J.1. Diaz AnD E. ScHIAVI
On a Degenerate System in Glaciology Giving Rise to a Free
Boundary

1 Introduction

The mechanism whereby large ice sheets can surge periodically was recently studied
by Fowler and Johnson ([4]) and Fowler (13]). They proposed a two-dimensional ice
sheet simplified model that includes basal ice sliding dependent on the basal water
pressure and which consists in the following system:

e = [(5+ QAR he) | = alti2)
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over 2% (0,T) with T > 0, Q = (0,1) (the scaled spatial domain), where R and S are
some positive numbers satisfying £ > 1 and 0 < § < 1. The unknown variables are the
ice depth h(t, x), the accumulated ice velocity £(t,z), and the basal water flow Q(t, z).
The complementary formulation for ( has been introduced in order to deal with the
cold (Q = 0) and temperate (Q > 0) transition at the base. The points of % (0,T)
separating those two zones are the free boundaries of the problem. Preseribing suitable
boundary conditions for 2, £, @ and an initial condition for h, Fowler and Schiavi
([5]) solved numerically the system by using a fully implicit backward finite difference
scheme for h and an improved Euler method for @ and £, Numerical computations
indicated a series of surges and showed that a front propagates backward during a
surge. Moreover;: their analysis suggested that the problem, as formulated, does not
Have smooth solutions. The main goal of this work is to present the mathematical
analysis of the implicit backward scheme system showing the existence of a weak
solution for the discretized system. Actually, this time discretized solution corresponds
to the notion of mild solution of the evolution system. as used in semigroup theory
(see, e.g., Benilan ({1])).

2 The implicit discretized system
We define p = R+1, m = (2R+1)/R. We start by considering the following initial and

boundary value problem: given ho, hp, €p, @p and a strictly positive accumulation
rate function a(t,z), find three functions, A, @ and § satisfying
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Beh— [(6+ Q)5)(h™) 2 (A™),], =6 inQx (0,T),
%0+ B(Q) 3 (8 + QK |hal” — e + v = A=Y in Q x (0,T),

026 = (6 + Q)Sh AP in Q x (0,7),

(8) |
h(t, 1) = hp(t,1),. t € (0,T),
ha(t,0) = 0,Q(t,0) = Qu(t) £(,0) = 6p(t) te(0,T),
\ B(0,2) = ho(z)" on 0.

Here £ denotes the maximal Inrlono(:r.uua graph defined by '

By =0 if r<0, B0)=(-00,0, A(r)=0 i r>0

The coefficients 7y, 4, A are O(1 ) dimensionless parameters.; The: posmve constant ¢,

0 < ¢ <« 1 represents the ice shearmg component in the ﬂow'
positive integer number N and letting & /N,
we denote by I, = I, = (tn_l,t ) =

by Vim = {¢ e WiP(Q) : $(1) =0}, Vi = fh'e wiw (Q) 0') =0}, Vo= {n e

Whi(Q) : = 0}. We shall assume the following hypothesis on t'he ‘data of the -

problem:

QD: ‘ED’ hD € C[Ol T]::hﬂ € O[Or 1]) h‘D(O) =,h(;(1) . (1)

MD>hD>mD>0M0>hg>mu>0a>OQD>‘ and &p > 0, @)
for some constantg Mn>mD>0and My Smgis 0 :

It is useful to introduce the following notation:
A=(0+QF, B=Wlhf, =g e, D= "L = WYt ()

After defining the piecewise constant; in, time_approximations of the data in the
usual manner, we consider the elliptic discretized system ‘
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)y k), (n = 1) the
assocmted sub-intervals of (0, T)."Let V. Vi XV % Vg th) Banach space deﬁned,

(O hin = [Akal (BF)2lP 7 (B)s), = o in Q,
8:Qun + B(Qhn) 3 (6 + Qun) Bion — Cion + 7 — D in 9,
(Se) Ok = AxnEin in 2,
| healt 1) = hpy, (1) te(0,T),
(et 0) = 0, Q8,0 = Qi , (8), Ean(t, 0) = €, . (1) T € (0,T),
\ fikolz) = ho(z) on Q,
where

/' ' ‘“/ TR A
O ity ) = Tenl) = Mawn () k“" L yp=t, N

and Agn, Buny Ceny Din and Ey, are defined as in (3) replacing 4, € and @ by A,
&k and Qk,n-

Deﬁnifion 2.1 Given a, hp, Qp, &p, he salisfying hypothesis (1), (2) and Qi
hpy .y @D s €Dy, the associated discretized functions, we say that (hﬁfn,fk,n, Qx.n) s
a weak solution of (Sin) if

(R (), Ekn (b, )y Qen(ty ) € (BB A+ Vam] x [Ep+ Vel % [Qp + Vo], ae. t€{0,T),

there exists by, € L'(S2), with byo(z) € B(Qrn(2)) a.e. z € (0,1), and the following
conditions hold:

fakh f(fH"an) (Bl () tha =/Ola¢

/ 'Sk nwm f 6+ Qk,n)shij;ll(hk,n)mlp_l Y = Ek,n(]-; t)"b(l) t)

!

