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Abstract
We study a model of growth of tumors with two free boundaries: an inner
houndary delaying the necrotic zone and the outer boundary delaying the fumor.
We take into account the presence of inhibitors and its interaction with the
nutrients. We show the existence and uniqueness of the solution of the model
under suitable conditions on the inhibitors interaction and the tunor growth .

Modeling.

The growth of a tumor is a complicated phenomeénon. In this process many dif-
ferent biological aspects arise: the necrosis (death of cells caused by insufficient level
of nutrients), apoptosis (natural cell death, it is intrinsic property of the cell), the
mitosis (birth of cells by cells divisions), the diffusion of nutrients and inhibitors and
vascularization (contribution of nutrients through vessels ducts). We study here a sim-
ple mathematical model for this process. Previous similar models were considered by
Creenspan [1972], Byrne and Chaplain [1996], Friedman and Reitich [1998] and Cui
and Friedman [1998].

The tumor comprised a central necrotic core, where the cells die caused by necrosis,
when the concentration of nutrients @ (oxygen, glucose, etc.) falls below a critical level
Onec. Then there is an early disintegration of the cells into simpler chemical compounds.
We assume the spherical symmetry on the tumor. The necrotic core is covered by a
layer, where apoptosis and mitosis occurs. In the study of the internal mechanisms
of the tumor growth two unknown free boundaries appear: one the outer boundary,
denoted by R(t) and delimiting the tumor, and a second, the inner free boundary,
denoted by p(t), separating the necrotic core of the remaining part.

By the principle of conservation of the mass, assuming the cell mass density con-
stant, the tumor mass is proportional to the volume (§7R(t)%). The balance between
birth and death of cell is determinate by the concentration of nutrients. If we assume
the presence of some inhibitors, and denote its concentration by ﬂ the birth and death
of cells clearly depend of /ﬂ Dencting by S the above balance, after normalizing we
obtain the law

d 4 ' ~ -
TR(t)Y) = / (. By,
dt a3 3 {(r<R(t)} )
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Depending of the kind of inhibitors, function S admits different expressions. Green-
span [1972] study the problem in the presence of inhibitors and the possibility this
affect mitosis, when the concentration of inhibitors is greater than a critical level /~3
He proposed S(7,8) = sH(c—7)H(3—/3), where H(-) is the Heaviside function. Byrne
and Chaplain (1995), study the growth when the inhibitor affect the cell proliferation,
and propose g(ﬁ, B) =s(0—7)(1— %) In absence of inhibitors, or when inhibitor does

not affect the mitosis, they take §(87B) = s0(0 — 7). Friedman and Reitich [1998] and
Cui and Friedman [1998] study the asymptotic behavior of the radius, R(t), with the
cell proliferation rate free of inhibitors action. They assume that g = s{oc — 7), where
so is the cell birth-rate and the death-rate is given by sg.

The transfer of nutrients to the tumor from ducts, named vasculature, occurs when
the concentration is less than a certain level opg, and with a rate I'y. The nutrient
consumption rate is A7, Both processes occur simultanecusly in the exterior to the
necrotic core. We suppose that the tumor is composed by an homogenous tissue, and
that the diffusion coefﬁcieni is Dy. We also assume a constant diffusion coefficient for
the inhibitor concentration . The reaction between nutrients and inhibitors is modeled
by some functions g;(7, ). Adding initial and boundary conditions we obtain

( 2—7 - %%(7'2%3) —(Ti(op — ) = MB)H(B — 0nee) —1(5,08) 20, 0<r < R(t),
W D00 (22 By~ Tulfo ~ HHE o) ~ 5:(6,5) 30, 0<r < R(),
Ryt = /0 5@ By 50
%?7(0”’) =0 %@W =0, B(A(),1) =7, BR(),1) =P, >0,

L R2(0) = Ro, T(r,0) = ao(r), [(r,0) = B,(r), 0<r< R,
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where Dy, Dy, T, 03,05, 85, AL, Opec, @ and 3 are parameters of the problem. )

After sending, in January of 1999, a short version of the result of this work to the or-

ganizers of this congress we learned, from A. Friedman, the apparition of the manuscript

Cui and Friedman [1999], where the authors also extend the Byrne-Chaplain necrotic

model by introducing some Heaviside function. The authors thank A. Friedman for
several conversations hold on this subject and that, in fact, motivate this work.

