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Abstract
We study sufficient conditions for the existence of a free boundary in a two-
dimensional elliptic problem modeling the magnetic confinement of a plasma in a
Stellarator configuration. The free boundary represents the separation belween
the plasma and the vacuum region. We use some properties of the relative
rearrangement and some comparison principles,

Introduction.

The magnetic confinement of a plasma can be modeled from the ideal magnetohydro-
dynamics static system with the help of averaging methods and a special coordinates
system: the Boozer vacuwum coordinates system (p,0, ) (see [, [8]). By averaging in
one of the coordinates of the above system and adding a free boundary formulation,
the problem (of inverse type) can be stated in the following terms (see [3]): let Q be
an open bounded and regular set of R?, and let

A>0, kg>0, F, >0, a, be L=(Q), b > 0 almost everywhere in ).

Given ¢ > 1, find ¢ € HYQ) N L>(Q) and & € C°(R; [0,00)) such that $(s) = F, for
any 5 > 1, ®2 € W™(R) and (v, ®) satisfy

£y = 220 ()~ OW)F W) + oA ) 0,
PO po ’ on A0, (1)
Soper [ () = KIA(L — ), ] (w)dz =0 € [0,supg ).

Here £ is a suitable second order elliptic operator (see [8]) given by

_t,0. oy 9, O O O 8 I

Lab p{a—p(ap,,a—p)+-é;(a,,g~5§)+~5~0-(a9,,5;)+5§(aoaw55)} (2)

with

apa(p, 0) = p < g > (p,0),
ap(p,0) = as,(p,0) =< g” > (p, ), (3)
@60(.0;0) = i < gUB > (10)0))



and where < g*/ >, 4,7 = p,0 are the averaged components of the Riemannian metric
associated to the Boozer coordinates system ( [1], [4]). For the sake of simplicity in the
exposition we shall assume that £ =A {the Laplace operator) and we replace (p,0) by
the associated Cartesian coordinate z € () C R2.

In order to determinate the unknown @, the above problem can be reformulated (see
[3)) using the notion of relative rearrangement of a function. It was proved ([7]) that
if (3, @) is a solution of (P7) such that 1 € U C C(Q), where

U = {’QD € W*P(Q), for any 1 < p < oo and meas{z € Q: Vy(z) =0} = 0} ,
then 1) satisfies the following non local problem

( <1
A = a(z) {Ff - —é\g / (1— @b*(s))+b§,(s)ds}

1/2

k < l-(1—p(w

(PNE) R 0 <1 [1-()], | . | W
T (=) [bla) = 0 (1 < ()] in 0,

o —o € HEHRY,

and necessarily & = F,; on (——oo, lz/) +‘ Lo (Q)}, with

1/2

(1— &) (1 < s|)ds} , (5)

.|.

where |t < t| denotes meas{z € Q : ¢ < t}, 9" represents the increasing rearrangement
of 1 and b}, is the relative rearrangement of b with respect to 1 (see [9]).

2 )\ B
Fult) = |Ff — —
(0 [ el

Conditions for the existence of a free boundary.

In this section we study some criteria for the formation of the free boundary for
problem (P7). We establish a new criterion and give an estimate of the size and spacial
localization of the set of points where the flux function ¢ is bigger than 1.

The free boundary represents the separation between the plasma and the vacuum
regions, O, = {¢ < 1}and Q, = {¢ > 1} respectively, and it is defined as the boundary
of the set 0. As ) is greater than 1 on 99, the existence of this free boundary is reduced
to the study of conditions for which the set (), is not empty. From the physical point
of view, this study is equivalent to find a range of parameters (2, Fy, o and A) for
which there exists an identification between the mathematical model and the physics
problem.

We start by studying the non existence of plasma case.