‘ ./‘1 Qk,nnm + fl [(5 -+ Qk,n)shi,ni(hk,n)zlp + FY] n = Qk,n(ls t)’?(ls t) +
0 0

1 1 1
+/—L/ (‘Ek.n)m (Ek,n)—lﬂn + A~/0 h[}ﬁ)‘!“fo binm
0
for all test functions ¢, b, n € Viy x Ve x Vg .
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3 Existence of weak solutions via an iterative Séheme ‘

In order to prove the existence of a weak solution of (Sk,n), We s use’ an 1terat1ve

process which allows decoupling the system into three 'separate’ pr blems P(h,c nlr

6 ) and P{Q1 ). Later we shall obtain a priori ‘estimates whis lov(r us to prove
the convergence of such iterative schemes. The decoupled problemis ‘the: followmg
For each j we shall find three functions (h-}c L (fk ) and (Q{c w) satlsfymg

(o7t~ [AL LBl )™ = e on
.61, = AL L, . L {in )

o) 0:Q}n + BQh) 2 (6+Qi,n)sBii,n—Ci,n?rvmbi;,,. f‘?l' in 0,
Mt 1) = ho,,(61) | te(),
(0,0 = 0, Q{600 = Qi (0 E1n(10) = o) te (0.7),

L hio(z) = holz) \mﬂ

In order to study this system we study separately threa probl
First step: Problem P(h 1), We introduce the change of unknow

defining wp = (hp,, )™ A= kAL and f = K a;m St hk,,,..l, :
iterative process function, w must sa.tlsfy

j ~0s A Wg b_zwm "f‘ 'U)‘U"Tl = f 1nﬂ, :
| e b =

Jéstep of the

Let Vi, = Vim. As usual, given 4 € L®(2), A >0 and f € L°°(Q), we say that w
is a bounded weak solution of P(hy ) if w € wp + V and it satlsﬁeSz

_fﬂalwﬂpwzwz(f)z-l‘fwl/m(b =
1

The existence of a unique approx1mate solutlon w --"
known result in the literature (see, e.g,
that, in particular, Bi, € L}(Q), Ei;

on w (1 &, on (h ) ) First, by usm the compa,nspn prmc1p1e

Vi is'a well-
([2])) Notice
1 ggtlmates

Lemma 3.1 Let 1l be o weak bounded squ.tw n B[k
ezist two real positive  numbers m*, M (dep'ei‘;ﬁiﬁ tonlyton the ddi
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such that

0<m <hm( ) < M* < +o0 on .

In particular, Din >0, ee.z €8, D{.,n € L*=(0Y) and ‘Di,n is uniformly bounded in
L=(Q) with respect to J.

A second a priori estimate can be obtained by using an energy method.

Lemma 3.2 Function (hL,)™ — (hp,, )™ is uniformly bounded in the energy space
V. In particular, Bi,, and El . are uniformly bounded in their respective spaces.

Second step: Problem P(f{. o). Let hk . be the weak solution of problem P(h{.in).
. ’ p..
Then Ai™} € L°(Q), B, € L7 (@) and AL B, = (6+Q1)7 (4, )P H(h)el €
LJ"(Q); We consider the problem
. (Ei n)m = A‘;c;llEi:.n in Q’
(G
a0 = o

Definition .3.1 We shall say that Ei-.n € WP (Q) is o weak solution of problem
P(Ei,n) if &, — Eppn € Ve and

1 .
] .l-éf;,nwz + f ATED W=Ep, (W), VYeVe

1t is straightforward to show the existence of a unique function Ek .weak solution

of problem P(&] ). Since (£} )o(z) 2 0, a.c.z €, a direct integration leads to the
following result:

Lemma 3.3 Ef;n(m) >0, Yz € Q. In perticular, G}, 20, a.e.z € Q.