Existence of solutions.

Theorem 1 Assume gy, gy and S continuous functions, with o sublinear growth at the

infinity. Let Ry > 0 and aq, 3, € L0, Ry). Then (1) has, al least, a weak solution.
Our proof starts by introducing an equivalent formulation but defined on a cylin-

drical global domain. We introduce the change of variables and unknowns by z = E%ﬁ

and u(t, ﬁ) = o(t,r) -7, v, EET)) = /_?(tj'r') — -ﬁ It is also useful to introduce the
functions,



S(@(tr) - 7,6(6,7) = B) := 5, 5) (4)
Then problem (1) becomes
( Ou 1 Dyo, ,4d R/ (1) _
E Rt) - QL(L BQ:M)W%W_QI(%U)BOJ O<x<l, t>0,
v Dy 8 a R'(t)
Tl 2 <
TR b) a:ﬁ adL(JJ awv) Uy (D) g2(u,1)30, 0<z<1, t>0,
| ld / S(u, v)xde, t>0, (5)
g“(o £) =0, a Z(0,t) =0, u(l,t) = v(1,6) =0, >0,
[ R(0) = Ro, u(z,0) = uo(z), v(x,0) = wvo(x), t>0,0<z<].

For ¢ > 0 we introduce the Hilbert spaces H(0,c) = {(p,¢) : (zp,z¢) € L*(0,¢)?} and
V(0,0) = {(p,¢) € H, (s2p,02¢) € H(O c) ( ) = ¢(c) = 0}. The scalar product

in V(0,c) is given by < ¢, ¢ >y 0= [ ° qb)d?} For the sake of simplicity in
the notation we use H = H(0,1), V(0,1) = V

Theorem 2 Under the conditions of Theoreml there exist, at least, a weuk solution

(R,u,v) € H*'(0,T) x [L*(0,T : V)N C([0,T] : H)? of problem (5).
‘We shall use an iterative method for the construction of a weak solution.

Proposition 1 (Showalter{1996]) Let f € L*(0,T : V') and uwp € H. Let T > 0
and let a(t, o, ¢) be a bilinear form such that a(t,.,.) : V X V :— R is measurable,

a(t,p, ) < Mllp|||lg|| and a(t, ¢, ) > a||c,on—~c|g0]‘3, where o > 0 and |.| and ||.|| are
the norms in H and V. Then there exists u € L*(0,7 : V)N C([0,T] : H), such that
Qe L20,7: V') and

< g‘;( )@ > +a(t,u(t), @) =< f(t),¢ > aete(0,T), VopeV,
LL(O)“"““ Ug

where H and V' are two Hilbert spaces, V' C H with continuous and dense embedding.

Lemma 1 (Simon [1987]) Let Bg, B, By be three Banach spaces such that By C B C
B, and the embedding By C B is compact. Then the space W = {v,v € LP(0,T; By),
E’” e LPY0,T; By)}, for some 1 < pg,p1 < o0 is compactly embedded in LP°(0,T, B)



