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Qualirtative Study of Nonlinear Parabolic
Equations: an Introduction®

J.1. Diaz!

1 Introduction: the problem model.
Given , open bounded regular set of It, N > 1, we consider the model problem

b(u), = divA(z, v, Vu) + glz,v) = f{t,z}), t>0, z&€Q,
(P} u=h, t>0 Tedan,
b(U(O‘I)) = b(“D(I)) 1 T & .

Before making explicit the structural assumptions on the data b, A, f, 1 and ug let
us mention some important special examples. Perhaps the simpler example is the
lnear heat equation

Uy — Au = f‘ (l)

So, b(s) = s, A(z,u,£) = € and g = 0. This is a typical example of linear partial
differential equation of parabolic type usually considered in undergraduate courses
{see, e.g. John, [31]). A modern treatment starts by intraducing the notion of weak
solution or by its reformulation as an abstract Cauchy problem on & Banach space

du
{ R+ Ault) = £0),
u(()) = ug,

(see, e.g. Brezis [17]). It is well known, that one of the main results of the stabiliza-
tion theory is that if

[t 2) — felz)

h(t,x)———fhm(z)} as t——o0
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in some suifable sense then the solution of the linear heat equation wu(t, ) verifies
that

u{t,7) — un{z) 8s t— oo

in some functional space, with u, satisfying the associated stationary problem

Ay = fofz) In Q,
{ Uns = e an g0 (2
{the linear diffusion eguation). Notice that problem (2) is also included in the
formulation (P} by making b=0, Alz,u, &) =&, 9=0,f = f. and & = hy. More
in general, given e choice of b, A, g, f, h and uq leading to a special formulation of
(P), the choice of choice of b= 0, A and g as before leads to the formulation of the
associated stationary problem. In this way {P) include also stationary problems. In
order to present some nonlinear eramples, it is useful o read (P) as a balance of
different phenomena

b(u), —divA +g{z,uv) ~ f(z,t) = 0.
—— T
(n Un (7111)

Let us make some comments on the accumulation term (1). It arises, for instance,
in thermal processes when the heat capacity of the medium depends on the tempera-
ture. This is the case, e.g., when water and ice are simultaneously present and then
b{u) is a strictly increasing function having & discontinuity at u = 0. This special
case (called Stefan problem) requires a delicate mathematical treatment.

In fact, as a general rule, the assumption b : IR — IR nondecreasing is absolutely
fundamental to formulate (P) in the class of problems of parabolic type since other-
wise the problem becomes hill posed (as, for instance, —u, — Au = f : the backward
heat equation).

This type of accumulation term (1) also arises in the theory of filtration of a fluid
in a porous media. In that case

b€ C°(R), b nondecreasing,

(see, e.z. Bear [10]). Now u{t,z) is not a temperature but the humidity of the
soil. Different choices are possible: in the study of unsaturated soils b is assumed
to be strictly increasing, as, for example, b(u) = |u[®"'u . In the case of partially
saturated soils, b{u} is not strictly increasing but becomes constant for u > u!, for
some u! > 0. Notice that, in this physical framework, u > 0 and so the values of
b on IR~ are not relevant. The, so called dam problem, corresponds to a limit case
in which b is the Heaviside function. This choice of b also arises in problems of a
different physical context, as, for instance, the Hele-Shaw problemn or some problems
arising in lubrication theory (see, e.g. Dayada and Chambat [9] where many other
references can be found).
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Let us refer now to the diffusion and convection terms involved in (I1). The de-
pendence of A{z,u, Vu) with respect to Vu {resp. u) leads to diffusion terms (resp.
convection terms). Some examples of relevance in the applications are commented
in the following. The, so called, nonlinear heat equation srises when the Fourier law
fails and the thermal conductivity depends on the temperature {case of many gases,
lubricating fluids, ete). Then the diffusion of heat leads to the expression

div(k(x)Vu) = M) with f(s) = [ " k{o)do.
0
In most of the cases F{u) grows like a power
Bluy=u/"'u with m >0

The above second order operator (sometimes written as —~Auz™) also arises in the
study of filtration in porous media (D' Arcy laws) with m > 1 and in plasma physics
when 0 <m < 1.

A different class of examples of nonlinear terms A(z, 1, Vu) arises in the study
of non-Newtonian fluids. The study of one-directional flows of some special fluids
(as, for instance, polymer melts, suspensions, paints, animal blood, honey, shampoo,
ete.} leads to nonlinear diffusion operators of the type

div (§Vu|”“2Vu) , {denoted by A,u), for some p> 1.

Notice that if p = 2 then Ay = A (the linear Laplacian operator, arising in the study
of Newtonian fluids). The casel < p < 2 corresponds to pseudo-plastic fuids {as,
e.g. gasoline, lubricating oil, etc.) and p > 2 arises in the consideration of dilatant
fuids (as, for instance, the polar ice and glaciers, voleano lava, etc.).

The above two operators may become degenerate since

Au™ = div (rnum'1Vu) = mu™ " Au+ m{m — Du™ 2 Vuls

So, if m > 1 the coefficient of Vit vanishes on the set {{¢,z): u(t,z) = 0}. Analo-
gously,
Apu = div (|Vu[”‘2Vu) = |Vuff?Au+ Vu- ¥ (|Vu!p'2)

and when p > 2 the coefficient of Vu vanishes on the set {(t,z): Vu(t, z) = 0}. Due
to this reason the gqualitative behavior of solutions of (P} may be very different
{according the assumptions on the data b, A(z,u, Vi) and g) to the one of the
solution of the linear heat equation. In fact, to show such kind of differences is cne
of the main goals of these notes.

We also mention that another relevant choice of nonlinear terms A(z, u, Vu)
arises in the study of transient minimal surfaces, in which case the second order
diffusion operator is given by

Vu

V14 |Vu]7)A

div(
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Concerning the transport or convection terms, we mention that they arise very
often in Fluid Mechanics. Usually they appear formulated in terms of an additive
term, as, for instance, in the case of the temperature in a fluid

-Af{u)+ w-Vu

S —— B
diffusion <convection
If the fluid is incompressible (case of liguids) then divw =0 and so we get
—div(k{u)Vu—uw), e, A(x, v, £) = k(u)é + uw.

Nevertheless, sometimes the convection term is not an additive term but appears
in a different form.
div {B{Vu + K{b(u)e))

where
®e) = (¢ ,ee BN and K € CY(IR: R).

This situation arises, for instance, in the study of turbulent flow of a fluid through
a porous medium (with e the vector indicating the main filtration direction). For a
general exposition on different examples of diffusion-convection operators, containing
many other references see Diaz [20] and Dfaz and de Thelin [25].

The expression (111) represents the absorption/forcing term. The presence of the
term g(z,u) — f{t, z} is very typical of many problems arising in reaction-diffusion
problems in Biology, Chemistry and other contexts. By writing

g(z.v) = gz, u) — gz, ),

with g, and g, nondecreasing functions, we can distinguish the term of absorption
g1{z,u} (which contributes to make |u] smaller than if g, = 0} from the one of forcing
g2(z, 1) (which contributes to make [u| bigger than if g, = 0).