Lemma 1 Let B ¢ R? be an open ball with center the origin and radius R, and
F, > 0, 0 > 1 two constants given. Assume & € L°°(B), such that a(z) = a(|z|)
mboza.ex € B. Let ¥ € W2P(B) (1< p < ) be the unique solution of

a
AV = —F, inB,
ko (6)

U=g on 08,



Then

T(0) =1 (respectively T(0) > 1, or ¥(0) < 1), (7)

Br1orfa(r) o—-1
/O (g/o —E;-Td’l'> d¢ — 7 =0 (resp. <0, or >0). (8)

Moreover, if for réa(r)dr > 0 for all v € (0, R], then ¥ is increasing along the radius
r=|z|.

Proof. The existence, uniqueness and regularity of ¥ are well known. Moreover,
this solution has necessarily radial symmetry because ¥ can be taken as U(z) = ¥ (r)
with r = |z| and Y (r) being the unique solution of the boundary problem

1o [ oyN  alr) 1
;""“5; (T“‘a‘;) = [C_OFU D<r< R,
V(R) =0, Y'(0)=0.

Therefore

18 [ 9T\  afr)
- <7 -57__) - —E(}_F’U for almost every » € (0, R) .

Integrating the above equation twice in r we get

) = o — I, /TR @- /: %%m) i€, relo,R). ()

The first conclusion of the lemma can be got by substituting » = 0. The second one is
a consequence of the first integration in 7. =

A first criterion for the existence of a free boundary was obtained in [6] in terms
of the first eigenfunction of the Laplace operator. Let ¢;be a normalized eigenfunction
associated to the first eigenvalue of the operator —A on 0 with Dirichlet boundary
condition, i.e. —Ap; = Ay in Q and ¢, € HH(Q). We know that ; > 0 on ). We
renormalizate ; such that Ay [, p,dz = 1. It follows (see [6]) that if we assume

g—1< £ / a(z)p, (z)dz, (10)
ko Ja
then any solution v of (PVE) satisfies (1 — ), # 0.
For the study of the existence and spacial localization of the set 2, we need some
information of the monotonicity of the function t — (®?)'(¢)/2. To this purpose we
use the characterization of this function in terms of the relative rearrangement of b

((5), [6])

(@) (t) = 2Mka(1 = €)1, (| < t)).



Using the well-known estimate ‘
such that

b

L < 18]}, we conclude that there exists b< b

5M%Ml—ﬂ+§(@W@)§2w@ﬂ—¢h,hummMGmwié(—mJ¢qu)

Theorem 2 Assume infqa > 0. Then, there exists a positive constant & such that if
0 < A< b we get that

Qp:>{mesl:d@;aﬂ)2 (ﬁﬁgiijl)lﬂ}, (11)

F,infga

where d denotes the Fuclidean distance.

, koo — 1)\ M*
Proof. Let By = Bz, Ro) € Q be an open ball of radius Ry = | =t
F,infqa
and center zg, for some ¢ € Q.

Assume 9By N 00 # 0. We get

AP+ flz, ) = 1(gj(m+wmmu—wn+aar—w+zom3,

—_2¥§ 5

where f: Q x R — R is the function given by f(z,¢) = ——MQJ(';D) + Ab(1 — ).

k
This function is non increasing in v, due to the fact that ®(1)) is non decreasing in 1.
Moreover, we have

<o in QL (12)

To prove (12) we multiply the equation of (1) by (¢ — 0)4. Integrating by parts in
we get

- [V anlis = [ L—f;@(w) = (1;) () + No(1 - w)-{-] (6~ 0)sdz =
= szd:U >0,
w>o

1 /a2’
since ¢ > 1 and so %‘I)(w) 3 ("5") () + Ab(1 — )y = EFU in {¢y > o}. Thus,
t0 0 o

we get that (3 — o), is constant on { and as 1 = o on 8Q, that constant must be null,
that is, ¥ < g a.e. z €.

Now, we consider the solution ¥ of problem (12) when we take & = infpa and B =
B(zg, Ro) = Bo. That is, ¥ is the solution of the problem

infga

AT = F, in B,
0
V=g on 98y,



and due to the choice of & = Ry by lemma 1 we know that ¥(z) > 1 Vo € B\ {z}
and in particular f(z, ) = —@Fu. Hence
%0
AV A+ f(z,¥) <0< A+ f(z,%) in B,
U =0> on 9B.

