13} and (14) bellow). This class of functions includes
the one associated to some type of two phase Slefan problem (p(s) = ks for s < 0,
w(s) = 0in [0, L] and ¢(s) = ks for 5 > L, for some positive constants k and L). The
result is obtained through the application of the main theorem of Diaz and Ramos
{1997D) to the vanishing viscosity higher order problem

v+ edly—Ap(y) =h+oy, i@,

a1
(5) %:0 o j=01 ?[1;,
y(0) = wo in §
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(with € > Uarbitrary) and posterior passing to the limit ¢ — 0. This vanishing viscosity
argunent seems to lead to approximate controllability results for a very large class on
naplinear parabolic equations even in non divergence form as

v~ Fltz,y, Vy, DY) = vx.

2. OBSTRUCTION PHENOMENON WHEN ¢ IS STRICTLY
SUBLINEAR.

In this section we shall prove that when  is stricily sublinear at infinity as, for instance,
when @ is given by (2) with m € (0, 1), then an obstruction phenomenon arises and
therefore problem (1) does not satisfy, in general, the approximate controllability
property (in contrast with semilinear parabelic problems). Several proofs of this fact
are possible. We start with an energy argument.

Theorem 1 Let m € (0,1) and yo € L*(Q). Let ylt;u) € C([0,T); LA(Q)) with
W™y € L0, T; HE(S2) be a function satisfying
—A(lyI™ "y) = uxw  in DQ)
Plu, Y X
(u yﬂ) { y([)) =1 nQ
with external control u € L*(w x (0,T)). Then we can choose yq € L2(Q) such that
“ T w) = ya [lLzqey> ¢ for any v € L*w x {0, 7)) and any € > 0 small enough.

The main ingredient of the proof is the following technical result due to Herrero
awd Pierre (1985) (see their Lemma 3.1 and following Rernark).

Lemma 1 (Herrero and Pierre (1985)). Let m € (0.1), R > G andy, § &
C0, T); LY (Br(ra))) satisfying the eguation

(6} yo= Ay Yy =0 i D0, T) x Bur{zo)).
Assume lhal y > §. Then, for any t, s € [0,T], there exists C = C{N, m) such that

oo LGOI { / R CCE O R BT

where o= /(1 —m) and v = 2/{1 —m) — N.

Proof of Theorem 1. Let 25 € O\w and £ > 0 be such that Bor{zp) € Q\w. Let
v = sup(v,0), ¥y = sup(-ya, 0). Define analogously ut and u~. Let ¥, (resp. Y_)
he r.}.1e (unique) solution of problem P(u*, yf) (resp. P(u~, 7)) (see, for instance,
Brézis (t971)). Then, by the comparison principle (see references in Kalashnikoy
(1987))
=Y f,.l’,‘) < y(!,l‘) < Y+(£,I) and Y+(f,:!?) (resp. Y—(tlm)) >0

-
for any { € 0.7} and a.e. z € Q. Then the function Y, (resp. Y.) and § = 0 satisfy
(8) in D'((0,T) x Ban(zo)) and therefore, by (7),

[ vtadacc [f (v (2) + f"””dr}
Er(za) Bag(zo)
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for any ¢ € {0, T]. Then

z)ldz N T CH™dz
(8) fﬂ LCECE [[B CCIET

for any ¢ € [0, ). It is clear that (8) implies an obstruction for the L*(92)-norin of
y(f; 1} {independent of u) and that the conclusion holds by choosing ys € L¥(£2) with

/ lya(z)|dz >> f (lyo(z)] + TR~ )dx.
Bau(ra) Baw(zo)

Remark 1 We point out that a pointwise obstruction phenomenon also arises when
m € (0, 1). It is a consequence of the existence of a (unique) function Yk (@) (resp.

Yy oo (x)) satisfying

vr, =0 on 90
Y;fw =00 (resp. ¥y , = ~20) ondw,

—AYF LAY =0 in Qw
(9)
for any prescribed A > 0 and p > | (see e.g. Bandle and Markus (1992)). Assume now
that

(10) { there exist (> 0 and A > 0 such that

CYroo(z) S wolx) S CYE () ae z€ Q.