PROOF OF THEOREM 2. We consider the operator A(R(t)) : V — V' defined by

1 Dy 8 ¢.,.28 ’(t) 8
PN _ “R(t)lﬁ}i(l am“)””ﬁ(}")”éiu 0
A(R(L))(uav) = 0 i DL (.’E U) R) & 8.
TR 2 oz du R(t) 8z
Without any difficulty we can see that A define a continuous bilinear form a which is

coercive since

a(t, (u,v), (u,v)) = R—J(jtl)j (L) - 2% R(c)g jo (Zv)2da—
) A1)
¥l ]0 u yudz — Y0} fﬂ ——~U Judz
- 1
> Dy ([y #*(5u)*da + fo 2v)%dz) = 55| (w, o)} = cfl(w, 0)| 1

where D = min{Dy, Dy}. Let G : V — V' be defined by G(u,v) = (g1(u,v), ga(u, v)).
Let U, = (un,vn) and Ry _1(l) = R(O)EI'JLI01 S(un-10n-1)0%dzds Lo the solution of the
problem:

{ BU,-, ( ) + A(R (t))Un(t) - G(Un——l) in (Oal) X (O,T) (6)
Un( ) = uo.

By Proposition 1 there is a unique solution of (6). Moreover taking U, as test function
in (6) we obtain

d 1,1

di L2§(U3)dm + HUnHV < ”G( n— z)HHHU HH

D
Rnﬁl( )
and integrating in time

Ry (r)

Ul 2200y < (|G (Un- 1)HL2(0TH)HUnHL2(0TH)+“HU0HH)

Making a dilatation and replacing the domain (0,1) by (0,¢), with ¢ > 1, we get

, R:_ (T, 1 1
||Un||iz(0,g~;v(0,c)) < Wwﬁw““(z?gHG(Un—l)||L2(€),T:H(O,c))||UnHL2(O,T:H(O,c)) + §||U0||§1)

But Rn (1) = RQefc;Ffol S(Un-1)a?deds gnd since J‘lS n-1)82dz < so + [{Uncallg =
so + (2| Un-1]lz0,c), for some s > 0 we get that ||Unl[320 1.0, is majored by

Rgg-‘io‘i“:lg“[j:"‘lHH(O’CJ 1 -
2 : (§||G(U.,1_41)|lLQ(U,Tﬂ(OrC))'|U”||L2(O’T:H(O’C)) + 5“%”%{).

Using that ||G(Un-1)l 207 < Go+GillUn-1|| L2001,y for some positive Gy and Gy,
if we take ¢ = 9(G + G )M + 1 and define K = {w € L*0,T : V(0,¢)) :
HWHU 0TV (0,) S uHUQH} then we have that U, € K. Moreover, since —‘?gf(t) =
— AR 1 (8))Un(t) + G(Uy_1), then 2= is bounded in L2(0, T : V'(0, c)) Coming back
to the original problem we can assume again, ¢ = 1. So, thele exists a subsequence

U, € L*0,T : V) with 2U, € L¥0,7 : V') such that (U, £U,) — (U, £U) weakly

n gt Tt



in L2(0,7 : V) x L*(0,7" : V'). Using Lemma 1 we conclude that U, — U strongly in
L0, T : H). Moreover, the continuity of function S implies that R, — K strongly in
H*0,T). Besides, it is easy to see that G(Un-1) — G(U) weakly in L*(0,T : H). Then
taking limits as n — oo in the weak formulation of the problem (6) we get

T

T D T
- / <USG >udi+ <U,@ >n [f +/ a(R(t), U, ®)dt =/ < G(U),d >g dt
JO 0 0

for any ® € L*(0,T : V). So (R, U) is a weak solution of the problem.

Uniqueness of solutions.

For (7,7) solutions of the problem (1) we define ¢ = & — 3 and § = B-P. Itis
easy to see that (7, ) verifies

( Dy 8 d
%%“;355;(7"2'870)4“91(0,/3)90, 0<r<R({),t>0,
19 Dy 0 a . _
—9%—;5%5;(7"25; )+ g2(0,.8) 30, 0<r<R(@®),t>0,
fa¥g R(t)
R(t)zﬁ(t) = / S(e, B)dz, t >0,
e Jo
;%cf(o,t) =0, %g(O,t) =0, o(R(t),t) =0, B(R(t),t) =0, >0,
(. R(0) = Ro, o(r,0) = aq(r), B(r,0) = By(r), 0 <r < Ry,

