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1. Introduction
Let © be a bounded open subset of RY of class C¥, T > 0, w a nonempty open
subset of 2, f a continuous real function and & € N such that 0 < 2k < m. The
main goal of this work is the study of the approximate controllability of the following
semilinear equation with Dirichlet boundary conditions:

g+ (—A) "y + (D) fly) = h+vx, 0 Q:=Qx(0T),

07 4
(1.1) ug%:o . i=01,...,m—-1 on ¥ := 0 x (0,T),

”

y(0) = yo in £,

where v s a suitable output control, ., is the characteristic function of w, v is the
unit outward normal vector, h € L2(0,7 : H~™(2)) and yy € L*(€2). Due to the term
Y. the controls are assumed supported on the set O = w x (0, T). Problems as (1.1},
sometimes known as Cahn-Hilliard problemns, appear, with m = 2, in the study of
phase separation in cooling binary solutions and in other contexts generating spatial
pattern formation (see [6], [8} and the references cited thevein).

We recall that problem (1.1) satisfles the approximate controllability property, at
time T with states space X and controls space ¥, if the set

{y(T,-:v): veY, ysolution of (1.1)}

is dense in X.

The main goal of this paper is to extend the approximate controllability results on
sccond ordor problems, m = 1 and & = 0 (see e.g. [9], [L0] and [7]) to the case of
higher order equations for which the maximum principle does not hold, in general.
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Owur fHrst result gives a positive answer when f 15 assutned to be sublincar atb the
infinity:

Theorem 1.1. Assume that [ satisfies the following condilions: there cwist some pos-
wive constants ¢y and ¢y such thaot

(1.2) (s} <ev+eals) foralls e R
and
(1.3) there exists ['(sp) for some sy € R.

Then problem (1.1) satisfies the approwimate controllability property at time T" with
states space X = L*(Q) and controls space Y = L*(O).

In contrast to the above result, we shall prove that when f is superlinear the
approximate controllability property does not hold in general, as explained in Section
4. Therefore if, for instance, f(s) = |s[*~'s Theorem 1.1 gives a positive approximate
controllability result for 0 < p < 1. The results of section 6 provide a negaftive
approximate controllability answer when 1 < p < oo, The similar alternative was
obtained in Diaz-Ramos [7] for second order parabolic semilinear problems.

We remark that the existence of solutions in the class
y € L0, T HQ)) 0 C(0, 7] L), fly) € LAQ), AYf(y) € L*0,T: H "(S)).

is also obtained as a by-product of Theorem 1.1 for a suitable subclass of controls.
The uniqueness of solutions can be easily proved if, for instance, f is nondecreasing
ot Lipschitz continuous. Those uniqueness results are not neeced in our arguments.

2. Approximate controllability for an associated linear problem

[u order to prove Theorem 1.1 we follows the same scheme of proof than in [9], [10]

and [7]. We define the function
[(s) — f(s50)
gls) = ————.
g 5y

From assumptions (1.2) and (1.3) we have that ¢ € L(R) NC(R). The conclusion
will be derived from a fixed point argument. As f(s) = f(s0)+g{s)s~g(s)ss, we shall
shart by considering the approximate confrollability for a lincar problem obtained by
replacing the term f{y} by

9(2)y + fse) — y(2)s0,

where z is an arbitrary function in L%(Q). Notice that when = = y this expression
coincides with f(y) and that if we denote g(z(t,x)) := a(t, @) and

(2.1) ha) == —(=A) Fs) + (=) (alt, 2)s0),
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then a € L2(Q) and h{a) € L2(0, 7 H72H(Q)). More in general, given a € L((Q)
and h{a) defined by (2.1), we consider the approximate coutrollability property cor-
tesponding to the linear problem

Y+ (=AY Y+ (A all, ) =hth(e) 4wy, In Q= 0x (0,77,

‘ oo ) .

22) « SV =01, m— on T = 90x (0, 7).
O ’
y(0) = 1 in £2.

Before stating an approximate controllability vesult for this problen, following Lions
(14} and Fabro-Puecl-Zuazua (9}, [10], we consider £ = 0 and yy € L2} and we
infroduce the functional J = J(-;a,y4) : £2(Q) — R defined by

I3 Bk l I : ‘
(2.3) J{ipo; a,yg) = J(p") = 5 (/0 lo(t, .’z:)\cl:r:([[) +e " | peen — ./szyd ", da
where @(t, x) is the solution of the hackward problem

—op + (A" +alt, ) AP =0 in Q= Qx (0,7,

. o
(2.4) 5 =0 J=01. ,m=1 on¥:=0a0x (0,7),
@(T) = ¢° in €.

