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Md deling.

The main goal of this nute is to present the mathemeatical treatment of a problem
_arising in hydrodynamic lubrication, relevant in the applications, which leads to a
formulation laking a classical solution. Se. the solvability must be necessarily boarded
in terms of weak solurions. This type of arguments, justifying the needed of weak
solutions. is typical of nonlinear hyperbolic equations. That we underline in this paper
is that this situation alsu arise with some linear elliptic equations (which are relevant
in the applications and not a merely mathernatical exercise searched as a sophisticated
counterexample).

Consider the problem of the lubricating the friction between a fixed rigid solid present-
ing some abrupt edges and a regular surface in movement by using an incompressible
Auid in the separating regiun. This kind of problem frequently eppears in different
engineering applications, as in “feedbox™ or “shaft-bearing” systems. We assume, for
simplicity that the surface reduces to the one given by z = 0 and that it moves with
a given velocity (Ug. V.0). (i-e. parallel to the own surface). Let h{t,z,y) be the dis-
tance between the surface and the solid. That we want to describe is the fluid velocity
u = (u.t,uw) and pressure P. We suppose the fluid incompressible of density, p (2
positive know constant] . Starting from the usual conservation principles

mass conservation o + divpu = 0,
momentum conservation pu, + puVu = —VP 4 phAu,

using dimensional analysis and supposing h small with respect the solid size, we can
simplify the momentum equation leading to the system

— P, + puz; = 0 inthe T component,
- P+ pu = 0 in the y component,
- P =0 in the z component.

The boundary conditions are
v=u=0 w=~h on z=h
w G

429



Therefore, we have that

1 .
u= g 2(z— I + Uo[l—-%),v

Il

1 z
iPyz(z ~h} + W1~ E)

The flow is given by
h h 3 13 h K3
o = / uds = _[:u____h__qu? = / vdz = Yoh _ W
0 2 I o

Integrating in the mass eguation, we get that

phat lp@) =+ [paly =0 in &,
P—-F=0 ) on &61.

If, for simplicity, we suppose that A(f.-) = h(-} we arrive to the, so called Reynolds
equation
Sl 3 % 3 H
(73) (Lﬂ} “‘;Tupx):r + (‘gh "'{l—z‘lpv)xf:O in Q,
P—PFy=0 on 1.

In fact, in what follows. we shall always assume that
he L¥(0),0 < ho < A{z,y) € hy,a.e. on Ll (1)

We point out that more general situations, in which the surface is more complicated,
can be considered by expressing the pde in terms of a general coordinates system
(a, B, z) associated to the surface, getting formulations of the type

=) Linh _ (-] ad

B (.2 5 Yok _B3 8Py 3
o (95 2 g‘j]'lpy., da =0 in Q’

) 8
) L a_'g(ga"g_—gcu#w 88 )

An example of non classical solution.

When h{zr,y) is discontinuous (which corresponds to the case of solids with abrupt
edges) is possible to show that no classical solution of (P) may exits. This is specially
easy to present in the onedimensional case (i.e. an uniform solid which is understood
as unbounded).

We start by recalling the notion of weak solution:

Definition 1 We say that P is @ weak solution of (P) if P=1u+ P,with v € HN{Q)
satisfying that

/ —if—Vu- Vude = / E(Ug Vo) - Vudo, Vi € Hy () (2)
nl2u i a2 ’ oV

A standard application of the Lax-Milgram theorem allows to prove the existence and
uniqueness of & weak solution P of (1). In the special discontinuous onedimensional
case we have

Proposition 1 Lel @ = (0. L) and

if L
hz) = { N e E%,zL))- @

Then the weak solution I” is non of class C? and so is not a classical solution.

Proof: The one dimensiunal Reynolds equation becomes

[ — & Plafe =0 0, “
P - Pu =0 an B.Q

and the (unique) weak solution is explicitly given by:

—pulsltag 1 Py f0<z<k
Plx) = —2k+Uniy T if L ©)
bu=tgt(L-a)+ K g <z<l

where
L. 1 1.1 1
K="l5-Sll5-= -l
=Tl e
Then, obviously, P &C*}{Q) (nevertheless. it is easy to see that function given by {5)
satisfies that P € W1=>=(0.L)).

W1 regularity of weak solution for discontinuous
separation functions.

The main contribution of this paper concerns the study of the regularity of the weak
solution of (P) associated to, eventually discontinuous, separation functions h{z,y)
satisfying assumption (1). For the sake of the exposition, we shall restrict ourselves to
the special case of 2 = (0. 1) % (0, B) and

[ ifzE(0.%)

hiz.y) = { h, ifze€ (%,21,) (8)
where 0 < fig < fy nevertheless our results remain valid under a greater generality.
The regularity C®(f2). Vo € [0.1).of the weak solution of (P) is & direct consequence
of the regularity theory (see, e.g. Kinderlehrer-Stampacchia [5; Th.9.2). The W*?(Q)
regularity is a more delicate question due to the lake of continuity of h. As far as we
know. there is not any general result in the lterature that could be applied directly to
this case.
The main result of this paper shows that, in fact, P € Wh=(Q).

Theorem 1 Lel P be the weak solution of (P). Then function u 1= P — Fy is such
thal v € Wy (). .

The proof will use some previvus lemmata:

Lemma 1 Consider problem

. 3 N
o] T =E0H) 0

u, =0 on 94,
where
ho - fo<z <,
holzy) = { Hz— &+ cho) if§5zs%+e(h1—ho), (7)
hy flie(h~h)<z< L

Then u, € W (Q) Y1<g<oe.
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According Troianielle [8: Theorem 3.7 and Theorem 3.14] the proof of the sbove lemma
reduces to prove that the nurmal derivative %‘# is 2 bounded function.. This is proved
in the following result:

Lemma 2 & e L*(89).

