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Chapter 14
DIFFUSIVE ENERGY BALANCE MODELS IN
CLIMATOLOGY
J.1. Diaz

1. Introduction

This paper contains an expanded and updaied version of my lecture at
the Collége de France, on May 1997, where I collected several results on
a diffusive energy balance model given by a nonlinear parabolic problem
formulated in the following terms:

(P) w — div(|VulP~2Vu) € QS(z)B(u) — Glu) + f(z,t) in (0,T) x M,
u(z,0) = up{z) in M,

where M is a C°° two-dimensional compact connectedoriented Riemannian
manifold without boundary. We assume 7' > 0 arbitrarily fixed, Q@ > 0,
S € L®(M) and p > 2. The function G is increasing and /3 represents
a bounded maximal monctone graph in IR? (of Heaviside type). We also
consider the associate stationary problem

(Pay) - div(|VulP~2Vu) + G(u) € QS(x)A(u) + foolx) on M.

Through the paper we shall use the notation div(|VulP~2Vu) = Aju.
Problem (P) arises in the modeling of some problems in Climatology: the
so-called Energy Bualence Models introduced independently, in 1969 by M.IL
Budyko [15} and W.D. Sellers [64]. The models have a diagnostic character
and intended to understand the evolution of the global climate on a long
time scale. Their main characteristic is the high sensitivity to the variation
ofsolar and terrestrial parameters. This kind of models has been used inthe
study of the Milankovitch theory of the ice-ages (see, e.g. North, Mengel
and Short [60]).

The model is obtained from the thermodynamics equation of the atmo-
sphere primitive equations via averaging process (see, e.g. Lions, Temam
and Wang [53] for a mathematical study of those equations, Kiehl [50] for the
application of averaging processes and Remark 1 for some nenlocal variants
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of (P)). More simply, the model can be formulated by using the energy bal-
ance on the Earth’s surface: internal energy flux variation = Ry — Re+ D,
were B, and R. represent the absorbed solar and the emitted terrestrial
energy flux, respectively and D is the horizontal heat diffusion.

Let us express the components of the above balance in mathematical
terms. The distribution of temperature u(z,t) is expressed pointwise after
standard average process, where the spatial variable x is in the Earth’s sur-
face which may be identified with a compact Riemannian manifold without
boundary M (for instance, the two-sphere S 2), and t is the time variable.
The time scale is considered relatively long. Nevertheless, in the so called
seasonal models a smaller scale of time is introduced in order to analyze
the effect of the seasonal cycles in the climate and in particular in the ice
caps formation (see Remark 2 for the connection with the associate time
periodical problem).

To simplify the presentation we assume that the internal energy flux
variation is simply given as the product of the heat capacity ¢ (a given
constant which can be assumed equal to one by rescaling) and the partial
derivative of the temperature u with respect to the time. For a more general
modeling see Remark 1.

The absorbed energy R, depends on the planetary coalbedo f3. The
coalbedo function represents the fraction of the incoming radiation flux
which is absorbed by the surface. In ice-covered zones, reflection is greater
than over oceans, therefore, the coalbedo is smaller. One observes that
there is a sharp transition between zones of high and low coalbedo. In the
energy balance climate models, a main change of the coalbedo occurs in a
neighborhood of a critical temperature for which ice becomes white, usually
taken as u = —10°C.

The different coalbedo is modelled as a discontinuous function of the
temperature in the Budyko model. Here it will be treated as a maximal
monotone graph in R?

m u < —10
Blu) =< [m,M] »=-10 (1)
M u > —10,

where m = ; and M = 3, represent the coalbedo in the ice-covered zone
and the free-ice zone, respectively and 0 < §; < fBu < 1 (the value of
these constants has been estimated by observation from satellites). In the
Sellers model, (3 is assumed to be a more regular function (at least Lipschitz
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continuous}, as for instance

m U< Uj,
Bluy={ m+(Z) (M —m) uw << oy,
M U > U,

where u; and u,, are fixed temperatures closed to —10°C.In both models, the
absorbed energy is given by R, = QS(z)F(u)where 5(z) is the insolation
function and @ is the so-called solar consiant.

