On the formation of the free boundary for the
obstacle and Stefan problems via an energy method

J.I. Diaz!

The main goal of this communication is to extend the, so called, energy method,
developed since the beginning of the eighties for the study of the free boundaries giving
rise by the solutions of nonlinear pdes (see, e.g. the recent monograph [1] by S.N.
Antontsev, J.1. Diaz and S.I. Shmarev to the case of multivalued equations, as it is the
case, for instance, of the obstacle problem and the Stefan problem. Let us mention that
the study of the qualitative behavior of the coincidence set for the obstacle problem was
initiated in 1976 by Brezis and Friedman [3] (see also Tartar [10] and Evans and Knerr
[6]) by using the maximum principle. Some general references on the Stefan problem
are Friedman [7] and Meirmanov [8]. The energy methods are of special interest in
the situations where the traditional methods based on the comparison principles fail.
A typical example of such a situation is either a higher-order equation or a system
of PDEs. Moreover, even when the comparison principle holds, it may be extremely
difficult to construct suitable sub or super-solutions if, for instance, the equation under
study contains transport terms and has either variable or unbounded coeflicients or the
right-hand side.

Here we shall deal with the formation of a free boundary for local solutions of the
ohstacle problem

(s
i%%ﬁ)_ —div A(x, t,u, Du) + Bz, t,u, Du) + Clz, t,w) + Blu) 3 fz,t), (1)

where 8(u) is the maximal monotone graph given by B(u} = {0} if u < 0 and F(u) = ¢
(the empty set) if w < 0. The general structural assumptions we shall made are the
following

Az, t,rq) < CilalP™, CalalP < Az, t,7,q) - g, (22)
|B(a,t,r,a)| £ Calr[*[al?, 05 Clatyr)m, (2b)
Cy |rI" < G(r) < Cy Jr|"™, where (2¢)

Glr) =y(r)r — /ﬂ'ﬂ‘ w(r) dr.

Here C; — Cy, v, o, B, o, 7, k are positive constants which will be specified later on.
We shall also consider the Stefan problem



v .

%&w — div A(z, t,u, Du) + B(z, t,u, Du) + C(z,t,u) > f(,1), (3)
where now %)(u) is the maximal monotone graph () = kyu -+ L if u > 0, ¢(u) = k_u
if 4w < 0, 9(0) = [0, L], with k;,k_ and L positive constants. In both cases, we shall
deal with weak solutions satisfying the initial condition

w(z,0) = uy(x) weQ. (4)

Let us start by considering the obstacle problem.

Definition. A function w(z,t), with ¥(u) € C([0,T]: LL.()), is called weak
solution of problem (1), (4) if uw € L0, T; L)) N L2(0,T; Wh()), @' C Q,
Al Duy, B( - u, Du), C(y- u) € LYQ); liminfg Glu(-,8) = Glue) in L'();
w(z, ) > 0 and oz, t) € Bult,z)) a.e. () € (0,T) x Q for some ¢ € L((0,T) x ),
and for every test function ¢ € L= (0, T; Wy (92)) N WH2(0, T; L=(2)),

=T
m—f Fodxdt.
t=0 Q@ _
(5)

In contrast to considerations on the finite speed of propagation or the uniform
localization of the support, we shall use some energy functions defined on domains of a
special form. Let us introduce the following notation: given zg € £} and the nonnegative
parameters ¥ and v, we define the energy set

/ {h(u)ps ~ A-Dp—Bo—Cyp—cp} dodt — / Wu)p de

P(t) = P(t;9,v) = {(z,8) € @ : |z —mo| < p(s) =W (s — )", s € (1,1)}.

The shape of P(t), the local energy set, is determined by the choice of the parameters
¥ and v. Here we shall take ¢ >0, 0 < v < 1 and so P(f) becomes a paraboloid (other
choices are relevant for the study of different properties: see [1]). We define the local
energy functions

E(P) :::/ | Du(z, 7)|F dudr, C(P) ::/ [u(z, 7)| dedr
JP(t) Pt}

W(T) :=ess sup [ |u(z, s)|" da.
g€ (6, T) o |z—zoj<V(a—t)Y
Although our results have a local nature (for instance, they are independent of
the houndary conditions), we shall need some global information on the global energy
Junction

D(u(-,-)) :=ess sup [ lu(z, 8)|" d +f (| Dul? + |u|) dzdt. (6)
s€(0,7) /O Q

For the sake of the exposition, we shall assume the additional condition P—;i <y <p—-1.