To study the above backward problem we introduce the space
W= {y € L*0,T; H* (), w € L0, T H(S2)}.
The [ollowing result will be used later

Proposition 2.1. Given h € L*(0,T; H™"(Q)) and yy € L*(Q), there evists a unique

function y € W satisfying

g (=AY y +alt, ) Ay =L i Q,

Qi ’
(2.5) —ﬁ =0 , g=01,....m—-1 onk,

N

¥(0) = w in €.

Furthermore, we have the estimate
(2.6) lly

where the constant C' depends only on M = o ||g=qy (provided that Q, 1" and m
are kept fived). Moreover, if o€ L*(Q), the solulion y also salisfics thal

20,7 HIM () + H’!_/zH/,:(0,'1";H—m(s‘z)) <C (||h, L2050 m{g1y) T |E1UuEiL‘-f(sz)) ,

(2.7)  ye Lo T; H¥(Q)) and y € LX(8,T) x Q) for alld € (0,7T).
Proof. For all n € N we define ¢! ag the solution of the following iterative problem

g (AT = B ol ) ARy in @,
gkt ,

B 0 . J=01,... rm—1 on L,
Yy H0) =y in £,
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where y°(¢) := 0 ftor all £ € [0,7]. The existence of a solution " € W can be found,
for instance, in Theovem 3.4.1 of Lions-Magenes [15]. Thus, for all n € N\{0, 1},

Gt — sal;isﬁ(:s
(y‘w-f—l ; y”)l, - ( A)m( n4+1 U ) ""(1([ I)AA(U / t) in C\J)
a.? PSR i
(2.8) __(l___,L) =0 , j=0,1,....m—1 on T,
Neir
(y‘nf!*l o :U”)(O) — 0 ‘[H Q

and therefore
Yyt e HYTQ) = HY0, T LAH(Q)) 0 LA0, T; H(Q))

and
a1

H i - l] H”l,.zm(o < ] ” HAA(U - /” l) |L~'(Q)
(see, for instance, Theorem 4.6.1 of Lions-Magenes [16]). Then, since

R Q) < C([0,T]; H™($))
with continuou% embedding (see, for instance, Theorems 1.3.1 and 1.9.6 of Lions-
Magenes [13]), there exists ¢z = (1) such that
ly™t =4 leqonmp@ns e2 | ad (" — 5" llzzo)
Further, it is clear that we can choose Cy = Cy(T"} such that for all ¢ € [0, 7]

H yn—k‘l _ yn ”C({[),t];[[{,”(ﬂ))g O‘z ” aAk(y'”‘ . yn,—l)

LR{{08)x 02 -

Hence,
I =y oy < (CaM)? / | ARy =" (7)) ey dr, forall £ € [0, 7]

and therefore, by using the Poincaré inequality, there exists a constant X, indepen-
dent of M, such that

. o p t T Ti— p o SO
| (" = y™)(t) “7)-{(;"»(9)3 (K M)? /0 | (" = ")) H}%[;,”(n) dr, forallt e [0,7].
Then, for every t € [0, 7] we deduce that

Ti- b - i Tt 2 1 2 ]
" =)0 W< 27 [ [ 770 = 0) B -l

‘ B ] - T b
< ey [T ey

gn—1

, ¢ ,
< (KQIW)""——(,” m— | v —

7
(o) () AT AT

|c (0,75 (1))
(K2MPT)™
= W | U f/ Hc (0T} 0
which implies that

o1 o e .
=" leqoynzay— 0 as n— oo

Iy
and therefore, by (2.8), we deduce that

| (y" e Yl H1,,2(()"1';[-17"!(52))—? 0 as n— oo

J.I. Diaz and A M. Ramos {1

Then, there exists y € W such that

Yo — W oas e — oo.