Proof: Define the pd uperator L () = — div (%V()} Then

12
0 fo<zgi
8 hU : e L Y
Liw) =~ (5 = { & it £<a< el = o)
- 0 i S4e(hy—hy)<z< L

Let € (z,y) = cx(z — Lyy(y — B) with ¢ = -‘fg‘% A routine computation shows that

—2c1—"2°;y(y - B)- 2c1—"2°;z(1: - L)
om <z < -%,
L(d)= —eyly — B)[2h3 + 3(2z — L)AZ} - cl—j;%:z:(:r;—- L)
on § ST < g+ el ho),
—2eryly — B) - 2c-1—21;a:(:n - L)
on %—{-e(ﬁl —hy) <z <L
Sinee L (g.) > Lfuv) = L(0) =0in Q, and 4, = u, = 0 on d0Q, we get that @,

is a supersolution and U is a subsolution of problem (P.}. Thus, by the comparison
principle 2, > ©, > 0 in £. In consequence

&, | Ou,
hebui R4
an — o1 <0
which implies that
. ) Bu du,
—e(B 4+ L) < = < £ e [
e )_aﬁ_O and so 5_‘EL (6%2).

In a second step, for any p > 1 we introduce the auxiliary problem

P.0) { — div ($5Vw,) = — div (|Ve[?Va) nQ,
£.p

ooy o(e y)uc= Va2 ondR,
where .
Gule) = [ fEds — ko ®
ke 4 B\ oy + |Uol ) C2Q)RS "
6y :

R hd 8G
Az, PR S (R St S €
a(z:9) =G5 57 " TaaR

(10)

In order to salve (Pe ) we intruduce the Hilbert space V(Q) = {¢ € H!(f2) such that fmdM

0} associated to the scalar product < ¢, ¥ >vi= [ V¢ Vipdo, We have

Lemma 3 Problem (P;,) has o unigue weak solulion w, € V().

Proof: First of all. it is easy to see that the norm ||+ || is equivalent to the usual norm
I {las over V.
Define, now, the bilinear form A, : V() x V(Q) — R by

hS
Adp.w) = A V¥ Voo + [maewmaﬁ.

Then we have that A, is a continuous and coercive bilinear form V, and so, by Lax-
Milgram Theorem, there exists 2 unique w, € V(Q) weak solution of (Pep)

The third step consists in substituting w,, weak solution of (Pep), as test functions
in (2) { we point ocut that any function in HY(Q) can be expressed as the sum of 2
function in V() plus a constant). We have

Lemma 4 There etists a positive constant K{S, ko, U, 1t) such thai
v gy S K (2 ho. Vo) ¥1 S p < oo (11)

Proof: We star by taking 1. as test function in the weak formulation of (Py,p). We get

h3 : h.fUu h3 Bu
—_t - '(d =./\7==‘ .0)d f (== € 101—‘ Ed .
[nl?yvu Vida o ( 2 O)do + anl?p(&ﬁ < (hls,0), 7 >)wedes
(12)
Taking. also. u, as test function in the weak formulation of (Pep) we obtain:
'/' Mg, u d:f-—] |V, Pda (13)
al2p SR S
Therefore,
Uy h¥ Bu, hUs
B — P P S mn
]n|vu4 do—/n\'/u, (= ,O)da+/m(12#aﬁ < (252,07 >)widos.

. ; 3
But, by construction. (242.0) = %‘;VGP Thus

h
L Vi, - (hUs,0)do = /n 15, VG Yude
Taking G, (which belongs to V) as test function in {P.p) we obtain:

R
.0 - -ed = Ep_g . _
/n 12,1W‘ Vuda fQIVul Vu, - VGdo

Ou,
aﬁ.f doat < GG,EZ--EH:‘ > g

- f G Vu
[3:9]

; Su
ir = p-2 . _ p-2 ¢
'/niVu,_[ da ‘/;leuti YVu, - VG do fmGQIVuti ——aﬁdog+



<o b e, N + ( k2 Bu,
' 12 g T MET an 12p 81

< (hellp,0), 7 >)w doy.

Using the definitien of w, we arrive to

/ IVu, Pdo = f [V -2 Vu, - VG.do,
¥} 0

/ﬂ IVulPdo < [|VG, ]|z /ﬂ [V P do.

In consequence

, 7pl2u - Uo12e -
IV2elifyy < -‘}IT|ivu.erL:.,p <o) °hg IVulZ2hs,

e, [[Wu e < C(Q)L‘;fggﬁ and so we conclude that HuEEEwun.p < C(Q)Q%E%‘—‘ p €
11, 2c).

End of proof of Theorem 1.

Since || w, ]|”,u:.pm)§ C then Uy

— = € WyP(Q2). Passing to the limit in the weak

formulation _
n? . ) 1
L 1o, V- Vudo = [n Vi - (hUo,0)do ¥ 1 € HY ().
we get

e N
[n 1 Vr Vudo = /QV:J,-(hUU,G)dcr Ve HYQ) .

So, by uniqueness of the solution of (P), we deduce that u = . Then, by estimate
11, u € WyP(Q) Y1 < p < oc. Moreover. Il v ﬂwg.pm)s C(Q, hg). Since || u ”W;.m=
limy, o || 2 ”u’g"" we conclude that w € W™ (Q). .
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