In most of the cases

u]?1u, A >0,

g1z, u) = A

with ¢ > 0 (the order of the reaction). Notice that if 0 < q < 1, g, is not a Lipschitz
function.

Returning to the structural assumptions on the daty, in the rest of the exposition,
we shall always assume that

b: R — M is continuous and nondecreasing, {0} = 0, (3)

A Qx I’ x ¥ is a Caratheodory function
(i.e. measurable in z and continuous in (u,£)),

3p > 1 such that JA(z,u,€)| < C(u|¥ + €Y, Ve I, (4)
vee Y withp = 2= hi_p; and

(Alz, €)= Az, w,€)) (=€) >0V 6 e RY £ £ €,
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g is Caratheodory function and (5)
lg(z,u)] < y(jul}(1 + d(z)), d € L}() and 7 strictly increasing,

F=fi+fo HELOT WIPQ), e LOT)xQ,VT >0, (6)
hoe LP(0,T: WY Q) nL=((0,T) x 2),¥T > 0, (7)

e € L=(0).

For the sake of simplicity in the exposition, we shall deal merely with bounded
{weak} solutions

We say that u is a bounded weak solution of (P) ifu—h e LP(0,T : W (Q))N
L>({(0,T) x ), VT > 0, and we have:

blu) € LP(0,T : W-I#(Q)) and
(i) fUT(b(u),, U)w»:.»'xw[;-vdf + foT fn(b(u} - b(ug))vtd:rdt =0
Yo € LP(0,T : WgP(Q)) nWhYo, T : LY() with o(T,-) =0,

and

T lu) vydt + [ fo Alz,u, Vu) - Vudzdt + [7 fn g(z, whvdzdt
(ii){ = [T, v)dt + [T fy favdzdt,
Yo e LP(0,T : Wl () N L0, T) x ), YT >0.
The above definition is adapted from Alt and Luckhaus [2].

In the rest of this exposition we shall consider different qualitative properties of
solutions of ( P) arising according the nature of the nonlinear terms b(u), A(zx, u, Vu}
and g{z,u). Our plan is the following: Section 2 will be devoted to two comparison
principles which will be important tools in our study. Two qualitative properties are
presented in the rest of the exposition: the finite extinction time property (Section 3}
and the finite speed of propagation property (Section 4). In both of the above sections
we shalt apply the two comparison principles as well as some energy methods.

It is clear that the above presentation is far to be exhaustive. Problems like
(P) have attracted the attention of many specialists in the last forty years (perhaps
the carliest mathematical paper on this subject was [38]). In consequence, many
other very interesting qualitative properties are today available in the literature.
The present notes only pretend te be an elementary introduction.

2 ’I/.“wo useful tools.

2.1 Introduction.

The study of several qualitative properties for solutions of model problem (P) will
be carried out thanks to some useful tool: the comparison principles.
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The most popular comparison principle has a pointwise nature and usually holds
for elliptic and parabolic second order equations (as welt as for first order hyperbolic
equations). A first statement of such a principle is the following:

(Pointwise comparison principle) Let {f, h,ug) and (f, 1, fiy) be two set of ordered
data, i.e., such that R
f<F h<h and wuy <,

in their respective domains of definition. Let 2 and @ be {any) sotutions of (P)
corresponding to (f, h,ug) and (f, i, #p) respectively. Then

u(t, z) < %(t,z), foranyt>0andae z €l

In the case of linear problems, this property is a trivial consequence of the maz-
imum principle (in fact, it suffices to assume {f,h, %) = (0,0,0) and so & = 0).
The first {general) result for linear equations seems to be due to Paraf in 1892 (later
generalizations where due to Picard, Lichtenstein and, finally, Hopf (in 1927} (see
details in the book Gilbarg and Trudinger [30}).

It is clear that for the nonlinear case some conditions on b, A and ¢ are needed
(notice that the pointwise comparison principle implies the uniqueness of solutions).
This topic is still under investigation (see the series of works by Ph. Benilan, J.
Carrillo and others). Here we shall recall a particular result (of & short proof) stated
in terms of an estimate for a suitable expression.

The second tool refers to another comparison principle, but this time, of a dif-
ferent nature. We can call it as the symmetrized mass comparison principle. The
process of symmetrization need to be carefully presented. We start by the sym-
metrization of the domain §0: Given (2, an open bounded set of 12", the symmetrized
version of  is the ball centered at the origin having the same measure than Q. Let
us call 2° to this ball. The condition m(Q} = m({2°) has a relation with the tsoper:-
metric inequality

1

L> Nuf A% (8)
where L is the lenght of 8Q {or m{8%1}), A is the area of Q {or m(Q?)) and

wy is the area of the unit balt of M¥{ie. wy = m(5""4)).

In (8) the equality holds if and only if 2 is & ball. This was a first noted by Dido
de Cartago {850 B.C.) {in IR? the circles are the domains with fired aren having a
longer perimeter). Rigorous proofs of (8} are due to Steiner {1882}, Schwarz (1890)
and Schmide (1939).

The second step of the process of symmetrization consists in the symmetriza-
tion of data f and ug. We shall use the notion of the decreasing symmetric rear-
rangement of a function introduced by H.A. Selhwarz in 1860: Given a function
h:1— R, ke LYQ), we define the decreasing symmetric rearrangement of b, b7,
as the (unique) function h* : 1" — [ such that h* is symmetric (i.e. h*(x) = h7(Z)
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=1

if |z] = |Z]), h* decreases if jz| decreases and the level sets of & and A" arc equimea-
surables (i.e. m({z € O : h{z) > 8}) =m{{z € O : h°(z) > 0}),¥0 € R). A
more systematic definition of 2" can be introduced as follows: we first define the
distribution function of h by

pi il — R, p(d):=m{zeQ:h(z} >0}
Then we define the scalar decreasing rearrungement of it by
R:{0,m{Q)] = IR, h(s):=inf{f € R:p6) < s}

{notice that (s} ~ x"'(s)). Finally, we define the symmetric decreasing rearrange-
ment of h, by _

B Q= R, h'(z) = Alwy]z|V).
Notice that, since A" is symmetric, we can write h*{z) = H(|z|} with H : [R — .
Nevertheless H # h since H(r) = h{wnyr™). Notice, also, that assumed h > 0, by
construction, we have that

h € LY{Q2) implies that k° € L}{Q") and
/ﬂh(a:)da: = f] h*(z)dz {the Cavalieri Principle)
o

and that

h € L™(Q) implies that A" € L>=(Q") and

esssup h(z) = esssup h'(z).
refl zefl®

The third step of the process is the symmetrization of the second order op-
erator. We must replace the diffusion operator divA(z,u, Vu) by ancther isotropic
diffusion operator, i.e. with the same behavior in any direction z;. Several possibili-
ties arise. Here we shall consider, merely, a special ease. Assume that condition (4)
holds and that, in addition,

Alz,u€)-€2[EF vEe RV
Then we shall define as symmetrized operator of divA{zx, u, Vu) the one given by
Apu = div(|VulF~iVu)

{notice than if we take A™(z,u, £) = |£]"~2 then condition (4) holds with the equality
sign instead the inequality one). .
\We also must introduce an isofropic ebsorption by assuming (besides (5)} the
condition
{ gz, w)u > gludu ae. reEQ, ©)
for some continuous function §: MR — R.
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Summarizing, we say that the symmetrized problem of (P) is the following one:
Preblem {P°): Find U : [0,00) x 27 — [ such that

BU) - 8,0 +3U) = F(t7), £>0, T,
(P'){ U=k, t>0, zed,
b(U(0,2)) = blup(z)), ze Q.