In order to prove that y satisfies (2.5) we point oub that

A"yt — A"y i LAO,T H 7)) asn— oo,

Afyt— ARy i L) as s oo,
ancl
gy i L2075 Q) as n— oo,

Lhis 1111[)11(‘H (passing to the limit) that ¢ is the solution of (2.5). [n ovder to prove
(2.6), we “multiply” in (2.5) by ». Then it is casy to see that

(2-9) HU“L (0,05 H (4 + ”U/ OO0 ()

C (||/erLB(M’;HW(Q)) -+ H’JIU LAy H‘!/HL’J(Q)) .

Furthermore,

B ‘{' ]
I (8) s < (Il w(0) o |l Wrsneoy) e [ 11 0(s) [ .

Then, applying Gronwall’s inequality (see, for mstance, Lemma 4 of Haraux [11]),
we decuce that

| () HL (” y(0} ”L 2102y 04 A Iz 20,75 H ~{2)) ) ot vt e[0,T].

From here, we obtain that

¥ )

which implies, together with (2.9), inequality (2.6). Now, thanks to (2.6) and the
lingarity of Problem {2.5), we deduce the uniqueness of solution.

Finally, if h € L*(Q), since y(6) € H () for all § € (0,7T), taking (6) as initial
datum and applying Theorem 4.6.1 of [16], we get (2.7).

o)< ¢y (Hh

Leo sy T ol

As usual in Controllability Theory we shall use a unique continuation property for
solutions of the dual problem (in our case Problem (2.4]).

Lemma 2.1. Let w be a nonempty open subset of ). Assurne that
we L0, T HM Q) n C0,T) LA (0)
satisfies (2.4) and that o = 0in O = w x (0,T). Then o =0 in Q.

Proof. From Proposition 2.1 (applied with backward time) we deduce that ¢ €
L0, T — & H*™()) lor all 6 € (0,7). Then Lemma 2.1 follows from Theoreiwn 3.2
ol Saut-Scheurer [17]. g

The following two results are eagy adaptations (by using Lemma 2.1) of the similar
ones given in {9], {10} for second order parabolic problems.
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Proposition 2.2. The functional J{-;a,yq4) is continuous, strictly conver on [2(Q)
and verifies

(
L0
1 J(F) > e

J
(2.10) lirn inf (¥
el 20y =50 || 2

Further J(-; a,yq) attains its mindmum ot a unique point @ in L2(§Y) and

(2.11) ' =0 = | o< E.
Proposition 2.3. Lel M be the mapping
M L=(Q) x LA Q) — LAY

(U’(tr ‘7’.)1 :‘/:l) — @U'
If B is a bounded subset of L™°(Q) and K is a cornpact subset of L*(§), then M(B x
K) is a bounded subset of L*(Q2).

In order to ch.;n'act'ori/c tho duality of problem (2.4), we recall that given a convex
and proper function V : X — RU {+oc} on the Banach space X, it is said that a
element py of V' belongs Lo the set dV{xy) (subdifferential of V' at zq € X) if

Vizg) — V(z) <(pg,z9—2) VaeX

It is well known that that if V' is Gateaux differentiable its differential coincides with
its subdiflerential and that xp minimizes V' over X (or over a convex subset of X))
if and only if 0 € 9V (zy). Finally, if V is a lower semicontinuous function, then
po € OV (o) if and only if

Vizg + hay — Vi{w
(po,2) £ lim (o + ha) (o)

. reX.
Jim . (< +o0) VYazxe

(See, for instance, Aubin-Ekeland {3]). Coming back to the functional J we have:

Lemma 2.2. For cvery " € L*(Q) (¥ # 0), if @ is the solution of (2.4) satisfying
w(T) = ", we have that

I a,yq) = {€ € LX), D v e sgn{p)xo satisfying

[ e = (/;)W(L,wﬂdﬁ) (l/;)'u(t,:v)ﬁ(t,m)dﬁ)

. 0 .
©'(x) 0 . 0 0 203
+& / = (xydr ~ | yula)07(x)de VT € L7{8)},

Ja H (p() H[}’(Q) ( ) /O j]( ) ( ) ( )}

where 8 i3 the solution of (2.4) satisfying O(T) = 0.
Proof. Tt is an easy modification of Proposition 2.4 of [10].