The Barth’s surface and atmosphere, warmed by the Sun, reemit part
of the absorbed solar flux as an infrared long-wave radiation. This energy
R, is represented, in the Budyko model, according to the Newton cooling
law, that is,

R, =Bu+C. (2)
Here, B and C are positive parameters, which are obtained by ebservation,
and can depend on the greenhouse effect. However, in the Sellers model, R,
is expressed according to the Stefan - Boltzman law

R, = UU4, (3)

where o is called emissivity constant and now u is in Kelvin degrees.

The heat diffusion D is given by the divergence of the conduction heat
flux F. and the advection heat flux F,. Fourier’s law expresses F, = k. Vu
where k. is the conduction coefficient. The advection heat flux is given by
F, = v-Vu and it is known (see e.g. Ghil and Childress [35]) that, to the
level of the planetary scale, it can be modeled in terms of k, Vu for a suitable
diffusion coefficient k,. So, D = +(kVu} with k = k.+k,. In the pioneering
models, the diffusion coefficient & was considered as a positive constant.
Nevertheless, in 1972, P.H. Stone [68] proposed a coefficient &k = {Vu/|, in
order to consider negative feedback in the eddy fluxes. So, in that case the
heat diffusion is represented by the quasilinear operator I = div(|Vu|Vu).
Our formulation (P) takes into account such a case which corresponds to
the special choice p == 3 {notice that the case p = 2 leads to the linear
diffusion). These physical laws lead to problem (P) with R.(u) = G(u) — f.

In Section 2 we start by presenting some results on the existence and
uniqueness of solutions which generalize some previous results in the lit-
erature for a one-dimensional simplified formulation. Such simplification
considers the averaged temperature over each parallel as the unknown. So,
the two-dimensional model (P) is reduced in a one-dimensional model when
M is the two dimensicnal sphere and considering the spherical coordinates.
Therefore, the model becomes

e — (o) e Pua)e € QS(I(E) — Rew) in (~1,1) x (0,7),
(Pl){ w(z,0) = uo(z) in (~1,1),
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with p(z) = (1 — z2}% where = = sinf and # is the latitude. Notice that
again there is no boundary condition since the meridional heat flux (1 -
2%)% |ug [P~ %11, vanishes at the poles = = +1. We also include in this section
some comments on the free boundaries associated to the Budyko type model
(the curves separating the regions {z : u(z,t) < —10} and {z : u(z, t) >
~10}). We end the section with a result on the stabilization of solutions as
t — co. Some references on the question of the approximate controllability
for the transient model are given in Remark 4.

Section 3 is devoted to the study of the number of stationary solutions
according to the parameter @, when 3 is not necessarily Lipschitz continuous
and p > 2. We start by estimating an interval of values for ¢ where there
exist at least three stationary solutions and other complementary intervals
for () where the stationary solution is unique. A more precise study of the
hifurcation diagram of solutions for different positive values of @ is available
once we specialize foo(z) = C with C a prescribed constant. Then problem
(Fo ) becomes

(Po.c) — diV(IVu1p_2Vu) +Gu)+C € QS(z)S(u) on M.

We denote by ¥ the set of pairs (@, u) € RY x V, where u satisfies the equa-
tion (Pp.c). We show that, under suitable conditions, i contains an un-
bounded connected component which is S -shaped containing (0,G~1(—C))
with at least one turning point to the right (and so at least another one
to the left). We end Section 3 with a remark on a simplified version of
problem (Pp ) for which it is still possible to find more precise answers: if
Q1 < Q < Qq, for some suitable positive constants (J; < Qz, then we have
infinitely many solutions. More precisely, there exists ko € IN such that for
every k € IN, k > ko € IN there exists at least a solution u; which crosses
the level u; = —10, exactly % times.