Here f*(t,-) and u3{-) are the decreasing symmetric rearrangements of f(t,-) and
ug, respectively. For the sake of simplicity in the exposition we shall assume now
that

h=h"=0. (10)

Let us make some remarks on the statement of the symmetrized mass comparison
principle. The first one is that some pioneer authors finding different relations
between u and [/ where Saint-Venant {1856), Poya and Szego {1951} and Weimberger
{1962). The inequality

u'(z) <Ulz), z € (11)

was first proved by G. Talenti, in 1976, for the case of the stationary problem without
absorption term (i.e. 5 =0 and g = 0). Unfortunately, this (pointwise} comparison
Jails to be true for parabolic problems (i.e. b # 0) or/and for problems in presence
of absorption terms {g # 0). In those cases we only can compare the distribution of
the mass of u and U

(Symmetrized Mass Comparison Principle (SMCP ))

j u(t, )dr < Ult,z)dz, ¥t > 0,97 € [0, R),
B(Os) B{o,r)

assumed that O = B(0, R).
Notice that this comparison can be, equivalently, expressed in terms of scalar
decreasing rearrangement as

jo’ﬁ(t, oMo < ]u b(t,0)do, ¥t > 0, Vs € [0, m(Q)).

The SMCP has many applications {as we shall see in other sections). The main
philosophy of the applications is that function U can be easily estimated in many
cases and thus, thanks to the SMCP, properties for U/ can be extended in similar
properties for u. Some books dealing with the symmetrization process are the ones
by Bandle {6], Mossino [35] and Nawohl [33]. The proof we shall present here follows
the memoir Diaz [21] (see also Diaz [22]). A different {(and very original) approach
is due to Abourjail and Benitan {1]. The first result in the literature for degenerate
parabolic problems was Vazquez [1].
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2.2 Proof of the two comparison principles.

On the pointwise comparison principle. We present here a particular version
of this principle (more general results will be indicated later) for the special case
of the diffusion-convection operator arising in the study of turbulent flow of a fluid
through a porous medium. More precisely, we consider the problem

{ blu) — div (¢(Vu + eR {(b(u))}) + g(z,u) = flz,t), >0, z€Q,
(Pax)§ u="h t>0, z€0Q,
b (u(0,z}) = b (uo(z)) €,

where ¢{£) = |€P7%, p > 1, e € &Y and K € C*(R, IR). Besides the conditions
made explicit in Section 1 we shall made some extra assumptions:

(H,s) { there exists C* >0 such that
o0 glm) — gl /) = —C (b(n) = b(H), Yn>7, ni€ R,

(notice that {H,s) trivially holds if, for instance, g(-,7) is nondecreasing in 7 or if
gl 7)== g{-, b{n)) with §(-, s} Lipschitz continuous in s),

K{b(n)) is Holder continuous in 5 of exponent 7 2 >1 1f l<p<?2
(Hg){ andy2 5 G+ =1ifpz2,
[K(b(m) = Km)| < Cln—1l", Vp.ie R,

(notice that condition (4) is now trivially satisfied).

Let (f, h, up), (f h ,1g) be such that f < F.h < hand up < @iy on their respective
domains. Let u, @ be two bounded weak solutions of { Py x) associated to (f, k,ug)
and (f, h, @)}, respectively. Assume, in addition, that u and @ are sirong solutions,
i.e.

b{w), b)), € LH{(0, T} x ), VT >0. (12)
Then u < @ on (0,T) x £ More in general, if we replace the ordered data assumption
by the simpler condition i < h and f; < f, then

ib(ult, ) = b(@(E, -Plefleren  (13)
< &5 ib(un) — bio)) 4 |lLnay +/‘; k) = Falm Nsllprmdr

for any t > 0 (C* given in (Hyyp)), where ¢, = max(p, 0}.

Proof. We take as test function the following approumatlon of the signd(u — @)
function: we start by defining Ws(n) := min{1, max(0, §)}, for 6§ > 0 small. Then we
define v = W,{u— 7). Notice that v € LP(0,T": Wl”(ﬂ))ﬂLOﬂ ({0, Ty x Q) ,¥T >0,
and that

tu—q) if0<u—-G<d
I B
Vv { 0 otherwise.
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Then, since f| < fs, defining the set

A= {{tn) € (0, Ty x Q:0 < ult,z) -t z) < 8}

we get
(fqun (b{u), — b{iD)) Wslu — B)dxdt + 1, (§) + L (8)
+fo(g (z.10) = g(z, &)Wl — W)drdt
/ / fo= o) Wsu — B)dzdt,

where

1 /T
L) = 3/0 L, (8 (Tu+ K(b(u))e) — ¢ (Vi + K(b(@))e)} -
Vu+ K(blu))e — Vit — K(b{))edzdt,

1 /7T
L) = 5[ [ (6(Tut K(blu))e) - (Vi + K(p(m)e)} -
(=K (b(u))e + K (b(il))e} drdt

(here T is arbitrary but fixed, T > 0). Applying the Young inequality, af <

C(E)ap+ Eﬁ" we see that
28)] < W/ / 16 (Vu + K(b(w))e) — ¢ (VE + K(b(@))e)[” dzdt
[ / [ (b(w)) — K (b(R))"] dzdt = I2 + I8,

We shall only conSLder the case of p € (1,2) (the case p > 2 is similar and, even,
easier). We need an algebraic inequality

(see, e.g. Diaz and de Thelin [25]) Let ¢(€) := |£[P~2%£ with p > 1. Then, there
exists € > 0 such that

clote) - (@ < {(8l6) - &) - (6 - B} {let) +10@P)

witha=2ifl<p<2anda=pifp>2
Using Lemma 2.2 we obtain that

|15] < €CI:{8),

for some € independent of 6. Moreover

<

/‘ (Clu = @) drdt < Cle)m(As)™"
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for some Cle) > 0 independent of 8. Then
1{8) + La{8) 2 11(8) = [1(8)) 2 (1 = eC) L1 {8) — Cle)m(Ag)a®~1,
Taking e small enough (sv that 1 ~ ¢€ > 0) and using that I;(8) 2 0 we have that
lm(£(8) + 12(6)) 2 0

and so
fu (b = b))t + [ RECEFER S

iFrom assumption {H,,} we deduce that

] (b{w) — b(@))dzdt < / {blu) — b(5))dzdz,

50 that
. bw) - (@), O} drde < | by — b
< Y o BETH < . —_ b5

j(; fﬂma_{ () —~ 80}, 0}dr t_/ﬂ /nm&\{{ {u) — b{&)), 0} dzdt,

and, finally
/ max{s(u{T, £}) — 5(E(T, z}},0}drdt </ / max {{3{u) — b{4}},0}dzdt.
Then, by Gronwall inequality
(u} < b{E) se {{,z2)e{0,T)x 0
1 b is strictly increasing this implies thet u € & and the proof of the first conclusion
ends. In the general case (i.e. when b is merely nondecreasing) it remains the
consideration of the case in which Ay C {b{u) = @)}, for any & small, (since
otherwise the above arguments apply). In that case J;(6) =0 implies that I,(8) = 0.
But from Lemma 2.2
7 Vil{u—)° drdt

ez [ [ [V - D) dz s

¢ SR AVy + K (bu))el + Vi -+ K{b{@))e P} >

So, P{u—#) =0 ae on {0,T) x 2 which implies that u < @ on this set. Theproof
of the case p > 2 and inequality {13) follows the same type of arguments.