Let us prove the approximate controllability property for an special version of the
linear problem given in (2.2).
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Theorem 2 L If| wa . .
@Y, with @ mindmun of J(~a,yq). Then there exists v € sgn{@)xe such thal the
‘suf,u,[l,()*r{, of

g+ (=AY (AR alt ay) =[] @ oo vvo in Q)
Hy
2.12) =0 (1=0...(m~—1 on L,
( SV 0 =0 m- 1) _
y(0) =10 in 2,
salisfies
-4}
) =y — e
e e
and then || y(T) — yq 2yoy= ¢
Remmk 2 1. In the case || ya |lp2@n< €, if we use the null control, we obtain ¢ == 0

YT — yu 2o 5
Firgt of all we prove the existence and uniqueness to problem given by (2.2).

Proposition 2.4. Assumed yo € L*(Q), h € L*(0,T; H () and a(t,z) € L*=(Q),
there ewists o unique funclion y € W salisfying
y -+ (=AY + AF(a(t,z)y) =h  in Q,
Je o
(2.13) —‘ti =0 , 4=0,1....,m—1 on?3,
i
y(0) = 1 in €2,

Moreover, we have the estimate

(2.14) ly fﬂm)) ;

where the constant C depends only on M ( provided that 0, T and m are kept fived).

L‘—’(U,T;H(;"(sz))‘}‘||'!/r,”L’-‘((),T;H—"L(Q) <0 (”f?/ 1;9((),'1’;1—1—"'(s2))+Hyo

Proaf. For all n € N we define again ™" as the solution of the iterative problem
gt 4 (=AYt = b — AR (alt, 2)y")  in Q,
d_/ 71
— =0 , 5=0,1,...,m~-—1 on 2,
Qi
y*H0) = yo in 0,

where y9(¢) := 0 for all t € [0,7]. The existence of a solution ™ € W can be found,
for instemce, in Theorem 3.4.1 of Lions-Magenes [15]. Thus, for all n € N\{0,1},

Y+t — " s solution of

(Wt =y ek (AP ™ —y?) = —Aa(t a)(y —y" )] in @,

()j g0t T
(2.15) (“w(g——~ {Ll =0 , 4=01,...,m—1 on 2,

e Z )

(g =y {0) =0 in
and therefore (see again Theorem 3.4.1 of Lions-Magenes [15]) y*™' — ¢ € W and
(2.16) g =y < e Loty =" ) ez
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Then, since W < C({0, T]; L*(§2)) with continuous cmbedding (sce, for instance, (12
or [15]), we have that

141

1" =" leqoezep< e || aly™ — ")

Further, as in the proof of Proposition 2.1, we can choose Cy = Co(T7) such that

,y(?]” o ynf-'l)

LAQ) -

2w, torall € [0,77.

™™ =" lleqouen< Co

Hence,

b a 3
(™t =y ) @< (CaM)? / I (" = 5" () e dr forall £ €0, 7]

0

Then, {or every L € [0,7] we deduce that
| (" = ™)) NIz = < (CF M) '/0 /() /o I (2 =y () ||2 v A7)

y - o T 2 2 .
< (ij\/fg) l/(] /() A /[) H ’y) - '[jl ||£r({[),f[v[;i:u(ﬂ)) dT-,,‘ “e (lT]
St 1

~y 2yp— L p ! p
< (CFMP) lf+ Iy = u* aqomcecn
(n—1)!

(C2MPTY \
S - [l =y I

- (n—1)

[0T)LA D)

which implies that

[y =y leqoanizay— 0 as n— oo

and therefore, by (2.16), we deduce that
| "™ =" |lw—0 as n— cc.
Then, there exists y € W such that
Yo —y W asn — co.

The end of the proof is similar to the end of the proof of Proposition 2.1.
Proof of Theorem 2.1. Using the subdifferentiability of J(.;a,y) at @ (# 0 by
(2.11)), we know that

0e aJ(@",

which is equivalent, from Lemma 2.2, to the existence of v & sgn(@)xe, such that

) (/U vz, £)0(x, 'l;)(l:L'dL)

mf;—/ 2 ()8 ()

_/Wuemm

On the other hand, as y € W, it we “multiply” by @ in (2.12) we obtain, by (2.4),
that

(2.18) / (T, )0 ()dadl = @ 110 (/O v, D8, f)(,[:l;rl'l)
Ja Je

217 -]
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Then, from {2.17) and (2,18}, we obtain

/(I)OUmszmmq ------ @LL4M)mm Ve L5

“ " [loe ()

and we conclude that y(7) =y, — ¢

e

Now woe are ready to prove a linear version of Theorem 1.1 for problem (2.2)