2. The transient model

2.1. On the existence of solutions

Motivated by the model background described in the Introduction, we in-
troduce the following structure hypotheses: p > 2, ¢} >0,

— (Hp) M is a C°° two-dimensional compact connected oriented Rieman-
nian manifold of IR* without boundary,

— (Hp) 3 is a bounded maximal monotone graph in R% e m<z< M,
¥z € B(s), Vs € IR, '

— (Hg) 6 : R — IR is a continuous strictly increasing function such that
G(0) =0, and |G(c)| > C|a|” for some r > 1,
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—(H) S:M-R,5€L¥M), 5 >8x)>85 >0 aexe M,
— (Hy) ] € L®(M x (0,T)), (resp.— (HF) € L®(M x (0,50))),
— (Ho) wo € L=(M).

The possible discontinuity in the coalbedo function causes that { P} does
not have classical solutions in general, even if the data up and f are smooth.
Therefore, we must introduce the notion of weak solution. The natural
“energy space” associated to (P) is the one given by

Vi={u: M — R, uc L*(M), Vyu € LP(TM)},

which is a reflexive Banach space if 1 < p < co. Here T A1 denctes the
tangent bundle and any differential operator must be understood in terms
of the Riemannian meiric g given on M (see, e.g. Aubin [8] and Diaz and
Tello [26]).

Definition 1 — We say thot v : M — IR is o bounded weak solution of
(P) if i) w € C([0,T]; L*(M)) N LP(0, T5; V)N Lo (M % (0,T)) and i) there
exists z € L(M x (0,T)) with z(z,t) € flu(z,t)) a.e {z,£) € Mx(0,T)
such that

/u(rT) (z, T)dA — / < v{z, t},ulz,t) >y di+

/ / < |Vu|P~2Vu, Vv>dAdt+/ f Glu)v dAdt =
= /0 /MQS(J;)E(I,L*) vdAdt + [G /M fudAdt + /Mug(m)v(:c,()) dA

Yo € LP(0,T; V) N L¥(Mx(0,T)) such that v, € LP (0, T: V"),

where <, >vixv denotes the duality product in V' x V.

We have

Theorem 1 — There exists al least a bounded weak solution of {P). More-
over, if T = +oo and f verifies (H®), the solution u of (P) can be extended
to [0, 00) X M in such a way that u € C([0,c0), L2H(M)) N L(M x (0, 00))
N LY (0,00, V).

The above result can be proved in different ways. As in the case of the
one-dimensional model (Diaz [19]) we can apply the techniques of Diaz and
Vrabie [30] based on fixed point arguments which are useful for multivalued
non monotone equations. We start by defining the operator A:D(4) C
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LP(M) — LMY A) = —Agu+ Gu) if u € D(A) = {u e L*(M) :
—Ayu+ G(u) € L2(M)}. The Cauchy associated problem

) { By 4 Au(t) 3 h(t) te(0,T), in X = L3(M)
'LL(D) = ug, ug € L2 (M),

is well posed (it has a unique mild solution in C{[0, T; L2(M)) for every
h € L2(0,T; L?>(M)) by the abstract results of Brezis [14]} since we have

Proposition 1 — Let

sy — f ]Vu]pdA+/ Glu)dA e D(@) @
+oo u & D(d)

where G(u) = /u G(o)do with D($) := {u € LA2(M), Vu € L*(TM) and

fM (u)dA < +oco}. Then 1) ¢ is proper, conver and lower semicontinuous

in L*(M). #)A = 8¢, and D(A) = Lz(M) and i) A generales a compact
semigroup of contractions S(t) on L2(M).