It can be proved {see Dinz-de Thelin [25]) that if b is & Lipschitz function and uy
is regular enough then any bounded weak solution is a strong solution (Le. b(u), €
LYY, Qr = (0,7} x € ). The proof of the existence of strong solutions under
more general conditions on b is a delicate task (see the recent results by Benilan and
Gariepy {13]).

The (pointwise) comparison principle can be obtained for weaker solutions by
using more complicated arguments and other selected notions of solutions (entropy
solutions, renormalized solutions, good solutions, ...). See the works by Benilan and
Tourd, Benilan and Witthold, Carrille, Otto, ...

The guantitaiive inequality (13) is e typical conseguence of the application of
abstract resulls {the T-accretiveness of the operator). An illustration of how this
theory can be applied to the concrete case of problem (P x) (when h = 0) is due
to Bouhsiss [L6]
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On the symmetrized mass comparison principle. We recall that this time
we assume the additional conditions

A(Iv“uf)'f 2 |£]p| (14)
g{z,w)u > §lu)u forsome ge C(I: ), (15)
and, for simplicity, (10). Here we also assume that
f=fae LL(0,00: L'(02)).

We shall only consider {for simplicity) the case in which u and U are nonnegative
functions.
Assume that j is nondecreasing or locally Lipschitz and that the function

w(n) =g~ (7)
is well defined and can be decomposed as

© =i+ P2 {16)

with ¢, convex and 3 concave. Then

f b(a(t, o)da <f f(t,0)do Vs € [0,m()], ¥t € [0, 0). (17)

Idea of the proof. First of all we point out that conclusion (17) is stable by ap-
proximations of the data (f,ug b and A) leading to the convergence of solutions
in LY0,T : LY{2)). Due to that, we can assume the data regular enough (and, in
particular, that « and U are strong solutions b(u), € L'(Qr), b{U), € LHQ7), Q=
(0,T) x § and that b is strictly increasing.

Step 1. The radially symmetric problem. We define

K(t,s) = fu’bw(t,a))da

where ff( t,-) is the scalar decredsiut3 rearrangement of U(t,-). First of ali, let us
prove that U(t, z) decreases when |z] increases. By the symmetry of the data (and
the uniqueness of solutions, implicitly assumed) we deduce that U(¢, x) = U{t NELR

Moreover U, := Ba—U(t,r),r = |z| verifies that

Ew),) - & (WUPU) +F U = B i (0,T) x (0, R)
U(t,0)=0, Ut R)=<0, te (0,7,
Ur(01 T) = rﬂ.r(r) : re (01 R)v

where 0* = B(0, R), Uu{r) = Giolwar™) and F{t,7) = f(t,wyr™). Then by the
maximum principle (here is possible to apply classical results since U, can be as-
sumed to be smooth), as F{t,-) <0 and Uy () €6, we deduce that U {t, -] S D ie
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U(t,r) decreases when r increases. In consequence, U{t,.) = U*(¢,-) {the function
coincides with its decreasing symnetric rearrangement), and so

Ult,z) = Ult,wpr™), r= |-

Making
s=wyr™ (5 € (0,m(Q)

we get that

OK au 1L au
a\ (t,5) = b(T(2, 5)), 5 = Nl s e
We deduce that IV satisfies the parabolic (fully non-linear) problem
arN = oK IR
S ~als) E (5 ) c% ( S+
s OK
(Fv) [ Grode = [ Frolde, s € 0m@),ce 0,1),
K{t,0)=0, K{t,m(Q) =0, te (0,7,
K(0,s) = fo bfio(o))da s € (0, m(<0)),

where ,
a(s) = {Nw;f‘vs("“”/“] .

Step 2. Study of the rearrangement of u. Given u(t,-) {the scalar decreasing
rearrangement of the solution u of (P)), we define

k(t, s) = /0 T b(@lt, 0))do.

The main goal of this second step is to prove that k({t, 5) is subsolution of (FN*) in
the sense that it verifies all the conditions but replacing the fully nonlinear equation
by the inequality

o
ot

p=2 & . s
G0+ [ o Eetono < [ Fie,o)do

€ (0,m()),t € (0,T). The proof of this inequality is quite long and technical.
This process can be also divided in several steps:
(i) Define the function T, : T — R* given by

Bb ak

a(s) | 5,07 (57)

Trn(s) =0 if0<s<t,
Tenls) =s—t ift<s<t+4h,
T,x(s) h ifs>t+h.

We take v = T, (u), as test function. Passing to the limit, as h | 0, we deduce that

slo) w{?) ab(“)
Pir < - - *
g |FulPds < /U flt, s)ds /o glu(t, 8))ds /u>e o dx
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where we used the assumptions (14) and {9) and where p{8) denotes the distribution
function of u{t,-).
(i) We have that

I/N NN ' 17y d e
Nelf () =00 < (—yf(8)) (—% I, |Vu|”dz)

(This is classical result in the rearrangement theory: the proof uses the, so called,
Fleming-Rishel formula, the isoperimetric ineguality and the notion of perimeter in
de Giorgi sense).

(iii} the following identity holds

ab w(o) b(a(t, ok
[ Faitae= [ 2 o = G

(although a first proof of this formula already appears in the book by Bandle [] &
more general, and rigorous, proof is due to Mossino and Rakotoson [3G]). An easy
manipulation of (i), {ii), (iii} leads to the wanted inequality for k.

Step 9. Comparison using the fully nonlinear equation. First of all, notice that
the comparison

Ets) < K(ts)  Vee[o,T), Vse (0,m(f2)),

coincides with the conclusion of the theorem. The main difficulty now is not as-
sociated to the very complicated diffusion operator but with the nenlocal nature of
the zero order perturbation term. The key idea to obtain the result is that, by
assumption (16),

o(r) —¢(F) S (A () + (@A) (r 1) YnFe R

(use for instance, Taylor formula, the convexity of ¢, and the concavity of @2}, Then

[ 00 -0 < [ 40D +ebtate)] -
. [b(U(t,o’)) + b(ﬁ(t.a))} do
< Ciik{t,s) = K(¢, 8]

+Cy TE[UI.111'E:;(E[0,S| |k(r, 0} — K{r,0)|,
for some positive constants Cy and Cy. The comparison is now a consequence of
the classical pointwise comparison principle also related_ to the T-accretiveness of
the complicated operator, but this time in the space CU(5Y), (details can be found in
Diaz [21} sce also other references indicated at the Introduction of this scction).