ComIldly 2 1. Let | 4
5

sy > & and @ the solution of (2.4) corresponding to ¢(17) =
. with @ mingmaum of /( cayyy — (T, 0)), where in general y(t; a.u) denotes the
5()11[//()[1 of (2.2) corresponding to the control w. Then there crists v € sgn(@)ve
such that the solulion of

g+ (A" o+ (AN alt)y) = bt ha)+ || 6 oy oxo i Q.

oy _
Zd ey (=0 (m— n Y
By Y G =0.. . (m—1) on -L,
y(0) =y, i £,

satisfies

[ y(T) = ya il 2= &
Proof. We put y = L+ Y, where L = L(a) satisfies

L+ (=D)L + (=A%) (a(t, ) L) = h+ h(a) in Q,

; HFL
2.19 = - wrp o §7
( ) S 0 (j=0...(m—1)) on &,
L{0) = yo in £

and ¥ = Y (a) is taken associated to the approximate controllability problem

Yo+ (=AY + (=AM (alt, 2)Y) = ula)ye in Q,

WY ,

(—~ =0 (j=0...(m—1)) on 2,
i

Yi{)=0 in (),

with desired state yy — L{T), i.e. such that | Y(T) — (ye — L{T)) ||< &. Notice that
the existence of such a control u(a) is consequence of Theorem 2.1, [u particular,
if || yo — L(T) ||< &, we can take u(a) = 0 and il || yqo — L(T) ||> &, then we take
ula) =|| Pla) |1y via), where v(a) € sgn{@(e))ye and $a) is the solution of (2.4)
with initial value M( (a(x,t), ya — L(T)) ) defined in Proposition 2.3. i is obvious
that such function y and bl,ldl control w(a) lead to the conclusion.

3. Controllability for the noulinear problem

As mentioned before, we shall use a fixed poiut argument to prove Theorem 1.1
In fact we shall deal with multivalued operators. Let us recall a well-known result:
the Kakutanis tixed point Theorern. The usual continuity assumption in obler fixed
pont theorems is replaced here by the following notiow:
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Definition 3.1. Let X, Y two Banach spaces and, A : X — P(Y) o multivalucd
function. We say that A is upper hemicontinuous ut vg € X, if for every p € Y, the
Junction

a - (), p) = sup < py >yay
yEA(a)

is upper semicontinuous at xy. We say thal the multivalued function is upper hemi-
continuous on a subset K of X, if it satisfies this properties for every point of K.
Theorem 3.1. (Kakutani’s fized point Theorem). Let K C X be a convexr and
compact subset and A : K — K an upper hemicontinuous application with convez,
closed and nonempty values. Then, there extsts a fized point g, of A.

For a proof see, for instance, Aubin [2}.

Proof of Theorem 1.1. We fix yg € L*(€2) and £ > 0. By using Corollary 2.1, for
cach z € L*(Q) and € > 0 it is possible to find two functions @(z) € L'(Q) and
v(z) € sgn(p(z))xo such that the solution y = 3 of

Ye + (=A™ y + (=AF(g(2)y) = h+ h{g(2)) + uxo in @,

17,
(3.1) -(?mi“f.:(),jz(),l,...m—l on X,
i _
y(0) = yo in 2,
(where u = u(z) = |@(2)| L oyv(z)) satisfies
(3.2) (1) = yal 2oy < &

Here (z) is the solution of (2.4) with initial value M{ {(g(z),ya — L(z;T)) ) (see
Proposition 2.3) and a(t,z) = g(z), where is L(z;T) the solution of (2.19), with
a = g(z), at time T" .

Lemma 3.1. The sel
{ya — L(z:1), z € LA(Q)},
is relatively compact in L*(€)).

Proof of Lemma 3.1. Applying Proposition 2.4 it is easy to see that the set of solutions
L{z) of

Ly + (—AY"L+ (~A)*(g(x)y) = b+ h(g(2)) inQ,

9
(3.3) g5:0, j=0,1,...m—1 on ¥,
du ,
L{0) = yo in €,
satisly
(3.4) I L(2) flws K+ [ o ez + 1 2 lozon-man) V2 € LAQ)

with & > 0 independent of z. Recall that || g(2) ||p=y< M with M independent of
z. Now, let L(z,) be a sequence of solutions (3.3) with z, € L*(@). We must prove
that there exists a subsequence (that we rewrite as L(z,)), such that

| L(z0; 1) = L(z040; T) l2gy— 0 as o — o0,
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By a compactness result due to Aubin [1], we know that