(7)

where g; were given by (2) and (3). We also define the real numbers ¢* = max{0,
max oo(r)}, ¢, = min{0, minog(r)}, f* = max{0, maxfy(r)} and §, = min{0,
min A,(r)}. Now we replace the concrete g; given in (2) and (3) by general functions
g; satisfying the following structural conditions

gilo,8) 2 k(B0 + (o0 —0")T), ifo* <o
92(‘71/8) Z A;Z((IB - E*)_" + (0 - O-*)-r—)7 if /[3* S 16 (8)
g0, 8) <ks((B—B,)" +(o0—0.)7), ifo. 20
gQ(Uaﬁ) Sk@t((ﬁ_/{a*)m +(O—_U*)_): 1f6* 26

g1(a1,8,) — 01(02, B2) = ks((oy — 0y — o™*)F + (B, — By = 7) MY if oy 2 gy + 0™,
9201, 81) = 92(09, By) = ke((01 — 02 — )" + (B, = By = F7)7) i Py = fy + 07,
gi{o1, B1) — 9109, By) <hal(or — 09 — o)™ + (B — By — B..)7) oy Loy + 0w,
g2(o1,81) — g2(02, By) < hs({o1 — 02 = 00)™ + (B — o — B..)7) L8, < B+ O,

(9)

S € Whe(R?), (10)



(g1,92) € (W2 (RY))?, (11)

0
é;gl(u,v) <0, %QQ(’U;,U) <0, (12)
9:(0,0) <0 and Qgi(u v) + E)—gi(u v) >0, fori=1,2. (13)
- Au”" At T ’
Remark: When the functions (g1, g2) do not satisfy (13), it can be obtain taking (o, 3) =

e“Hu,v).
The main result of this section is

Theorem 3 Under conditions (8) — (13) and starting from initial datum oo < 0, Gy <
0,there is, at most, one solution of (6).

We shall need some previous results:

Lemma 2 Any solution (o, 3) of problem (7) is bounded. Moreover, 6, < o < o* and
/{3* é 16 «<— IB*'

ProOOF: Let H. be an approximation of the Heaviside function. Taking H.(c — o*)
and H_(# — ")) as test functions and passing to the limit, we get that % ;)R(t) (o -
a*ytdr < — 'OR(“ gi(o, BYH (o — o*)r?dr and

d RO ) o E(t) .
S rw-sya <= [ aomEE - gptar
e JO 0

By (8) we conclude that

d e A(t)
w(/ r*(o— ™) rdr + / r* (B — /) rdr) <
dt"Jo 0 pRE)
(ky — hg)(/ r?(o — ") Tdr + / r2(8— B*)tdr)
Jo 0

Then by Gronwall’'s Lemma.

() R(t)
/ r*o —a")dr + / r* (8 — g )rdr = Q
0

0

and so ¢ < ¢* and 8 < 8". Now we repeat the same operation but now with H.(o —

o,)—1and H.(F—f,) —1 as test functions. By (8) and using again Gronwall’s Lemma
we conclude that o, <o and 3, < g

Like consequence of this lemma, is easy to proof that there exists a constant M,
such that R(t) < R(0)e™*. We have proved that (o(r,t), 8(r,t)) € [o.,0*] x [B,,57],
that is a compact set, like S is a continuous function, it takes his maximum in this
set, let M Dbe this maximum. working with the change of variables of Theorem 1, we
obtain, R(‘t)“lg%—iﬁ < Jol Mz?*dx, and then, E“;Et) < MR(t), and by Gronwall’s Lemma,
it result R(t) < R(0)e*.




Lemma 3 There exist kg > 0, such thal 7"25%0 < kg and 7’2%5 < ky.