Thzrd step: Problem P(Q ). Let Al and f,c'n be the weak solutions of P(h] )
and Pl ah respecmvely We consider BM, C',m y D}, defined by (3}. Nétice that
D! 1n €C( ([0,1}), Gy € L7 (), but B . 18, in general, merely in L'(Q). We introduce
the problem

{ain,ﬁﬁ(Qi,n)
P(QJ n)
" QL0 = Qo

(5 + Qi,n)sBi,n + 7 Gi.ﬂ - D{‘,n il’l Q’

w
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Definition 3.2 We shall say that Qim € Qp,n+ Vg C WHI(Q) is a.weak solution if
there ezist @ function z € L'(Q) such that z(z) € f( k"(m)) a.e. T €2 and

/ﬂlQi,nnz +f01(5+Qi, )Y Bl.n +7[l
f Clan +f Di.n +f zn+@’,,,( )n

(4)

for each n € V.
We have
Theorem 3.1 There exists a unique weak solution of P(Qﬂm).

Proof. We approximate the maximal monotone graph B and function (@) =
(6 + Q) by some sequences of Lipschitz functions generating some: approximating

regularued problems of solutions (Q,c n)e € WHH(Q) (the existence of solutions of such -

problems is consequence of a Banach fixed pomt argument) Moreover we get that
1} an ey € C and ||( kan) llzigey € C. - Passing to the hmlt in the weak
formulation of the regularizing problems it is poesxble to'show that (Q nle = an ag
€ = oo strongly in L*(Q) with @} | solution of P( k,n)

4 Convergence

We already obtained the a prior: estimates

hd el < €0 N delliray S €0 11@allzoy < € 11 (@), Nty < €
uniformly in 7, ¥k, n fixed and V¢ € Jyn. So :

NAG =@ €6, IBlallee <€ 10 Lllrey £ €,

107 ey € C, NEf ol ey < C.

By applying Poincaré inequality, and Sobolev and Lebesgue theorems we get the
following result:

Lemma 4.1 Let {( (R )™}, {fk o} and {Q] .} be the sequences of solutwns of prob-

lems P(h{c‘n) (§k ! cmd P( kn), respectwely Then, Yk, n fixed- and Yt € Iy we
have

Bow = hims G = Gk @ = Qe strongly in 19(Q), Vo 2 1, 'when j — oo,
Maoreover, hi‘.‘n - R s Ei‘n — &g.q strongly in C°([0,1]). .
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An analysis of system (Si.n) reveals that the diflicult term, in order to pass to the
limit in the weak formulation, is the product (8 -+ /Y|l vepresenting the frictional
heating due to viscous dissipation. Nevertheless, we liave

Lemma 4.2 (6 + Q7 H)SIRI|" — (6 + Q)% |h|P, strongly in L'(Q), when j — co.

Proof. We consider w? = (h7)™ with h? solution of problem P(hj ). Without loss
of generality we can suppose that wp = 0. Multiplying by (k%)™ and integrating by

parts, we have
/(6+Q1“1)Siwi|"’d$= __.!1; /(wi);%-+1 +/fjwjd$
o kgt 0

with ff = fg‘n =apn+ %(w{:‘n_l)”’” & L), ||/l < €, uniformly in j. Using
Lebesgue theorem

/(w")#“dr - / wm* dy, when § — oo,
3 Ja
and we deduce that
f fluide — Swdz, when j — o0 (5)
a Q

(remember that f/ — f, w? — w strongly in L*(Q2)). Then we deduce that

/(5 + QY wiffdr — L f wntdz + | fwdz, when j — oo,
a kJa a
But multiplying in P(h};)n) by w and integrating in 2, we get

f(¢5 + Q)3|ww|p dr = —-%/ wwt! 4 fwde.
i

9] 9]

Hence
fn(5+ 1Y wi Pds — fn(5+ Q)% [wal? da.
As a consequence, we get the strong convergence of ("), to (h™) in LP(§2).
Lemma 4.3 We have that wi — w, strongly in LP(Q) and
@+ QIR = 6+ @) |hal”
strongly in L! (Q)
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Proof. Subtracting the equations verified by w; and w, and multiplying by w; — w
we pget

I = /(6 + @I hHS [lwilpngw;’ - !wx]”"zwx] (Wl — wy) dx
n

— [ 16+ @ = 6+ @] (s *ws) (u - we) do-

1

—Ifra ((wj)'v':-“ — w#) (wi - 'w) dar + fl(fi - f)(W—w)

By the previous lemma and (5 ) we deduce that I; — 0 if j- —> oo, Finally; as

p > 2 (remember that p = R+ 1'and R > 1), @7 are uniformly bounded in L=(Q).
Moreover, it is well-known (see, e.g., Diaz ( [2] Lemma 4.10)) that there exists C > 0
(independently of j) such that