W LH0, T H™ Q) with compact embedding.
Therefore, by (3.4), we can suppose that

W L(z) = Dzay) |

Further, it is easy to prove that L{z,) — L(z,,1) satisles

g0y — 00 as n — oo

| L(z:T) = Llzur; T) H%!(sz)

o
< - ./0 <Dk (g(z) L(z0) = g(zup ) Llz0r1)) DM (L(z0) = L(zn ))>H**‘(ll)x!-[(};’(Sl)(/’t

T

+. o (DF (g(za)s0 = 9(Zap1)s0) , DF (L{zn) — -L(:-rr,—VL)»H«"\'(Q)xH{f(m‘“-
Then, hy (3.4), since k < m — 1 (uotice that k=0 it m = 1),

H L(Zn) fl‘) - [’(g‘n—}l; fl") |

%ﬂ(fz)g K || L{z) — L{zn41)

2 4 + )
IP(U,’[’;I’/’”_J(Q))_’ 0 asn— o0

and the proof ends.

Completion of Proof of Theorem 1.1. From Lemma 3.1, we abtain that y; — L{(z;T)
belongs to a compact set for all 2z € L?(Q) and so, by using Propositions 2.3 and 2.1,
we obtain that

(3.5) I o(2) ooy viz), z € LAH(@Q)} s bounded in L™(Q)
Thus
(3.6) K= sup [l @(z) |[io)< oo

2ELE(Q)

Obviously, v = u(z) satisfles
(3.7) il < Ko
Thercfore, if we define the operator

A LHQ) — PLAQ))

hy
A(z) = {y satisfies (3.1), (3.2) for some u satislying (3.7) },
we have seen that for cach z € L*(Q), A(z) # 0. In order to apply Kakutani’s fixed
point theorem, we have to check that the next properties hold:
(i) There exists a compact subset 7 of L*(Q), such that for every = € L*(Q),
Alzy C UL
(ii) For every z € L*(Q), A(z) is a convex, compact and nonempty siubsel of
L3Q).

(i) A is upper hemicontinuous.
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The proof of these properties is as [ollows:
(i) From Proposition 2.4 we know that, thore exists a bounded subset U of W such
that for every z € L*(Q), A(z) C U. Now, to see that we can choose U compact we
shall prove that the set

YV = {y satisfying (3.1) for some z € L(Q) and w satisfying (3.7)}
is a relatively compact subset of L*(@Q). But this is easy to prove by using that
3.8) W L*(Q) with compact embedding

(see Lions [12] or Simon [18]).

ii) We have already seen that for every z € L*(@), A(z) is a nonempty subset of
LA(Q). Further A(z) is obviously convex, because B(yy, £) and {u € L*(Q) : satistying
(3.7)} are convex sets. ‘Then, we have to sce that A(z) is a compact subset of L7(@Q).
In (i} we have proved that A(z) C U with U compact. Let (y"), be a sequence of

elements of A(z) which converges in L*(Q) to y € U. We have to prove that y € A(2).
We know that there exist u” € L*(Q) satisfying (3.7) such that

g+ (=AM A+ (A g(2)y") = h+ hg(z)) +u"xo In Q,
iy ,
(3.9) %zo,j:(),l,...,m~l on ¥,
. 1/
y™*(0) = 4o in €,

() —yalo < e

Now, by using that the coutrols «" are uniformly bounded, we deduce that ¢ —
in the weak topology of L*(Q) and w satisfies (3.7) (see Proposition II1.5 of Brezis
[5]). Then, using (3.9) and Proposition 2.4 we can see that (3"}, converges to y in
the weak topology of W (and so, by (3.8), strongly in L*(@)). Therefore, passing to
the Hmit in (3.9) we cbtain

o+ (=A)"y + (=) M(g(2)y) = b+ h(g(z)) +uxo nQ,

A ,
;711 =0, 5=01,...,m—1 f’m X,
y(0) = o in £1.