Besides, from Brezis [14] we know that u, solution of(F), verifies that
w e LP(0,T;V), vitu, € L*(0,T;L*(M)), v € Wi2(5,T; LAH(M)), 0
§ < T. Let us prove the existence of solutions for the problem (P) via a
fixed point for a certain operator £. Let Y = LP(0,T; L>{M))} and define
LK — olPOTLE M) by the following process: Let us define

K ={z € L0, T; L=(M)) : l2(t)l=uny < Co act € (0,T)}

with Cp = QS1 M + ”f“L“(O,T;LDG(J\/!))-

Now, we fix ug € L?(M) and define the solution operator (or gener-
alized Green operator) Iy : K — C([0,T}; L3 (M) by Io(z) = v solution
of (P,) associated to h = z. Given f € LP((0,T); L*(M)), we define
the superposition operator F:LP((0,T); L3(M)) — 287 THLHAMY) by
Flo(t)) = {h : hiz,t) € @S(x)Bv(z,1)) + f(z,t) ae xz€ M}

Finally, we define

L(z) = {h € LPO,T; L2 (M)): h{t) € F(Io(z)(t)) in L* (M) ae. t € (0,T)}.

It is not difficult to check (see Diaz and Tello [26]) that using the results by
Vrabie {71] and Diaz and Vrabie [30], £ verifies the assumptions required to
apply a version of the Schauder-Tychonoff Theorem due to Arino et al. [7]
and hence the existence of a local solution to (P) is proved.
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In order to complete the proof of Theorem 1, we are going to show that
the solution « can be continued up to ¢ = co, when (H%°) is fulfilled. Taking
u as test function we get

/ utudA—}-f ]Vu|pdA—}-f Glu)udA
M M M

:/ QSzudA—}-/ fudd, =z g fB{u). (5)
M M
Then
1 d 2 p 2 2
ia |u| dA -+ |VU| ClA+C/ luE dA < O-{-E“uan(M)
M M M

and by Gronwall’s inequality [[u(t)|{z2(a £ & ¥t > 0 with k independent
of . By a well known result (see e.g. Theorem 4.3.4 of Cazenave and
Haraux [16] ) u can be extended to (0,00) and so u € C([0, oc); L*(M)).
To see that u € L®°({M x (0, c0)) we introduce T(x,2) and u(z,t), given as
the unique solutions of the problem

{ Ty — AT+ G(u) = MQS(z) + fF(z,t)  on M x (0,00)
(0, 2) = ug (x) = max {0, up(z)} onM,
and

{ u;, — Apu + Glu) = m@S(x) + [~ (z,1)

u(0,7) = ug (x) = min {0, ua(z)},

respectively. Since the operator —Ayu +G(u) is T-accretive in L?(M), it is
easy to see that u(z,t) < u(z,t) < u(z,t) which proves the assertion once
that

[l (0ooyan < max{|lug oo s GHIMQS oo + 15T flo0)}

llll 2= (0,001 1) < max{ g lloo » G (IMQS oo + 1177 llo) }-

Remark 1. More realistic energy balance models are formulated in terms
of functional equations adding some non local terms to problem (P) . So,
for instance, in linking the albedo to the surface temperature u alone, one
neglects the very important long response times the cryosphere exhibits.
E.g. the expansion or the retreat of the huge continental ices heets occurs
with response times of thousands of years, a feature which Bhattacharya,
Ghil and Vaulis [13] proposed to incorporate by substituting « by a long term

average of u, e.g. w(z,t) := f_OT 7(z, s)u(z, t+8)ds with 7' =2 10* years with



304 Diffusive energy balance models in climatology

+{,,=T) =0, v(.,s) > 0 for s € (-T,0] and fET'y(.,s)ds = 1. Of course,
one can refine this procedure by having independent ice- and snow-lines. In
that case, one understands ice-lines as the boundaries of regions that are
covered by continental ice-sheets or huge glaciers (slow response times in
comparison with the ten-year mean), whereas snow-lines refer to boundaries
of regions where the variations in ice- or snow cover occur on the time-scale
of u. This approach was chosen in Diaz and Hetzer [25] (see also Hetzer
and Schmidt {48] and Hetzer [45],[46], [44]).