Thanks to a result due to Hardy, Littlewood and Polya in 1929 {sec, e.g., [G]),
the comparison

/jb(ﬁ(t,g))dagf’b(ﬁ{t,o))da Vs € [0, m()], vt € [0, o0),
4 1]
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implies that
/ﬂ’«p((a(c,a)))dg < []s(<1>(l;(ﬁ(t,o)))da Vs € [o,m()], ¥t € [0, o)
for any convex nondecreasing function ®. In particuler, if
b is a concave function

we get

]u’ﬁ(t,a)da < fu U(t,o)de Vs e [0,m()], Ve € [0, 00),

which is the conclusion presented at the Introduction of this section. Notice that a
different application of the above result by Hardy, Littlewood and Polya is that

b(ut, Moy < DU (L Nl zeinn)

for any ¢ € [1,0c). Indeed, it suffices to use ®(r) = [r|? and that

](‘J’"ml [b(i(t, o))de = /n |6(x" (t, ))|%dz = /n |b{u(t, z))Fdz.

3 The finite extinction time property.

3.1 Introduction.

One of the most natural questions concerning problem (P) is the stabilization of
solutions: Assumed that

ft,)) — foo?) and R{t,)) — heol-) as £t — +o0

in suitable functional spaces then u(t, ) — ux(-) as t — +oo (in some suitable
sense) with uy(-) solution of the associated stationary problem

(P.o) —divA(z, U, Vi) + 9(T, te) = foolz), TEQ,
T g = Mg, on O%.

A general result, stated in terms of the omega limit set
w(u) = {um e WhP(Q): 3 t, — co such that u{t,, ) — e in LP(), as n — oo}

jointly with stronger convergence results (but for different particular cases) can be
found in Dfaz-de Thelin [25]. For stronger convergence results for one-dimensional
particular equations see Feireiscl and Simondon {28] and their references.
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Very often fos =0, hoe = 0 and A and g are such that 1., = 0 is the unique
solution to problem (Ps) . In several applications (case of models in plasma physics
and also in some chemical reactions) it is observed that there is a very strong stabi-
lization in the following sense: there ezists a finite time Ty > 0 such that u (t,z) =0,
Y ¢ > Tp and a.e. © € Q. This property is called as the finite extinction time property
and has been considered by many authors in the literature. The main goal of this
section is to illustrate the application of the above two comparison principles to the
study of this property. A third method (using energy arguments and so applicable
to higher order parabolic problems and systems) will be also presented.

3.2 The finite extinction time via the pointwise compari-
son principle.
A first result proving the occurrence of this property for some special formulation

of problem (P) is the following
Let u satisfying

[f* ) —Bu=0, te(000),z€ L,
t P

(Pap)y =20, t€ (0,00),z € 0,
u{0,z) = uy () z€ql,
with
ug € Cc(§2), Le., with suppug a compact subset of (2. (18)
Assumed that
p—-1l<a (19)

Then the finite extinction time property holds.

Proof We sssume u in the class of solutions in which the pointwise comparison
principle holds (due to the special formulation of (F, ) it can be shown (Benilan
[11]) that this is our case for any o > O end p > 1). Then if T {resp. u) is a
supersolution of problem {F, ;) (resp. subsolution) then

u<u<i (20)

So, if we are able to construct @ (resp. v} vanishing after a finite time this property
also holds for u. Inspired in a pioneering paper (Sabinina [39]} we shall construct
T as & separable supersolution, ie., T(t,z} = ®(t)w(z). Since we want to have
$ > 0 and w > 0, we define

Naa= (jg°7hE) - 4,8 = (80),w - PP A,

We take @ such that

(b)), = ~Ad"! b e (0,0¢),
LI)((]) = Af,
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with A > 0 and A/ > D to be determined. Due to the crucial assumption (19)
the solution of {21) vanishes after a finite Ty > 0 (notice that ¥ := @° verifies an
ODE with a term which is not Lipschitz ¥, + A% =0 ). Notice also that (21) is
integrable since it is a first order ordinary equation of separable variables. Then

NT = P (= Aw® — Agw).

In consequence we choose, as w, the selution of the first eigenvalue problem for the
A, operator ie. A= A; > 0 and

—Aw=Mw on
{ w=0 on dQ, (22)

{the existence of a unique function 1 satisfying that w > 0 on £ and [[w||rem =1
was due to Anane [3] and Barles [8]). Then

Nu PPt (=M w + AP
At (1 ye-6-1)

0 since0<w<landa>{p—1)

It

v

The boundary condition holds

T(t, $}|(0.oc)xaﬂ = @(t)w’an =0

The comparison between the initial data
1up(z) < Mw(z), T€

trivially holds by taking Al big enough (recall the assumption (18) on wug). The
construction of 1 < 0 is similar.

The above statement can be improved in many different directions (but with
longer proofs}. For instance, in the case of p = 2 the homogeneity assumed on b is
not needed. More precisely, in G. Diaz and J.1. Diaz (18] the finite extinction time
property was established for the problem

b(w), — du= f(x,t), T€Qt>0,

=0, T €N >0, (23)
u(0, r) = uy(z), T € {,
by assiming
/ ds <+ (24)
e o 7.
. o+ b7 (s)

and the existence of Ty such that f(t,z) = 0, for t > T; and = € 2. Notice that
now p = 2 and that if b(s) = |s/°"'s then (24) if and only if @ > 1, Le. the same
condition than (19). In fact, in this paper it is also shown that condition (24) is also
necessary for the existence of a finite extinction time.
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Notice that the finite extinction fime can not be satisfied (in case of the general
formulation of ()} each time that the strong mezimum principle holds (see, e.g.,
Nirenberg [37]) or the unigne continuation property is verified {se, e.g., Ghidaglin
[29] and its references),

When condition {19) holds, it Is said that we have a fust diffusion (in fact, this
term is more eppropriate when talking on the balance between the accumulation
and the diffusion terms). It is very easy to see that if we assume (18} then the
conclusion of the above theorem remains true under the presence of a nondecreasing
absorption term as, for instance,

(Qul““ u)! —Aput T =0

for any ¢ > 0. The finite extinction time property also oceurs due to suitable balance
between the accumulation and absorption terms. It is the so called sirong absorption
case,

Let u satisfying

(Ezzl"“lu)t — O+ uta=0, te(0,c0), xR

(Pa.p‘q) u=20, te (U,OO),:L‘ =1y
u{0, ) = ug{z}, €,
with
ug € L2 {0). {25)
Assume
n>0 and O<g<a withp>1 arbitrary {26)

Then the finite extinction time property holds.
Proof. 1t is easy to see that the function T (z,t) = (2}, with ® the {unique) solution
of the ODE

27

{(2), +pd? =0, f€(0,00},

{compare it with {21)) is a supersolution once that M 2 |u]l ey - The assumption
{26) implics that & vanishes after some finite time Ty,

A general survey containing many references on this property is due to Lalash-
nikov [32].