Our main assumption deals with the forcing term: we assume that there exists © > 0

and p > 0 such that



flz,t) < ~0 on By(zg) C Q, ae t€ (0,T). (7)
In the presence of the first order term, B(-, -, , Du), we shall need the extra conditions
a=1 (1 +”¥)ﬂﬁ//p,
p—B}/p P .
Oy < (ep_l) (0215-) iF0< g <p, (8)
Cy < ©if B =0 (respectively © < Cy if 3 =p).

The next result shows how the multivalued term causes the formation of the mall-set
of the solution, even for positive initial data.

Theorem 1 There exist some positive constants M, t*, and v € (0,1) such that any
weak solution of problem (1), (4) with D(u) < M satisfies thatw(z,t) =0 i P(t*: 1,v).

In the case of the Stefan problem a definition of weak solution can be given in
similar terms but the integral identity reads now as follows:

/ {thupr — A-Dp— Bo —Co} dudt — / Y(u)p de
@ 9)

t=T
== [ todsdt, (@)
t=(} Q

for some v, € L(0,7) x ), ¥u(z,t) € ¥(u(t, x)) aelt,z) € (0,T) x Q. To simplify
the exposition we shall assume now that A and B are independent of u.

Theorem 2 Assume that f(z,t) < —© (respeci. f(z,t) > ©) on B,(zy) C Q, ae.
t € (0,T). Then there exist some posilive constants M, t*, and v € (0, 1) such that
any weak solution of problem (3), (4) with D(uw) < M satisfies that u(z,t) < 0 (respect.
w(z, t) > 0) in P@E*:1,v).

The proof of Theorem 1 consists of several parts: Step 1. The integration-by-parts
formula:

B+ by i+t = an{t:T} G(’LL((E, t))d(l?
+ [ A Dudadf + [, Budzdd + ([, Cudxdd — [, ufdwdd)
< Jop e - Awdld + [, p 1 G ulz, 1))dldd
+ fongmoy Glul@, 1))da+ == ji + j2 + s,
were ;P denotes the lateral boundary of Pie. 9P = {(z,5) : |z —zo| = ¥(s—1)", s €
(t,T)}, dU is the differential form on the hypersurface &P N {t = const}, ng and n.

are the components of the unit normal vector to g FP. This inequality can be proved
hy taking the cutting function

9-+h
o) = e (o=l )60 [ Tl 9)ds, A >0
14

as test function,where T,, is the truncation at the level m,



1 ifoe[t,T—1], 1 ifd>e,
£(0) =< k(T —0) for6e[T—1T], e(lz—a0,0):=1 3d ifd<g,
0 otherwise, k &N, 0  otherwise,

with d = dist((z,0), 8 P(t)) and & > 0. So, supp((z,0) = P(t), {, 5 € L= ((0,T) x Q)
and g’é e L7 ((0,T) x §). Using the monotonicity of § and passing to the limits we
get the inequality.

Step 2. A differential inequality for some energy function. We assume choice P such
that it does not touch the initial plane {t = 0} and P C B,(xg) x [0,T}]. Then
iy + 1o + i3 < j1 + ja. In order to estimate j, let us mention that n = (n,,n;) =
(ﬂ%z_l_(g_i)m_,u])w((6 — t)ve, — ve,) with e,, e, orthogonal unit vectors to the hy-
perplane ¢ = 0 and the axis ¢, respectively. Then, if we denotes by (p,w), p 2 0
and w € 9B, the spherical coordinate system in RY , if ®(p,w,@) is the spherical
representation of a general function F(z,t), we have

T p(6.t)
I(¢) ::fF(rL',H)d:L'd@E/ dd pN“ldpf O(p, w,0)|J|dw,
P t 0 a

31
where J is the Jacobi matrix and p(f,t) =9(f — )V . So,

It (Bt '
Cds) = _] ﬂN“ld/)/ ®(p,w,0)|Jldw
" ( 8B

)

- ' b=t (10)
+/ pep™ 1l (D(p,w,t)]J[d,’w:/ o F(, 0)dldd.
Jt P

a3y
Then, by Halder's inequality, we get

/ nI-AudFdH’ < M, / | ng||VulP~uldlde
Jap Jap

{ . (p-1)/p | n lp 1/p
< M, ] 0 Vu‘pcl[‘déi) (f ey ?’dI‘d(;J)
2 \ ap I/ tH | 0P lpﬂ'lpﬁl’ l (11)