Further, v" = 4 — 4™ is solution of
; ! Y

O+ (D) 4 (CA)g() = (e~ ut)xo i @,

- M , -
(3.10) (i =0, 7=01..,m-1 on X,
)% o ,
v (0) =0 in £

and satisfies v € W {sce Proposition 2.4). Further, if we “multiply” in (3.10) by v"
and integrate, we obtain that

| 0" (1) e < K ‘/Q('u, —u")youtdedt — 0 as n — oo,

Thus 4*(T) converges to »(T) in the strong topology of L2(€2) and || y(1) —yu o< .
This prove that y € A(z) and conciudes the proof of (ii).
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(iii) We must prove that for every 2y € L¥(Q)

limsup o(A(z,). k) < a(A{z), k), ¥V k& L(Q).

1,3((_3)_

In

i}

We have seen in {it) that Alz) is a compact set, which tnplies that for every n € N
there exists ¢ € A(z,) such thal

a(Alz, ) k) = /(2 he(w, Dy (v, Odudt.

Now, by (i), (y™), C U (compact set of L2(Q)). Then, there exists v € L2(Q) such
that {after extracting a subsequence) ¢ — i in L*(Q). We shall prove that y € Azg).
We know that there exist v” € L2(Q) satisfying {3.7) such that

Y (A (D) (gl )y) = R Bz e i Q)

dyr 0 =0 L 1 .
{3.11) g~ D=0 L on ¥,
’y”(O) =1%o in Q

[y (T) = yals < .

Then there exists u € L*(Q) satisfying (3.7) such that w™* — w in the wealk topology
of L#(©®). On the other hand, by using the smoothing effect of the parabolic linear
equation (in a similar way to the proof of (ii)) and that ¢ € L=(R)NC(R), we deduce
that y satisfies (3.1) and (3.2) with z = 2, for some u € L*(Q) satisfying (3.7), which
implies that v € A(zy). Then, for every k € L*(Q),

a(A(z,), k) = /Q k(m, )y (z, t)dudt — /(‘g ke, t)y(x, t)dodt

< sup / Elx, Og(e, Hdadt = a(A{zy), k),
FEAz0) T

which proves that A is upper hemicontinuous and conclude the proof of (iii}.

Finally, if we restrict A to K = conw(U) (the convex envelope of U7), which is a
compact set of L2(Q), it satisfies the assumptions of Kakutani's fixed point theorem.
Then, A has a fixed point y € K. Further, by construction, there exists a control
u € L*(Q) salistying (3.7) such that

Yo+ (=B)"g + (—AY () = htuxo i Q,

Ay ,
(3.12) o U,7=061,...m-—1 on 2,

y(0) =y in Q,

[W(T) = yal2 < e.
Therefore, i is the solution that we were looking for.
Remark 3.1, Scveral generalizations seem possible.  For instance, the equation of

(1.1) could be replaced by other ones with a niore general nonlinearity

A.
oA (=) = 3 (=D iy = b+ o,

i=0
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or a more general lower order differential operator
g+ (=A)"y + L(f(y) = b+ vXe,

with L suitable lincar partial differential operator of degree lower than 2m. The key
point in those generalizations is that the unique continuation result of Lemma 2.1, for
the associated dual problem, remains true thanks to Theorem 3.2 of Saut- t-Schewrer
[17] and the rest of arguments of the proof of Theorem 1.1 apply.

4. Non-controllability for superlinear problems

In this section we assume & = 0. We shall prove a result of non-controllability for
a superlinear nonlinear term with @ C 2.

Theorem 4.1. Let p > 1 and let y(t;u) =y € L*(0,7; H™(Q) NC([0, T} L* () a
function salisfying

v+ (A" ety = Q,
w(0) = vo in §Q,

associated to any “natural” boundary condition and with control u € L¥Q). Then
we can choose Yy € L) and € > 0 such that

(4.1) I y(T5u) = ya lp2ey> & Jor any u e LA(Q).

In order to prove Theorem 4.1 we introduce, previously, some auxiliar functions.
Given R > 0 we define, on RV, the functions

Enle) = (R? — [&])/R if |z| <R, &p(z)=0 if || > R

and
(4.2) dr(z) = R — |z
It is clear that
(4.3) dr(x) < Ep(x) < 2dp(x)

for all z € BV,

dp(z) =0 if |z| = R.

The following result was proved in Bernis [4].