C'/ Jwd — wef? < f (6 +@Q-1)° [|wi|p—2wi - ]wmlp‘ng] (w-’-— w) dr.
a a ‘

So, wi — wy, strongly in L?((2). Moreover, since {+Q"5} is umformly bounded in
L®() and |[hilP — |h.|P strongly in L}(§2), we obtain the second conclusxon Thus,
we have proved

Theorem 4.1 The sequence (K, €} ., Q1 ) .converges, when j — 00, to (hy &, Qs )
solution of (Skn).
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G. C. GEORGIOU AND A. G. BOUDOUVIS
Singular Finite Element Solutions of the Axisymmetric
Extrudate-Swell Problem

We solve the axisymmetric, creeping Newtonian extrudate-swell problem for the case

of zero surface tension. Both the standard and the singular finite element methods are -

used and the convergence of the numerical solutions with mesh refinement is studied.
The numerical results show that the singular finite elements accelerate the convergence
of the free surface considerably; they perform well when coarse or moderately refined
meshes are used,

1 Introduction

In this work, we revisit the singular finite element method (SFEM) developed by
Georgiou et ol. for solving Newtonian flow problems with boundary stress singulari-
ties [1, 2]. In the SFEM, special elements incorporating the radial form of the local
solution by means of singular basis functions are employed in a small region around
the singularity, while standard elements are used in the rest of the-domain. The idea
of incorporating the form of the local singularity solution into the numerical scheme
was borrowed from analogous methods used in fracture mechanics (see, e.g., [1] and
references therein), The basic motive behind using singular methods is to improve
the accuracy and the rate of convergence of the solution with mesh refinement, which
are rather unsatisfactory with standard numerical methods, especially in the neigh-
borhood of the singularity. The poor performance of the standard FEM is attributed
to the fact that the calculated pressure and stresses cannot be infinite at the singular
point, as required by the local asymptotic solution, and are thus tainted by spurious
oscillations. This difficulty is overcome with the SFEM.

Georgiou et al. applied the SFEM to the planar Newtonian extrudate-swell problem
which describes the extrusion of a viscous fluid through a die into an inviscid medium
(2]. This is a well-known free surface problem; at low Reynolds numbers, the fluid
swells as it comes out of the die. Another important characteristic of this flow is the
presence of a stress singularity at the exit of the die, resulting from the sudden change
in the boundary condition from the wall of the die to the free surface of the extrudate.
The extrudate-swell problem is extremely important in polymer processing and has
thus been the focus of a plethora of experimental and numerical studies in the last
twenty-five years [3]. :

The singular finite element calculations for the planar Newtonian extrudate-swell
problem have revealed that the spurious stress oscillations that characterize the stresses
in the standard finite element solution are eliminated [2]. Similar observations have
been made when solving the planar Newtonian stick-slip and 2:1 expansion problems
[1, 2]. The former problem is the special case of the extrudate-swell problem in the
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u, =1, Uy = 0
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r=10

—in z =Ly

o= (), ity == ()

i

Figure 1: Geometry and boundary conditions for the extrudate-swell problem.

limit of infinite surface tension, in which the free surface becomes completely flat. In
the case of the planar extrudate-swell problem, the convergence of the free surface
profile with mesh refinement is considerably accelerated by using the singular finite
elements [2].

The two main drawbacks of the SF'EM have also heen addressed in Ref. 1), First,
extensive mesh refinement is not possible with the SFEM. As the mesh is refined,
the singular elements become smaller in size, and, consequently, the size of the region
over which the singularity is given special attention is reduced. Second, the method
can be implemented only if the radial form of the local solution is known, at least
approximately. This implies that the method is not applicable to many importgnt
problems such as most viscoelastic flow problems in which the inaccuracies, stemming
from the failure to approximate satisfactorily the stress behavior near the singularity,
are, in general, more severe.

In this paper, we solve the round Newtonian extrudate-swell problem at zero Reynolds
number (creeping flow) and zero surface tension, using both the standard and the
singular finite element methods. We systematically study the convergence of the nu-
merical solutions with mesh refinement. QOur objective is to compare the performance
of the two methods and to obtain accurate estimates of the position of the free sur-
face and the extrudate-swell ratio. These results can be quite useful in testing other
numerical methods proposed in the literature.

2  Governing Equations
The flow geometry and the dimensionless governing equations and houndary con-
ditions for the steady-state axisymmetric extrudate-swell problem are depicted in

Figure 1. The scaling parameter for lengths is the radius R, the velocity vector u is
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