On the other hand, if we disregard the latent energy stoved in conti-
nental ice sheets and glaciers, the internal energy flux is given by e(x,t) =
e(z)u(x,t) with ¢ the heat capacity which varies considerably with z due
to the land-water distribution. However, a more accurate modeling sug-
pests to set e(z,t) = e(z)u(z,t) + h{w(z,1)) where ¢ denotes the thermal
inertia and h(w(z,t)) stands for the latent energy density due to huge ice
accumulations. This approach is closely related to the one for the Stefan
problem (cf., e.g., Meirmanov [55})with the obvious change that h should
depend on the long-term temperature mean w rather than on w in view
of the time scales relevant for the latent fluxes. Here A is a nonnega-
tive bounded decreasing function with derivative £ having compact sup-
port. Using that e, = [cu + h{w)]y = cu; + £(w)w, and observing that
wy = fST (s, Jus(.,t + s)ds in case that u is sufficiently smooth, one ob-
tains cuy -+ E(w)y(.,,0)u — &(w) f_OT “s(., 8)u(.,t + s)ds via integration by
parts for e,. Collecting all terms one is led to a non linear and nonlocal
quasilinear parabolic problem. Some results on the existence of solutions
for such a model can be found in Diaz and Hetzer [25]. We also mention the
treatment made in Bermejo, Diaz and Tello [12] for the study of the general
case ¢ = ¢(z) (but without any nonlocal terms) and study of the multi-layer
model made in Hetzer and Tello [49].

Remark 2. A more realistic description of the incoming solar radiation flux
()5 (x) is obtained by replacing it by a time depending function Q(z, ¢} under
the general assumption Q(x, t) is T—periodical in time and Q{x,t) > 0. This
last inequality allows to consider the polar night phenomena (time where
Q(z,t) = 0 for some subsets of the manifold M). The cousideration of
the periodicity of the forcing term is motivated by the seasonal variation
of the incoming solar radiation flux during one natural year. The existence
of periodical solutions for the associated model was the object of the paper
Badii and Diaz [9]. The existence of periodic solutions for the Sellers type
model was obtained by considering the Poincaré map F associated to the
Cauchy problem (P), i.e. the operator assigning, to every initial data, the
solution of {P) evaluated after T-period. We prove that F is a continuous,
compact and pointwise increasing map and so, the Schauder fixed point
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theorem can be applied. The existence of a periodic solution for the Budyko
type model needs some different arguments. The Poincaré map can not
be well defined as a univalued cperator and so we apply a variant of the
Schauder-Tychonoff fixed point theorem for a suitable multivalued operator.

Remark 3. For different purposes it is useful to get existence results via
regularization of the multivalued term G(u). See, e.g., Xu [72] and Feireisl
and Norbury [33] for some special formulations when p = 2. In our case it
can be obtained as an easy adaptation of the results of Section 3. We also
mention some results on the numerical approach due to Lin and North [51],
Hetzer, Jarausch and Mackens [42], Bermejo [11] and Diaz, Bermejo and
Tello [12].

2.2. On the uniqueness of solutions

The question of uniqueness has different answers for the different coalbedo
functions under consideration depending on whether the coalbedo is sup-
posed to be discontinuous or not. For the Sellers model (3 locally Lipschitz),
the uniqueness is obtained by standard methods (see e.g. Diaz [19]). Never-
theless, in the Budyke model {F multivalued), there are cases of nonunigue-
ness (in spite of the parabolic nature of(P)). The first nonuniqueness result
in this context seems to be the one given in Diaz [19] where infinitely many
solutions are found for the one-dimensional model (P?) for any initial con-
dition ug satisfying

ug € C°°(I), uo(z) = up(—=z) Yz € [0,1],
ug(0) = —10, u{?(0) =0, k=1,2 (6)
uh(1) =0, ui(z) <0, z € (0,1).

Notice that these initial data ug are very “flat” at the level—10. A similar
non uniqueness result for the Budyko model with a suitable initial datum
carries over to the two-dimensional model when M = 52, Each solution
uy(z,t) of (P) generates a solution uz(z,y,t) of 2D model by rotation
about the axis through the poles {notice that the initial datum us(z, y,0) is
independent of the longitude), i.e. us(z,y,t) = u1(sind, t) where (z,y) € 52
with latitude #. It is not difficult to prove that ugs is asolution of (£) for
the initial datum u; sin #,0). Other non uniqueness results can be found by
using selfsimilar special solutions as in Gianni and Hulshof [37].