Then it is possible to construct U+(¢, z} (resp. I/ 7(t, x)) satisfying

UF - AU ) = 0 in D'(O\w x (0,T))
Ut =190 on ©

(n Ut =2 (resp. I/™ = —2c)  ondwx (0.7)
U740, z) = yol=z} in 2\,

The main idea is to use the supersolution

b3

(12) U(t,z) =Y (e)(m =) [a+-m]er,

where Y;_'m(zr) is the solution of {9) with p := 1/m. Then the comparison principle
leads to the pointwise obstruction estimate U/_(t,x) < y(t.z;u) < U4 (t, z) for any
t € 0,7}, ae. £ € Q\w and any solutions U* {resp. U/~) of {11). We point out that
the uniqueness of solutions U* (resp. / 7} of (11) may fail (in contrast with the case of
non singular solutions or semilinear equations). This is the case if, for instance, yo =0
(for any A > 0 the functions Uy {t,z) == (m — N(A)YI-™¥? (x) is a solution of
(11) with zero initial value).

3. AN APPROXIMATE CONTROLLABILITY RESULT WHEN
@ IS ESSENTIALLY LINEAR AT INFINITY.

The main result of this section is the following:
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Theorem 2 Let @ be a continuous nondecreasing funciion with o(0) = 0. Assume
thal there extsts k > 0 such that

Cy o
(0 @ € CHIN[=M,, M\]) and |o'(s) — k| < |—q‘| if |s1> M.
for seme positive constanls (' and M,
and
(14) lo(s) —ks| <y Vse R

Then the approrimate conlrollability properly holds for problem (1), i.e., given yq €
L2(82) and 8 > 0 there exists v € L2(0, T L3 (w)) such that || y{T;v) — ya Heag< d.

Rewmark 2 Notice that assumptions (13) and (14) are not fulfilled when ¢ is given
by (2) with m € (0, 1).

As mentioned at the Introduction, the proof of Theorem 2 will be obtained through
the study of the approximate controllability for the evanescent viscosity higher order
prablem (5).

Theurem 3 Assume o € CO(R) (non necessarily nondecreasing) satisfying (2). Lel
ya € L2Q) and & > 0. Then, for any ¢ > 0 there exisis a conirol v, € L=((0, Ty x w))
such thal if y(t;v) is the corresponding solution of (5) we have

(15) | ¥(T5ve) = we llLaqmy< 6.

If in wddilion o satisfies (13) and (14), then there exists a positive conslani K,
depending on k, C'y, Cy and My but independent of €, such that the above controls
. cun be laken satisfying

(1()) ” Ty ”L""’((ﬁ,T}xu)S h’, fOT any & > 0.

The proof of the first part of Theorem 3 is an special formulation of the main
result {Thearem 1) of Diaz and Ramos (1997h). The second part reproduces some
of the steps of the proof of Theorem | of Diaz and Ramos (1997b) that here will
be merely sketched but putting emphasis on the new arguments needed to arrive to
the conclusion. The first step consists in proving the approximate contrallability for a
linearized problem (a posterior fixed point argument will extend the conclusion to the
uonlinear problem). Since assumption (13) clearly implies that @ (s) —+ k as |s} — oo,
it 18 natural to define the function

(1n wals) = @(s)— ks, se R

{so that ¢y(s) — 0 as |s| — oo). Then, it suffices to linearize function wp which {by
vonvenience) will be done near a point s, € R depending on ¢ in a suitable way as
shows the following result (that can be proved by elementary techniques of calculus)

Lemma 2 Lel p € C°(R) (non necessarily nondecreasing) satisfying (13). Givenw
e > 0 there exists s, € K such that the function

(18) gt(.ﬁ‘) = M

§— 8,
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sulwsfies . € L™~ Ry NC(HY and
(1 Il ge HlLm(m< Ve

If in addition @ satisfies (14), then there erists a positive constani Kq, depending on
¢y, (1 and My but independent of £, such that

(20) l9e(s)5c1 < Ko,  foranye> 0 and any s € K.

Now we return to our linearizing process. Since po(s) = qag(sf)+gc(s)s—gc(5)sg', we
shall start by considering the approximate controllability for a linear pro.blem obt_amed
by replacing the term @(y) by kv + g:(2)y + @ols:) —gc(?)sg, w.;he‘re z is an arbitrary
function in L*(Q). Netice that when 2 = y this expression coincides with L,a(y}q apd
that if we denote ho(z) 1= A (wa {se) — g:(=(t, 2))sc ), then he(z) € L, T H '(S?)]
for all = € L*(Q) and for all € > 0. Now, we vonsider the approximate controllability
property corresponding to the linear problem

w+eAY —kAy =~ A ((ge(2)y) = h 4 he(2) + texw  In &,
&7
(21) Py _g =0, on T,
o in
y(0) = wo in .
The existence and uniqueness of a solution y € L?(0,T; H&(Q!), with y €
L0, T: H~2(§)) was given in Proposition 4 of Diaz and Ramos (1997Db). ] .
Before stating an approximate controllability result for this problem, following L{ons
(1990), Fabre-Puel-Zuazua {1992} (1995) and Diaz-Ramos (1994}, (1997a), we consider