Then, by the weak maximum principle ([7]), we conclude that
Y < Uin B.

In fact we will show that this inequality is strict in B, and so 9(zo) < ¥(xzo) = 1. To
prove this fact we define w := ¥ — 4 > 0 in B. Due to the hypotesis on A we know

that @ is Lipschitz continuous ([4]). Therefore f(z,v) is also Lipschitz continuous in
the second variable. Then we arrive to

{ Aw < |f(e,¥) - f(@,¥)| < Cw in B,
w >0 on JB.

for some positive constant C. By the Hopf strong maximum principle ([7]), we get that
or w = k for some constant £ > 0, or w > 0 in B.
The conclusion of the theorem follows trivially when the above k is strictly positive.

But, the constant & cannot vanish. In fact, by the strong maximum principle we deduce
that

W< oifzeQand dz,d0) is small encugh. (13)

To see this we use that ¢ € C°(Q), and thus there exists a neighborhood €, of 90
such that ¢ > 1(z) > 1 + &q, V& € Qe,. In this case we have

Ay = "’(”3)1«:, in Qe

]CO
=0 ' on 0f,
Y=1+¢gy <0 ond,\00,
and again, by an application of the strong maximum principle we deduce that n >0
n

on 90, and from this it follows (13). If QN B # 0, we consider the set
Qp_e i ={z e :9(z) <o} CA,

which is not empty. Reproducing the above arguments, now with zg € {3,—. , we get
the conclusion of the theorem. =

Remark 3 The conclusion obtained in the above theorem is optimal in the sense that
y Q:d(z,00) = (Hee0) L _ g gnar o, 4 10, =10
if we assume qx € Q:d(z,00) = ( T =0 and X\ =0, then we get Q, =

(Lemma 1). In fact, using some rearrangement comparisons ([2]), the above affirmation

L2
holds when Q is an open no necessarily symmetric set such that || < (%) .



Remark 4 The criterion for the formation of the free boundary obtained in Theorem
3 improves the obtained in [6] in the sense thal if we take 0 = Bpg, the coefficient
a = cle > 0 and A > 0, then the hypolesis (10) is more restrictive than that of Theorem
3.

The first eigenfunction of A in Bg is given in terms of the Bessel function of order
zero, by v, = Jo(v/ A7), where Ay is the first zero of this function. Thus, (10) becomes

al,
A

ko(o — 1) < (14)

Using some well-known estimates for Ay, (2£)% < Xy < (£5)? (see Watson [10]). Then

we have that (14) implies thot necessarily
R > 5.5517 (M> .
al,

Nevertheless, the assumtions for the existence of the free boundary in Theorem 2 is

expressed as
ko(o — 1)
R'> 4| 221}, 15
- ( alky, ) (15)

The operator £ with radial symmetry.
In this section we will study the criterion obtained in the above section for the

operator £ when 2 is a ball of radius R, i.e. {2 = Bg. In the case of radial symmetry

U
we have — = 0, and thus

of
1 0 du dag, ,Ou

Replacing the expression for the coefficients a,, and ag, (3), and assuming

L =

< ¢ > (p,0) = cte > 0,

< g" > (p,0) =< g” > (p), (16)
we arrive to
_<9">9 @)
S p Op pE)p '

Theorem 5 Let assume (16) and infqa > 0. There exists a positive constant & such
that if 0 < A < 6, then

P _ /2
ij{wéﬂzd(m,aﬂ)2<4<g > (o 1)) }

Fyinfqa

L

where d denotes the Buclidean distance.



Proof. The proof is analogous to the one of Theorem 2 but now we take Ry =

1/2 -~
(%) and as a supersolution we take the function ¥, that is the solution of

the problem

AF = et _pop

. < gt > ky ’

U=g on 0By,
where By = B(zo, Ro). Now, by the choice of Ry and lemma 1 we get again that
U(z) > 1 Vzg € Bo\{xo}. ®
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