3.3 The finite extinction time via the mass symmeirized
comparison principle.
Thanks to the mass symmelrized comparison principle it is possible to extend the

last two theorems to more general equeations for which the construetion of super and
subsolutious can be very difficult {specially in the case of the first of the theorems),
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Let u be the solution of (P) with f = 0,h = 0,up € C.(2), up > 0 and
assume b(u) = |u* " u, (14) and (9). We also suppose that one of the two following
conditions holds:

{p—1}) <o and
gy o
e =gl "' m =i (N +w(n).neR (28)
with i) (resp. 2 ) nondecreasing and convex {resp. nondecreasing
and concave).
or

§m) =l g with >0 and 5
g < a. (29)

Then the finite extinction time property is verified. More precisely, if we define as
To.n the first extinction time {in which jlu (T(],')“L](n] = () then

Ton < Top-.

where Ton- is the first extinction time for the symmetrized problem (P*).
Proof. By the mass symmetrized comparison principle and the result by Hardy,
Littlewood and Polya mentioned in the above Section we have that

Mo (8 Mgy < 1Y (8D ey

for any t > 0. Assumption (28) (resp (29))} aliows to apply Theorem 3.2 {resp
Theorem 3.4) which proves the result.

Notice that the general structure of A(z, u, £} may be the origin of very compli-
cated behaviors of the solution of the associated eigenvalue problem

—divA{z,w,Vu) = dwP~! in §,
w=0 on .

So that the arguments of the proof of Theorem 3.2 do not apply directly to problem
(P).
3.4 The finite extinction time via an energy method.

A method which do not use any comparison principle can be applied to the study
of this property. The [ollowing is merely a special version of the method:
Let u be the solution of (P) with h =0,

{ f€ L= ((0,00) x Q) such that 3Ty > 0 with (30)

flt.r)=0¢ee. t>Tyandae s €1, ’
o € L=(Q), b(w) = [ul°" ' w, @ > 0, A satisfying (14) and

glz,n) 20 VYne M. (31}
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[f)
=

Assume that (19) holds {i.e. p~1 < @). Then the finite extinction property holds.
Proof. We take as test function v = [u*~'u (which we shall write, for simplicity, as
v = u*) with k'> 0 to be determined later. We also write u® instead of u]*~tu by
simplicity in the notation {nevertheless, it is not required that u > 0). Integrating
on the open {bounded) set {) in each term of the equation we get :

du®
—l“ud = /au(“_‘)+kuld1
0

n dt
— & i atk
T latha Un“ dr)

(the justification of the final formula for v weak solution of (P), Le. without the
condition (u*), € LY{), is due to Alt and Luckhaus [2)),

- f divAlz,u, Vabds = & /n Alr,u, Vu) - Vet tdz
1]

v

k[ [Vulfu-ldr,
/ﬁf uPu~ldr
So, using (30) and (31) we get that, if ¢ > T}, then
atk iYd % p,k~1 <
(a+k clt/ (z,t)dz + /[Vu]u dr < 0.

We need the following inierpolation result
Let p > 1 and k > 1. There exists a constant C = C {(m(Q),p, N, k) such that if
w € W) and f, [VwlPlw*~ldz < +oo we have that

pEE—1

(/ jw]’dr) ‘ <Ckp./;’|VwIp|w|"_ldz

with
1<s < Ml i poy,
1€s5<00 i p=N,
5=c0 if p>N.

Idea of the proof of the Lemma. Define z(zx) = }w(z)l}%ﬁsign(w(z)). Then

[|V Pdz = (E—J‘—) /ﬂ[Vwﬂw{k_ldr

and the conclusion follows from the application of the Poincaré-Soholev and Halder
inequalities.
Continuation of the proof of Theorem 10. By the above lemma we have

prk-1

(GQTH% (]ﬂuﬂ***'(t,z)dx) +C(Lu5(i,z)dr) <o
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for t > T;. Applying Holder inequality we get

; 1
n+k atk s *
(/;l u (t,z)dr) < Cin() (fnu (i,r)dz)
{take k=1ifp > Nand k > %(a —(p—1)) —aif p< N). Then if we define

Y() = fn W (¢, 7)dz

we have that

Y'(t)+CY()<0 on (Ty,00), 7= % € (0,1)
Y(T;) =¥ > 0.

So, again, 3Ty > T such that Y(¢} =01if ¢ 2 Ty and the conclusion holds.

Some similar energy method can be applied to the case of strong absorption (see,
e.g., Tsutsumi [40]).

Under some extra decay sssumptions on f(¢,-}, near Ty, it is possible to show
something unexpected: Ty = T (see Antontsev and Diaz {4]).

Similar energy methods applied to higher order quasilinear parabolic equations
can be found in Bernis [14], [19]. '

One of pioneering applications of this type of energy methods was concerning
the case p= 2 and £ = JR¥. In that case the condition for the existence of a finite
extinction tine Is N

“”N=7
stronger than o > 1 correspondent to bounded domains (see Benilan and Crandall
[12]).

As a final and global remark we point out that the three methods used in this
section can be also applied to the study of other different qualitative properties, as for
instance, the existence of a finite blow-up time T (such that [[b(u(t, -)})|[z-n) — +o0
s t — 4-oc, for some 7 € [I, +oc}). Obviously, this property requires completely
different assumptions on A, b and g. The connection between the finite extinction
time and the finite blow-up time properties for a couple of a different nonlinear
equations has been considered in Kawohl and Peletier [34].

4 The finite speed of propagation property.

4.1 Introduction.

The formulation of problem () is very general. It includes not only the linear heat

equation
uy—Du=10 {(32)
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but many other cases in which the behavior of the correspondent solutions is very
different to the one of the solution of the linear heat equation (remember the remarks
concerning the finite extinction time property as peculiar of fast diffusion or strong
absorption and opposite to properties as the strong maximum principle or the unique
continuation property which holds for the linear equation).

Another qualitative property typical of some suitable nonlinear models concerns
the finite speed of propagation of disturbances: if the initial datum uy vanishes on a
positively measured set of Q (i.e. supp (ug) € ) then supp u(f,-) C Q, forany t €
{0,£°), for some " > 0.

This behavior (typical of the linear wave equation) fails for the linear heat equa-
tion {this can be illustrated in many ways: the strong maximum principle, the
explicit representation formula for @ = kY, etc). It is said that the linear heat
equation has an infinite speed of propagation.

When the finite speed of propagation holds then

supp (ult,)):={z e @ u(t,z)#0} CQ
(at least for some small times ¢ ) and so some hypersurfaces (0, co) x RY Y

F=JF@), F(t)=~0(supp u(i, ) -0

t>0

are formed. Those hypersurfaces are called as free boundaries (since they are not 2
priori determined) and play a very important role in the study of the model {usually
is in those free boundaries where are located the singularities of the gradient and/or
the second derivatives of the solutions).

The main goal of this section is to illustrate how the two comparison principles
can be applied to the study of the accurrence of this property. As in the previous
section, & third method (involving different energy arguments) will be also presented.

4.2 The finite speed of propagation via the pointwise com-
parison principle.

As in the Subsection 3.2, the main idea will be to construct suitable super and
subsolutions (now vanishing locally in some subdomains). In fact, those functions
use to be constructed by madifying special solutions of the equation (so this task is
closer to an quautitative study of pde’s than the usual approach to pde's by methods
of functional analysis).