6 >0 and yg € L?(Q) and we introduce the functional J. = Je(zope) L) = R
defined by

| i y
(22) S (p% 2 wa)=J (P°) = 5 / p(t, =) |dzdt | +68 1} p° llz2oy —[ vap’dz
2 \Juxiem n

where p(¢, z) is the solution of the backward problem

—p +eAp—kAp— (g:(z))Ap=0 inQ,

53
(23) ‘;—’Ji:o . i=0,1 on T,
;,(16") =p° in {2,

for any p° € L2(Q)) given. The existence and uniqueness o.f‘ a solut.ioix p €
L*0, T HE(51)), with p, € L2(0,T; H™3{Q2)) was given in Proposition .1 of D:az and
Ramos (1997b). Moreover, some easy modifications of the arguments given in Fabre,
Puel and Zuazua (1992), (1895) and the Unique Continuation property (see hautiand
Scheurer (1987)) allow to show that the functional Je(; z,y4) is continuous, strictly
convex on L?(Q) and satisfies

J D.z,'
(24) lim inf ———-——‘(’g’ ya)
el 2y —eo || P® HlL2 (o)

. .. ; . .
Then Je(-;z,yq4) attains its minimum at a unigue point 72 in L2(§2). Furthermore,

f)? =0 iff ” Yd ]le(n)S 15 -~ )
(loncerning the approximate controllability of problem (21) we have
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Theorem 4 Lel 2 € LW(Q)‘ Assume g, satisfying (19) and (20). Let || ya —
WT:2,0) |[Lagmy> 6 and let pe be the solution of (23) corresponding fo p(T) = 7,
with g% minimum of Jo (- 2,92 — (T 2,0)). where in general y(t.-,u) denotes the
solution of (21) corresponding to the control u. Then there ezists §. € syn(p.)xw such
that the solulion y, of

ve +eATy — kAy — A{(ge(2))y) = b+ he (=) || Pe oo m)xw) Gexw  in Q,

&y .
_—= = N
i 0 7=0,1 on M,
¥(0) = wo in €,
salisfies
(25) I 4eAT) = ya llL2y< 4.

Moreover, if |} ya—y(T; 2,0) Nezgy< 8, then property (25) holds for the control v, = 0.
Finally, if ¢ satisfies (13} and (14}, there exisls a positive constant K, depending on
k, Gy, Oy and My but independent of £, such that the abouve functions . satisfy

(26) | Be Hlego,mie2an< A, forany e > 0 and any z € L3{Q).

Remark 3 Theorem 4 solves the approximate controllability problem for {21) with
control u, =[] Pe [|L1((0,7)xw) 7c- Therefore

(27) e fleee (< K.
Proof of Theoremn 4. We put y. = L, + Y., where L, = L (=) satisfies

Ly + AL — kAL — A((ge(=))L) = h + he(2) in Q,

L

28 ¢ = | —

{21) S0 0 j=0.1 on T,
L{0) = wo in 2

and Y, = Y. (z) is taken assoc‘iated to the approximate controllability problem

AN Y —kAY = A (g (2))Y) = uel2)xo in Q,

dJY

= - ©
5 =0 j=20,1 on X,
Y{0)=10 in §1,

with desired state yg — L, (T), i.e. such that || Y. (T} — (yg — Le(T)) ||< 4. Assuming
{2). Ly Theorem 2 of Diaz and Ramos (1997h), there exists g, € sign (pc)xw, with p.
solution of (23) of initial value A1, (2, yq — L.(T)), where M, : LIQ) x L} Q) —
L) with M(z, ya) = PO (it can be shown that, if K is a commpact subset of L?(£2),
then, for any fixed € > 0, M, (L3(Q) x K) is a bounded subset of Lz(Q)), such that
uf(z) :“ ﬁ: ”L‘((D,T)xw) t?c leads to H Y(T} — gd ”L:(n): 5, where 17.1 = Y4 — Le(T)
{in the case {| #4 |JL2(n)< 4 it suffices to take u. = 0). For the proof of (26) we have

Lemma 3 Assume (19) and (20). Let z € L*(Q). Let py € L* () be given. Then, if
pe is the solution of (23), we have

{29) W pe lleomren < e |l p° Heagy  foranye >0 and any z € Lz(Q).
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Proof. If we "multiply” in (23) by p., for any { € (0, T} we obtain
! 2 N Ap |2 k) Vpe |2 <
7 I pe () Ly +e 1 AP L2 myxmy 51l Voc L2, xS

|
3 I 2e(TY L2y + 1 9 (2(6,2)) Neooq@yl AP Lz myxmll Pe [TLaemyxe) -

Then, if we apply Young’s inequality, we have that

1 a € l 1
7 Il pe ()} g2y 3 | Ape Zagqe ryeeny < 5 IFpe(T) 132400y +3 1 pe N1 agge ryssy -