PRrOOF: In order to proof this lemma, we shall work with the extension of the solution,
(7, ) ,is defined in (0,T) x (0, R(0)eMT + 1)

o (g,8), if 0 <r < R(t)
(7.7) = { 00, it R < rg( R(0)eMT 41, (14)

then (7, B), is the solution of the next problem

do Do 5,0 N\ T D i ] MT .
(E — 37‘(l —5—10) + g1 (o, ) H(R{) —r) 30, 0<r< ROEM +1, t >0,
(Q/Z - 23*8‘(""2—8*[3) + @ BHRE) —7)20,  0<r<R0)eM 1, t>0,

ot rrar or

dR(t R() ~
R(tﬁﬁi—) = / S(7, B)dz, t >0,
dt J0O
8 aﬁ
grU(R(O)er + 1, ,5) 0, gf(R(O)eA’[j +1,t) =0,
L R(0) = Ry, &(r,0) = Golr), B(r,0) = Fol(r), 0 <r < Ry,

deriving respect to 7 the equation, we obtain the next equation.

200

R ) R O +<3’;>(8">) I(R() ~ )+
+(85 — Pié%(ﬁ%&) + 4.7, /j))aa (H(R(t)—7))20, 0<r < R(0)e™ +1, >0,
%%)—9—(%@7“ Py 4 (2 22 )+ (2GAED )+

oD D02 D5 4 0o B (HRE) ~ 1) 50, 0 < ROEMT 41, 60,

(16)

We start from initial datum (oo(r), Fo(r)) such that there exist kg, satisfying 0 <
12—550"0( ) < kg, and 0 < 722 04(r) < kg, We take (H, (r? 25 — ky), Ho(r* 23 — ko)) as
test function in (17) and passing limit we get that:

d (RO 8 N BO Dy 8, 00 4., 40 .
G| s [ S ) 55 — ke
Rt dg1,,05 dg,. AP d . , 0
- (52 - — i — ko) =
+ /U )5+ 3/3) SOV (25 — ha)dr — g1(0,0)H (5 F(R(), ) — ko) = 0



and

d ‘R(t).—*z 25” + e Dy aﬁ 2 ¢yt 3
ZE,-/U P2 — ko) d7+/0 (87( Ly ﬁ-gg)dw

dg, . 0T

(00 O2)) (12 2~ ki — 5200, 0)(H (5 = ko)) = 0

O gy, O
+ /0 (=) +

op’ or

and by hypothesis (12) it result,

d (F® .8 RO g 9. Ogr.,08 , 0
S| e g by dvg—jo (2% +(8/3)( DHG? 25 ~ ky)dr <

R{t) By, 07 dg a5 ) ) o
_ 2,001 g 5 g1y, o o g1 g1 - )
< A 7 ((75)(7 B kg)ﬂaﬂ)( 5 hq)+k(a~+aﬂ))ﬂ(7 _ar” kg )dr

and

d (5 a0~ RO 9, 05 dgs . O3 , 8~
EE]O P (0% 5B — o) T < —/0 ((_5?)(5;)+(5§)(E?))}I(7 58 = ko)dr <

3J2 g2

R By, o dga .\, o A
<= [ GG k) 2105 — k) (G + ENH ST ki

K or s or

and by (11), (12), (13) and adding two expressions it results:

d R(t) s g “R(t) A ~
- o o llh ld K . e +
dt([, P4 (r 5)70 o) dr F/o T2 (r? ,6 ko) Tdr) <

o [ e [ a0 25
10 2 (r amg ko) " + T P )" dr)
o 7 0 O

and applying Gronwall 's Lemnma, we obtain that (1226 — ke)* = (r?2 ﬁ ko)t =

Now, suppose that (g1, 0, B1) and (0g,0,, F2) are two different solutions. Let
R(t) = min{Ry(t), Rs(t)}. Define 0 = 0y — 09 and @ = f#; — fy. Then (o, ) verifies
that

Qg‘% — %%(7“2%0) +g1(o1,B1) — g1(oa, B5) 20, 0<r<R{), t>0,

= B e (50 + 92(01,81) — ¢a(02,8,) 0, 0L < R(t), £>0,

S2(0,4) =0, o(R(L),t) = 0(1(2),1) — 09(£(E),2), >0, (17)
S2(0,8) = 0, BR(),1) = B(R(L), 1) ~ Bo(R(E),), t>0

o(r,0) =0, B(r,0) =0, O0<r <Ry

Lemma 4 |o] and | (] take its mazimum on the boundary R(t).