{p—1)/p T P o
= M, (_E@> f %{ [ urdr | 48 '
dt ¢ lpb‘p B8 o00,t)

To estimate the right-hand side of (11) we use the interpolation inequality ([5]) : if
0 <o <p—1, then there exists Ly > 0 such that Vv € W?(B,)

. ] 1-6
[ollns, < Lo (1V0llp,a, + 0 0llesis,) Clvllrz,) (12)
re{l,14+9], 6= %{%, § = — (1 + g(:ll_;—;;N) . In our case, we shall apply it

to the limit case o = 0. By Holder’s inequality

1/r . ar (—1)/ar
(/ |u|’rd:c> < (/ |u]dr) - (/ |u|7'“d:v> :
B, By Bp



with ¢ = -«1— .Then

, w2\ ? p(L=B)/r
f WfPdr < Lo / P+ 7 ( / |u|) x( / w)
aB, B, B, B,

_ 9 p(i—8)/qr plg—~1)(1-8)/qr
<o ([ 1w [ ) x( [ [
B, B, B, B,

< Kpé‘éfp (B, + (]*)9 C£1~0)p/qrb(q~1)(1—9)z)/qr

< Kpéép (B, -+ C*)@F(l—@h'/fl?“ pla—Di1-Op/ar
(13)
where E(t,p) = [, [VuPde, Cil(t,p) = J, lulda and K is a suitable positive
constant. Taking r € [M v+ 1} we get that p = 0+ p < 1. Applying once

pty !
again Holder’s inequality with the exponent 1, we have from (13)

dE (p=1)/p T iami ; 1/p
i) <L <_E> X ([ G le‘m” (B, + C,)*pla-hit= )f’/q'd7->
t

(p—1)/p )
< [ _f@. e pla=1(1-0)/ar
- dt

1-pe

. </.:T (B + C. )Cl’i')% (]tT (%paaphgﬁ dr) v

¢ (-1/f» _
< Lo(t) <_M> pla=1)(1- 8 /ar (E—’r(])%"" 18

?

dt
(14)
for a suitable positive constant L. To obtain (14) we have assumed that

1—ps

”“:</T(m@”~“yﬁ“)”<“

which is fulfilled if we choose © € (0,1) sufficiently small because the condition of
convergence of the integral o(¢) has the form (1—v)(p—1)+vd0p > —(1-8) ( 1— ;1'”;) .
So, we have obtained an estimate of the following type

] _ . I(E C p—1)/p
il < LAt D () D=2 (g G ) (_C( thr )> ,  (15)



where [ is a universal positive constant, D(u) is the total energy of the solution under
investigation, A € [0, (¢ — 1){1~8)/qr] and w:=1-£ 2=t € (1 — 0 1) . This allows

us to choose A so that %_-“%) € (0,1). Let us estimate jp. Using the expression for n,,
we have [ja| < Cs | P || 7dldf. We apply then the interpolation inequality (for the
limit case o = 0)

lvlly+108, < Lo (VY

I3, + 2 [0llesn,,) - Ilis, Yoe Wi (B,)  (16)

with a universal positive constant Ly > 0 and exponents s = (—”’{%——w#, T €
1+, 1+ 7). Again

' - s(4+1)/p
/ llufrf‘l"ldx S L'I‘F'YI(S(’Y~|~1)/QP / ]V’u,!pdm + f lfu'”"‘“ldm
98 Bp B,

1qr (g-1)/qr] L=o)(r+1) (17)
e ‘ul0~l~1dw [ 41b17+1d.’1}
B, B,

Here K is the same as before. Let n = 3(7: Yo (1~331£7+1) <1, nm= Lg_—Uﬂ;_:)(_‘ij))
n+m > 1. Then,

T N
2| = / d'r/ l"u!'y"'1dF
t 8B

plr)

T .
gL@U%”(/ka“W%EVHQWMAM) (18)
t

ng+c+mﬂﬂnmﬂmwCf(KWHWﬂHOUi

for some L = L(Cs, Ly) and exponents k:=n+x—1, &=1/(1—n). Then. we have

c, f Wy + B+ CO < iy + iy + s, (19)
Pn{t=T}
il < O Loy + L0012 3, 1), (20)
D pCly
K ( f |V + B + 0) < iy iy i s, (21)
Pr{t=T1

for different positive constants K. Now, assuming 7' — ¢ and D(u) so small that

T e 1/e
L (b(T, )" ( / ([{S("f“)/g”) d»r> <K
t 2
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