Proposition 4.1. Let s > 2m and R > 0. Then, for cach € > 0 there exist a constant
G depending only on N, m, s and e (thus independent of R) such that the following
inequality holds for all y € H(RN):

loc

((“A)m'ﬂaff;ﬁ’!})H;)j”(l&eN)x.i:(,:n(naN) z(l—¢) '/EN Erl D™yl — C '/M Er "y,

Remark 4.1. Since s = 9[11 €5, € WEn={RY), Hence &, € € C™(RY) (see e.g. Corol-
lary 1X.13 of [5]) and Eu € HI(RY) (see e.y. Note IX.4 of {5]).
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Corollary 4.1. Let s > 2m and R > 0 such that By 0. Then, for each ¢ > O there
exist a constant C depending only on N, m, s end £ (thus independent ()/ R) such
that the following inequality holds for all y € H™{82):

((=2)"y, &) a-myep oy = ( *v)/ Sl D"y — C / §y dee.

Proof. Let 7 € H™(§2) such that § = y in © (such F exists by standar results: see,
e.g., Chapter [X of Brezis [5]). Then, by Proposition 4.1, the inequality holds for g,

but as Bp C O we obtain the result. i

Theorem 4.2. Let p > 1, r=p+ 1, yp € L*(Q) and u € L(Q). Then any solution
ye LN@Qyn LA0, T, H($2}) of

(4.4) o+ (=A)"y + Pty =uin D'(Q),
. y(0) = yq an €2,
with any “natural” boundary condition, satisfics the local estimate
sup / yl, t) dz + (1D Y| + | Yddt
i< By JBgx(0,1)

<K (1 + / || daddt + / yéd(l:)
. B,(lx((]T) . BRI

if Bp, C @ and 0 < R < Ry. Moveover, the constant K depends only on N, m, p,
R, Ry and T

Proof of Theorem 4.2. We take X, = L"(Q) N L*(0,7; H(€2). Then the equation
of (4.4) is satished in X = L"(Q) + L*(0,T; H ™(§2)). Then, if s > 2m, we can
multiply (4.4 ) by &5y with the duality product (-, ) xsw.x, and we obtain
5 /B f‘?ﬂy(-”?:T)gdf’i + (A", Ey) e (0,77 L~ (S0 x L2(0,T5 H M)
IR
+ (P ) e (@) L)

1 ' s 2 5
—2 /u Eryole) de + (‘Uu5‘1131)L"’<c’3)xu'(c3)'
S

Now, from Corollary 4.1 it follows that

1 r : .
L[ gt 1)+ €D+ ol s
(4‘5) \ 2 /8y JBr=(0,T)
<C / Ehyola) da + C’/ &7y davdt + C Efuydrdl.
Sy B (0) JB =01

By (4.2) and (4.3) we can chla(o in (4.5) £p(z) by R—|x] (modifying the constants).
Further, writing s —2m = 2s/7 - (s(r — ))/ 3 —2m, we can apply Holder’s or Young's
quuahLy with exponents ¢ = .'/2 and ¢ = .r/'r — 2 and we obtain

<€ / (R — |x])*ly dadt + K{e. q) / (R |a])y Vdadt
S (o,

B {GT)
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with )

1 ! Qi
———— and v =
q'(gz)e/a T2

Kq)=

Hence, il we choose s > v — 1, the last integral is tinite and equal to GV 7. On
the other hand, we can apply again Young's incquality and we have

(R —

T

/ Yuydudl
JBrx(0,1)

< e R — x|y dedl + k{e, v / R =) e} dudt.
Sef o =l et by [ R el o]
Thus, by changing the constants, we deduce that
Ly 9 ' 12 :
- R - B, T de + R — [a)¥(|D™yl* + |yl Ydadt
3 [, (R lalye Tt [ (R @)D"+ I e

€I

<C (/ (R — |z|)¥yp(a)3da + RTV-7 4 / (R~ v
JB 4 B x (4T)

31

)° E'ul{"',clﬂ;(lt) .

Finally, by replacing R by fy and by taking into account that Ry —|z| > Ry — R and

Ry — |z] < Ry if |z| < R we deduce the vesult with
. Ry ., CRTN=
K =max{C 8 -
< mN{ (RL — R) ' Ry — Ry

Proof of Theorem 4.1. It is a trivial consequence of Theorem 4.2 since, if R satisfies
Bg, € Q\w, then

Lyl T) Hi!(ﬂ)é K1+ 1 vo i‘-’(n)) Vi € L""(Q),

Therefore, taking yq with || yy |2 large enough, we obtain (4.1) for € > 0 small
enongh.
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