Proor: Let o™ = maz{0,c(L(t),t)} and #** = max{0, f)’( (t),t)}. It is easy to see
that o™ € [0,20] and 3™ € [0,28"]. Taking H.(oc — ¢**) and He(f — 3™) as test
function in (11) and passing limit we get that:
q (R ()
7 r¥o —o™)Tdr < —/ (01(01, 1) — ga(o2, B5)) H (o — o™))ridr,
0 0

d [ R(t) 7
it s r (B — ) dr < — / (g2(01, B1) — ga(a2, Ba)) H (B — B )r’dr.

Adding the two expressions and thanks to (9) we get that

4 [R® R(t)
E«E(/ r*(g — o) tdr +/ (B — B rdr) <
0

“E(t)

R(t)
ot k) [ o= om)ar+ | =gy,

Applying again Gronwall’s Lemma we obtain that

R(t)

()
/ r¥ o — o™V rdr + / r2(B — ) tdr = 0.
0

0

So that ¢ and [ take its maximum at the boundary. If we repeat the argument with
test functions H.(¢ — 0,.) — 1, and He(f — 3,,) — 1 we get

RO R(t)
- / (0 —0.) dr < —/ (91(04, 1) = g1(o2, B2)) (H (0 — 00a) — L)rdr,
J R(t)

R(¢)
d(} ﬁ ) LS _z ({]2(0’1,/31) - g2(027ﬁ2))([{(/@ - ﬁ**) - 1)712d7"

Then, by (9), adding the two expressions it results that

d R(t) R(t)
; / 1y Oan) AT +/ Ik~ BL.)Tdr) <
fi / dl;) +‘/0 712({3 ——ﬁ**)wdr)

2(0' — )
0

Finally, by Gronwall’s Lemma, we obtain that (o, ) take its minimum at the boundary,
and so we conclude that || and |3| take the maximum in R(f).m

End of the proof of Theorem 3. Let § = max{|R:(t) — Ry(t)|}. Using that
Ra(t)

R (t) .
R R () — Ry(t)Ry(t) = /G (S(a1,8,) = S(03, By))rdr — / S(o2, By)rids

J Ry (ﬁ)

and since S is a Lipschitz function we obtain that | j?g(:) S(og, By)r%dr| < M §, where

M is the max{S(x,v), (z,y) € [7.,0%] x [A,, "]} Analogously,

Ri(t)
/ (S(o1, 1) = Slow, fy)r*)dr < C|loy — o2l + 1181 — Byl <)
0



Jemma 4, we know the maximum of |o| and |5] is taken in R(t),

B%

ﬁ% start from negative initial datum, and applying lemma 3, we obtain

o (R(E), 8)| < ko R Ru(t) — Ra(t)] and |B(R(E),1)] < ko R Ra(t) — Ra(t)]-

Then |R2(t) R} (t) — R3(¢) Ry (1)} < Cof for some Cp independent of §. Infegrating we
get that |R3(t) — Ri(t)| < 3Ce6 T and since |R}(t) ~ R3(t)| = 3RE Ry (t) — Ra(t)| we
conclude that, § < kod T So, if T' < %zm T\ necessarily R;(t) = Ry(t). Since ¢ and
3 take its maximum in R(t) = Ry(t) = Ra(t) %ﬂ@m% we get that necessarily

a =

3 = 0. By repeating the process starting now from T} we get the uniqueness of

solutions for any arbitrary 7" > O.g
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