Since non uniqueness of solutions may arise, it is useful to know (see
Diaz and Tello [26]) that in any case problem (F) has a maximal solution
©* and a minimal sohution v, (i.e. v* and u, are solutions of (F) such that
everysolution u of (P) verifies that u, <u < u* in(0,T) x M). In order to
obtain a criterion for the uniqueness of solutions for Budyko type models
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we introduce the notion of nondegeneracy property for functions defined on

M.

Definition 2 — Let w € L®(M). We say that w satisfies the sirong
nondegeneracy property (resp. weak) if there exist C > 0 and ¢g > 0
such that for any € € (0,e), [{z € M : |Jw(z) + 10| < €}| < CeP~1t
(resp. {z € M : 0 < |w(z) + 10| < €}| < CeP™1), where |E| denotes
the Lebesgue measure on the manifold M for all E C M.

Theorem 2 — i) Assume that there erists a solution u of (P) suchthat
u(.,t) verifies the strong nondegeneracy property for any t € [0,T]. Then u
is the unique bounded weak solution of (P). ii) There exists at most one
solution of (P} verifying the weak nondegeneracy property.

The proof is based in the fact (adapted from Feireis] and Norbury [33])
that 3 generates a continuous operator from L*(M) to LI(M), Vg €
[1,00), although 3 is discontinuous, when the domain of such operator is
the set of functions verifying the strong nondegeneracy property. More pre-
cisely, we have (see Diaz [19], Diaz and Tello [26])

Lemma 1 — (i) Let w, 1 € L°°(M) and assume that w satisfies the strong
nondegeneracy property. Then for any q € [1,00), there ezists C > 0 such
that for any z,2 € L°(M) with z(z) € B(w(z)) and 2(z) € B(1b(z)) ae
T € M, we have

Iz =2 oS (bu — by min{C [ w—w [|E08 MYV (D)

() If w, b € L°°(M) and satisfy the weak nondegeneracy property then

/\A (2(z) — 2(@))(w(z) — b(z))dA < (b = b)C | w =B Lo gy - (8)

Tdea of the proof of Theorem 2. Assume that there exist two bounded
wealt solutions u and % of (P), where u verifies the strong nondegeneracy
property, i.e. u; — Apu+Glu) = @Sz + f and &, — Dpa+ G(4) = QS2+ f,
in (0,T) x M, for some z € B(u) and 2 € 3(). Taking (u — %) as the test
function we get

1 d ~ D] ~ N

o [ o -a@Pdat [ (00 - gy - wadt

= M M
/ < |Vu(t)[P2Vult) — V()P Via(t), Vu(t) — Va(t) > dA =

M

= Q/ S(x)(z(z, t) — Z(z, t))(u(z, t) — 4z, t))dA. (9)
M
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By using the embedding V' — L*®(M) ifp > 2 and V C L7{M) for all
o € [1,00) if p = 2 (recall that M is a two-dimensional compact Riemannian
manifold: see, e.g. Aubin [8]) we arrive at

1d . Co .
s le=tliapn < QNS o= —'C';]";";') =2 Lo an) +
+Co [ u— 6 [ 720ty (10)
in the case p > 2 and
th || @iy £ (GRS ommy — & e any +
il w— a2 +C1—9» (11)
1 &, T

for the case p = 2 where ¢ and o = o(¢) .Now, we distinguish two cases:

CASE1: if GiQ || S |leo —CCO

1,po0

<0 and p> 2, then

1d .
s lu—d 1Z:00< Collu =@ 320 -
and the result holds by Gronwall’s Lemma. If p = 2 and GiQ | § ||

_ 1 <0
Cl,Z,cr

. . 2e
fu—tlieny < € |luo—to 2200 —m—(eﬂ —1) <

~26CiQ [ S floo (¥ = 1)

IA

and since the above inequality is true for all €, we conclude the uniqueness.