Then we obtain that

T
1 2e0) Wy < pelT) Wiy + [ 1l ey -
¢
Applying Gronwall’s inequality, we deduce the following inequality leading to (29)

Hpe(t) ifi?(n)f” pe(T) Hiz(n) el vie(o,T] 5

Completion of proof of Theorem 4. From (20) we deduce that there exisis
a constant Na, depending on (¢, (" and M; but independent of ¢, such that

B Le(=) leqoryerinn< Ka for any € > 0 and any = € L*(Q). Moreover, Lemma
3 implies that for any £ > 0 and 2 € L*(Q)

. 1 ap
T 20e) < T gy + 1 e — [ van®.
3!
Thus, there exists a constant Ny, depending on (7, (' and M| but independent of ¢,

such that, if 57 is the minimum of Je(-; = ya — L. (T)), we have || p2 ||zaiy< K4 for
any £ > 0 and any z € L2{Q). Lemma 3 implies (26) with K = e’ K.

Proof of Theorem 3. The first part was proved in Theorem 1 of Diaz and Ramos
(1997b) by applying Kakutani’s fixed point theorem to the operator A, : L*{Q) —
P(L*(Q)) defined by A.(z) := {y. satisfying (21), (25}, with a control u, satisfying
{27)}. where the constant K of (27) depends on &. Finally, if v satisfies (13) and ({14),
then Proposition 2 shows that (26} holds, which leads to (16) with K = e7 K4.

Proof of Theorem 2. First step. Assume additionally that » € CY{R). For any
¢ > 0. let v, and ¥, be the functions given in Theorem 3. Since the equation of (9)
holds on L2(0, T; H~2{12}), multiplying by y. € L?(0,T; H3(£2)) and applying Young
and Gronwall inequalities we obtain, from the uniform estimate (16), that there exists
a constant (¢ > 0 independent of € such that

(30) I v lleqomyeay + / & (5|9 (30 [Pzt < C.
Q

Therefore, from (30) we obtain that y is uniformly bounded in L®(0,T; L?($2))
and by the equation of (5), (v, )¢ is uniformly bounded in Z%(0, T; H~%(Q)}. Then,
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sinee L7(Q) € H7HRY) C H™Y8Y) with compact imbeddings, we have (see Aubin
(19153)) that y, is relatively compact in L™(0, T3 H 71{2)). Further, from (30) and the
houndedness of function o (notice that " & L™(R) by (13)), we deduce thal there
exists a constant A > 0 independent of £ such that

T
/n 1 Voolue) Wagey dt = fq*"'(‘t(ﬂn 1)) ¢ (e (=, )|V (we (2, 1)) Pzt < K.

Thus, there exist y € L™{0.T; L¥(Q)) and ¢ € L¥(0,T: HH() such that y. — y
strongly in L0, T; H~'{Q)) and ¢(y.) — ¢ weakly in L2(0,T; H}(£2)). But the
operator Au = —Aplu), D(A) = {u € H71(Q) : plu) € HHD)} is a maximal
monotone operator on Lhe space H~'(Q} (see Hrézis {1971)). Thus, the extension
operator A of A is also a maximal monotone operatar an L2(0,T; H=1(52)) (see Brézis
(1973), Exarnple 2.33). Finally, as any maximal ronotone aperator is strongly-weakly
vlosed (see Brézis (1973), Proposition 2.5), we obtain that ¢ = o(y) in L¥(D, T; H(02)).
Moreover, from estimate (16) we have that v, — v +-weakly in L™((0,T) x w), with

(31) v lloego xS K.

Then we deduce that y € C({0,T]); H1(€2)) is solution of {1). Further, since ||
Ve AT |z 2¢gny is uniformly bounded and y. (T) = y(7T) strongly in H~1(£)), we deduce
that y. (T) — y(T) in the weak topology of L7(Q}, which implies that

Ho(T) ~ yu llLreny < Hlt‘lfoﬂr [y (T} = ya llL2¢m < 4.

Second step. Let o as in the statement of Theorem 2. [t is clear that we can approximate
v by on € C'(R), #a nondecreasing, satisfying (13) and {14) with the same constants
k.7, Cp and My that the ones for . Then the respective controls v, build as in step
I are uniformly bounded and therefore the conclusion comes as an easy modification
uf the well-known result expressing the continuous dependence on ¢ of solutions of (1)
(see e.g. Benilan and Crandall {1981)).
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