To start witly, let us consider the nonlinear equation

("), - 8u=0, a>0, p>1 (33)

Although we remain interested in the Cauchy-Dirichlet (Payg)s it is useful to start
by considering the pure Cauchy problem (i.e., when 0 = RY). A very impottant
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family of exact sulutions is the one given by

¢ (p-1)/(p~1~a)
; 1 iy |l
ntes) = 5 [0 - 1 EE R (31)
which arises when
p-1)>a (35)

(notice that the fast diffusion was {(p—1) < ), wherep' = B, f = r—m—tmimy,
A=2and k= ¥ -2 (C > 0 arbitrary). Such solutions were obtained, by
first time, by C. I. Barenblatt in 1952 for the case p = 2 (also in the case, they
were refound by R. E. Pattle in 1959). The case p # 2 was found by A. Bamberger
in 1975. We point out that when p # 2 the solution Uy is not radially symmetric
with respect to the usual Euclidean norm of JRY. Nevertheless, it is possible to find
other exact solutions with free boundaries and symmetry (although they are not
so explicit as Uy). Many references on this topic can be found in the surveys by
Kalashnikov [32] and {42].We also point out that:

[ L Un(t,n)dz =2, M =M(C,a,pN),
"
Ult, ) = Mb(z),
and that the free boundary generated by Uy, is explicitly given by the equation

Y . Copy
> lml = =t
i=] k

A simple result is the following.
Let u satisfying

(u[* ' u)y — Hu =0, tE(0,00),zED,

u =0, t € (0,00),z € 812,
u(0, z) = up{z), T €],
with
ug € C Q) such that (36)
supp uy C B(zg, Ry) € Q.
Assume that
(p-1)>ec (37)

Then the finite speed of propagation holds.
Proof Asin Theoren 3.2, we can apply the pointwise comparison principle thanks to
the result by Benitan [11]. By choosing A big enough and thanks to the assumption
(36) we have that

‘HU(I) S U‘\[(T,I—fg) Y EQ
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™
e

for some 7 > 0. Since the function (¢, ) .= Up{t + 7,7 — Ty) satisfies that

(|7|““ ﬂ)l -2, =0, t€(0,0) 1€,
i , te(0,00),z€d0,
} 2 wp(z) T €efl

we conclude that
ult,z) <u(t,z) t>0,refl

By taking (if nceded) different values of A and 7 we get, similarly that
—Ugp{t+7',2 - %) <uft,z) zeit>0
Thus, at least for t € [0,¢*) with t* small enough, we conclude that
u(t,z} =0 ae. €8 — B(Z, R{t))

for some function R(t) and the result follows.

Again, the above statement can be improved in many different directions. For
instance, in the case p = 2 we can replace b{x) = |¢|°~'u by a general nondecreasing
function satisfying that

j;+-£—j)<+oo (38)

and the finite speed of propagation holds {see Dfaz [19]). Notice that if p = 2 and
b(z) = |u[*"'u then (38) holds if and only if @ < 1, i.e. same condition than {37).
If N =1 (and p = 2) it was proved by A. 5. Kalashnikov (and independently by L.
A. Peletier} in 1974, that condition {38) is also necessary.

Once that the free boundary exists it becomes interesting to study its dynamics:
how [fast it starts near t = 0 (in some cases there is a waiting time), how it behaves
for ¢ — +o00), the regularity of the free boundaryete.). Many of those questions
remain still open (see the survey Kalashnikov {32] ).

When assumption (37} holds it is said that we have a slow diffusion. It is easy
to see that if (37) holds then the finite speed of propagation remains true under the
presence of nondecreasing absorption term as, for instance,

(el 1) = Apu+ e lu =0, u»0,

for any g > 0.The finite speed of propagation also occurs when the balance between
the diffusion and absorption is suitable (called again as the strong absorption case).
We can consider, even, the case of nonhomogeneous boundary conditions.

Let u satisfying -

(Juf™ )y = Byu+ plul" =0, t€(0,00),z €,
(Pa.p.q) u = h, te (0,00}, df,
u(0, ) = uplr) T e (),
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with
he L= ((0.00) x Q) L, (0,00 : WIP(Q)), h>00n (0,00) x 2, (30)
ug € L), ug>0on (40)
Assume
p>0 and O<g<p—-1 (41)

Then the finite speed of propagation holds. More precisely: a) There exists a positive
constant L > 0 such that the null set of u(¢,-) is not empty assumed that the set

2 — (supp (uo) U (Ursosupp (h(7,))
is big enough lLe.
N, )y :={reuitz)=02 {r e d(:c,suppuuUU,>gsupph(r. = L}
for any ¢ > 0. b) If we assume, in addition, that
g<a<l (42)

then there exists tg > 0 such that for every t > £,

N{ult,)) 2 {I € Q:d(z, | supp (h(r,)) 2 f,}

>0

for some L > 0.
Proof . We recall a result of Diaz [20] proving that the function
wr(z) = Gilz — 2ol

Mp—1-4g i
PP (pg+ N{p-1-7q))

satisfies that

—Dywy + A ey, =0,
assumed that (41) holds, i.ee A > 0 and ¢ < p — 1. Let us prove a). Let zp €
Q — (supp weUUrmosupp A(r,-)), and let R = d(z, (supp uoUUrnosupp A(1,-})).
Consider {(xy) 1= B(zo, R} N Q. Then T(t, z) := W,(z) is a local supersolution i.e.
a supersolution on $(xy) since .

(la" ' m) — Dy + plu]™'T =0 on (0,00} x zy),
{0, z) > 0 = uy(z), on §zg)
a(t,r) > 0= hit, z) on {0,00) x Q(zy) NI,
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and the condition
'om(t,z) > u(t,z) on (0,00) x 9(zp) — N
is satisfied if, for instance,
Cu R > |t poqooaixy (2 2(tz) et )
je. if
poiog
B> Nullz=gocnxay| *
C.

(notice that |Ju]Leq(o.ce)xm < 00 thanks to the assumptions on h and ug, as we can
prove in many ways: for instance by using a suitable global supersolution}. Then
by the pointwise comparison principle on (0, o) ¥ (zo) we obtain that

0 < ult, 1) € Cplz = xo|77

and so u(t, o) = 0 {even if u is not necessarily continuous).
To prove part b} we take as local supersolution the Function

Tk, z) = wyu + V(1)

with V(1) satisfying

d a-1 Hoiva-ty
{am V)+ 5Vt =0 (43)
V(0) = lug}| Loy
Le. "
- }L(Q - q) e
V() = [Iholi=te - 452 (a4
Then . i
(7 a) = a (wup(@) + V() V2 5 (lvitv),
Api= Ay,
pali 2 §lwapel e + SV
and so
(e E)C — AT+ pfE T T >0
Moreaver

1(0,3) = weyz + V(0) > [Juolli=ln) 2 ug{z).
Finally, taking
o= 3]
I
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we get that V(£) =0 ¥t >t and the conclusion follows as in part a).
The ahove result is taken from Diaz and Herndndez [23] where others and more
general results can be found.