> 0, we consider a suitable rescaling

CASE 2: #CQ || S {leo — oy

(M — Mj;) given by the dllatatlon D of magnitude § > 0 on the manifold
(M,g), D: M cR® = IR® D(z) = % = z. So, if u is any function defined
on M, its local representation in the new coordinates isa: Mz — IR,
(%) = u(%) and we have

a4 . 1 8u 7

So problem (P) in the new coordinates becomes

(P5) iy —8Pdiv g, (Vo P72V ) 46 () € QSA(a)+F in (0, T)x M
s (0, %) = up( %) on Ms.
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Clearly, if @ is a solution of (Ps) then #(dz, t) is a solution of (P). More-
over, the uniqueness of (P5) implies the uniqueness of (P), and conversely.
Let us see that there exists & > 0 such that the solution of (Fj) is
unique. Let us and s be two solutions of (Ps) with us verifying the strong
nondegeneracy property. Arguing as before we arrive at
1d / 2
—— Jus(t) — fig(t)|"dAs
24t f,,
467 / < Vs [P Vus — |Vis[P~*Vits, Vus — Viis > dAs
M

[ (Glus) — Glis))(us — s)dAs = Q /M S5(z5 — 35)(us — dg)dAs

M
for some z5 € B(us) and 25 € B(Gs). Here, Ss is defined by S5 : M; — IR,
S5(%) = S(%). (10) and (11) allow us toestimate us — G for us and s
solutions of (Ps)

a2
| us — s HLE(J\/IB)

b} b
&=

52 M z N
< (Cus QU S5 p=(as) ~%‘“i’5—) | s — s H%"C(Mg}

i €
T ” g ~ tg H%Z(J‘/lé) +C’1—’)E‘ (12)
14,7y

A careful study of the dependence on § of the involved constants (see Diaz
and Tello [26]) allows us to see that if we define the constant

§2M|3

K5 = CsQ || Ss ooy — Clacs

we have that %irr{l) K, 5 = 0. This reduces the proof to Case 1 and the proof

of (i) follows. For the proof of (ii) we use the second part of Lemma 1 and
50

where Cy is the constant of the weak nondegeneracy property (Lemmal).
The uniqueness follows as in (i}, by studying the sign of the constant C'y€} I

1
S {lpeqany — o and by rescaling when it is negative.

B

Remark 4. Tt is possible to give several sufficient criteria for the nonde-
generacy property. For instance, in the one-dimensional case and p = 2,
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if up € CY((~1,1)) is such that there exists ep > 0 such that the set
{z € (-1,1) : juo(z) + 10| < €} has a finite number of connected com-
ponents I; with 7 = 1,.., N and for any j there exists x; € I; such that
up(z;) = —10,and |uez(z)] > o for some §p > 0 and any = € I; close to
x;, then there exists a solution u(z,t) satisfying the strong nondegeneracy
property on (0, T*) for some T™ (see Diaz and Tello [28]). Some results on
solutions with |Vu| s 0 on the level where 3 becomes multivalued for a
similar bidimensional problem are given in Gianni [36].

2.3, On the free boundary for Budyko type models

The discontinuity of the albedo function assumed in the Budyko model (8
multivalued) generates a natural free boundary or interface {(t) between the
ice-covered area ({x € M : u{z,¢) < —10}) and the icefree area ({r €
M u(z,t) > —10}). The free boundary is then given as {(t) = {z € M :
u(z,t) = —10}. In Xu [72], the Budyko model for p = 2 is considered in the
one-dimensional case. He shows that if the initial datum wuq satisfies

ug(x) = up(—x), up € C3*(]~1,1]), up(z) < 0 for any = € (0,1)
and there exists ¢(0} € (0,1) such that (up(z) + 10}(z — (1)) <O
for any 2 € [0, (0} U (€(0), 1],