In the model of chemical reactions, the null sef N{u(t,-)) is called as dead core.
In that mocdel usually h(t,z) = 1 and so N(u(t,-)) only occurs at the interior of Q.

Notice that if b = 0 part b) shows the exiinction in finite time. Notice also that
assumptions {41) (in addition to (42}) implies the formation of dead core for t large
even for h = 1 and 1y > 0. This property has a similar nature to the so called
instantaneous shrinking of the support established by Brezis and Iriedman in 1976,
or by Evans and Knerr in 1979, both for the case of O = RN and up > 0 such that
limz—oc up(z) = O {see references in the survey Kalashnikov [32]).

4.3 The finite speed of propagation via the mass sym-
metrized comparison principle.

The above method requires the construction of sophisticated supersolutions. This
is possible only for simple nonlinear operators. The application of the mass sym-
metrized comparison principle show us how important is to have symmetry con-
ditions on the partial differential equation in order to have solutions with small
support.

Let u be the solution of (P} with f =0, h =0, ug € C(2), uo 2 0 and assume
b(u) = [u|* v, (14) and (9). We also suppose the following conditions

(P - 1) > a,

¢(n) =5 (Inls~'n) = @1 () +¢aln), nER
with ¢ {resp. 2) nondecreasing convex
{resp. nondecreasing concave},

and
/ﬂ b(u(t, z))dz = /ﬂ b(U(t,z))dz, VE20, (45)

where U/ denotes the solution of the symmetrized problem. Then the support of
u(t, -} satisfy

m (supp u(t, ) = m (supp U(t,-)) (46)
forany t > 0.
Proof. By using the mass symmetrized comparisen principle, (45) and that

[ bu(t, z)dz = f ™ it o))do
{1 1]

we have

I

/‘;m(m b(a(t, o’))dU — /: b{tu(t, g))dO’

Ji " T o)) do — IR

m{n)
/ b(at, 0))do
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Let

I

support of @
support of U/

[0, Re(t)), 0 < Ru{t) <m(Q)
[0, Ru{f)], 0< Ruylt) <m(f)

(recall that % and I are nondecreasing functions). Then, necessarily R,(¢) = Ry(¢)
since otherwise we would deduce that

m({1) Rylt)
_[ b{Et, o))do > b(T(t,0))do > 0
(1) Rylt)
which is a contradiction. Finally, it suffices to remark that supp 4(i, -) = [0, m(supp u(t, )]
(analogously for U) and the conclusion holds.
Notice that by (46) if supp U(t",-) = £, for some " > 0, then supp u(t*,-) = Q.

Assumption (45) is satisfled, for instance, when the conservation of the mass
holds, i.e.,

/nb(u(t, x))dz = -/Qb(un(:r))dz, Vi > 0.

In that case o b(up(x))dr = . {Up(x))dz = f,. 0(U(t,z))dz and (45) is verified.
The conservation of the mass is typical of pure diffusion processes (i.e. when g = g).
It can be shown (see Diaz [21]) that assumption (45) is also verified when, besides the
Dirichlet condition ¢(t,z) =0 t >0 =z € dQ, we bave the additional information
that

e -

%(t,x) =0 forte(0,T), ze€ 3(},
for some T > 0 (in that case the conclusion (46) holds at least for ¢ € [0, T)).

in the case of strong absorption we can allow a nonzero Dirichlet condition

Let u be the solution of (P) with f =0 and
h{t,z) = h, e positive constant. (47)

Let ug € L*°(Q) with
0 <) <h ae zell (48)

Assume b(u) = |u]* 'y, (14) , (9) and

g(n) = pnlty with pp > 0 and
g<{p-1)

Then the supports of u(t,-) and U(¢, ) satisfy that
m (supp ult,-)) = m(supp Ule,-)) for t>0 (49)

Idea of the proof. By introducing the change of variables v(t, z) = h — u(t, x}
and V(t,z) = h — U(¢, 2) we can apply the mass symmetrized comparison principle
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to v and V. Finally, it suffices to apply the result by Hardy, Littlewood and Polya
for an appropriate choice of convex function @ (see Diaz {21]).

Estimates {46) and (49) allows to compare the waiting times (when arising) for
uand [7.

Estimate (49} shows that the dead core has a bigger measure under radially
symmetric conditions. That was first observed in Bandle and Stakgold [7].

4.4 The finite speed of propagation via an energy method.

The study of the finite speed of propagation {and other qualitative properties) can
be carried out by using some energy arguments which, in contrast with the ones of
Section 3, now have a local character.

Let A satisfying (4) and

[A{z,w,8)] < CleP .

Let g(z,u) such that
glzmnz0  vVpeli

Assume
a<(p-1)

and let u be a local solution of the equation
(|u|"“1u)t —divA{z,u, Vu) + g(z,u) =0 on (0,00) x B(zy, R)
{for some g € RY, R > 0) such that
u(0,z) =0 ae z € B(zo po). oo < R.
Then there exists t* > 0 and p:{0,¢"] — [0, po] nondecreasing such that

ult,z) =0 ae € B(zg plt)).

Idea of the proof By multiplying by u and integrating by parts we get

81
a-+1

+1d ‘ A drd t A
5 a Vul 'V < V).
-Lp ilL(t, I)] I+j; /;3}] (I‘, i, U) uaras /; ./,E;Ep U (:z:,u, lL) ndlds

{this.can be rigorously justified from the notation of bounded weak local solution).
Here B, = B(zq, p).We introduce the local energies

t
Elt, p) ::/” /B Alr,u,Vu) - Vudzrds
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and

— acw o a1y
bit, p) 1= ess.sup (cy 1 ./1-3, Ju(s, )] dr) .

s€(0,t}
Using Holder inequality we get that

1/t aE\"
b+ £ < - P —
+ "c([u jﬂplu{ dzds) I/p(ap)

9E :
3, (40) _/U faa,, Alr,u, Vu) - Vudlds.

We need the following
(Interpolation-trace) For any o € {0,p — 1} there exist €' > 0 and 4 € [0, 1] such
that for any w € WIP(G), G open bounded set of RY, we have

where we used that

8 1-9
lwllzoan < € (IVwl|ria) + lwllzon@) (lwllen) -

Applying the Lemma and Young inequality we obtain that

1—
5 <=t ( OF )
dp
for some exponent ¥ € {0,1). This implies the result.

Notice that the result holds without making explicit the boundary conditions.
It bas a local nature.

The first local energy method was due to S.N. Antontsev, in 1981. A rigorous
justification of his arguments, containing also several improvements, was made in
Diaz and Veron [27].

Other qualitative properties (as the formaiion of dead cores, the instantaneous
shrinking of the support, etc) can be proved by this type of local energy arguments.
See, e.g. Antontsev, Diaz and Shmarev [5]. Those authors are preparing a book
containing many other applications.

For the application of this type of arguments to higher order equations see Bernis
[34], [15] end their references.

As a global, and final, remark we mention that the finite speed of propagation, the
finite extinction time and other qualitative properties can be analyzed for liyperbolic

first order equations of the type

w
Bu -’r- Z ‘I’ {u) + gz, u) = f(t,z)

l"i

see Diaz and Veron [QU] and Diuz and Kruhzkov {24].
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