then there exists a bounded weak solution « of (P) for which one has ((t) =
{C (&) PU{{.(8)} with 2 = (4[t) a smooth curve, (_(t) = {4.(t) and {4.(-) €
C>([0,T*)), where T* is characterized as the first time ¢ for which {.(¢) =
1. He also gives an expression for the derivative (’ () (some related results
for a model corresponding to p(x) =1 can be found in Feireisl and Norbury
[33], Gianni and Hulshof [37] and Stakgold [67]). We point out that the
uniqueness result can be applied for such an initial datum. For the study of
the free boundary in the bidimensional case see Diaz [22] and Gianni [36].

The interpretation of the size of the separating zone {(t) for other models
is in fact a controversial question. So, some satellite pictures (Image of the
Weddell sea taken by the satellite Spot on December 10, 1987) show that
the separating region between the ice-free and the ice-covered zones is not a
simple line on the Earth but a narrow zone where ice and water are mixed.
Mathematically it could correspond to say that the set

M) = {z € M: u(r,t) = —10}

is a positively measured set. In the following we shall denote this set as the
mushy region (since it plays the same role than in changing phase problems,
see e.g. Diaz , Fasano and Meirmanov [23]).

Using the strong maximum principle, it is possible to show that if p = 2
the interior set of the mushy region M(t) is empty even if the interior of



310 Diffusive energy balance models in climatology

M(0) is a nonempty open set (see Gianni and Hulshof [37]). As we shall
see, this is not the case when p > 2 (recall that p = 3 in Stone [68]). A

necessary condition for the Budyko model (with R, = Bu+C) for M(t)# U/

is that
C —10B € [3:Q5(x), BuQS(z)] for ae. z€ M. (13)

It is possible to show that if p > 2, this condition is also sufficient. Here we
merely present a result for the one-dimensional case (see Diaz [22] for the
bidimensional case}:

Theorem 3 — Let p > 2. Assume (138) and ug € L°(I) such that there
exist ©o € I and Ry > 0 satisfying
M(0) ={z €I :up(x) = ~10} D B(wo, Ro)(={z €l |z - zo} < Ro}).

If u is the bounded weak solution of (P) satisfying the weak nondegeneracy
property, then there exist T* € (0,T| and a nonincreasing function R(t)
with R(0) = Rp such that

M(t) = {z € I s u(z,t) = =10} D Bl=o, R(t))
for any t € [0,T%).

Proof. We shall use an energy method as developed in Diaz and Veron [29].
Given u hounded weak solution of (P), we define v = u+ 10. Asin Lemma
3.1 of the ahove reference, by multiplying the equation by v we obtain that
for a.e. B € (0,Rg) and t € (0,T), we have

1 0 t
o N R A
2 JB(z0,R) 0 JB(x,R)

¢
+Bf/ lo(z, 7)|*dzdr <
0 JBlzo,R)

1 t .
< / ] plve|P %, - Audsdr + / / {Q8z — C + 10B}vdzdr
0 JS(zu,R) 0 JB{zo,R)

= Il + IQ:
where p(z) = (1 — 2%, S(zo, R) = 8B{z0, R) = {zo — R} U {zo + R} and
z(x,t) € B(u(z,t)) for ae. x € B(zo, R) and ¢ € (0,7]. We introduce the
energy functions

oA
E(R,1) / / o) |va [Pdzds
0 /B{zq,R)

b(R,t) = sup ess/ lo(z, 7)|2dz.
o< T<t B(20,R)
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Using Holder’s inequality and the interpolation-trace Lemma of Diaz -Veron
[29], we get

i/p

oF {p—1)/p t
I < (— Rt ) / / v|PdxdT <
55 (F) X S(EO’R)| !

oOF (p—1}/p
< t(-8y/p { 77
< aR(R,t)

8
X (E(R,t)llp + ROF/PH(R, t)l/Z) b(R’t)(l—Q)/Z’

where
§=p/(3p—2)and 6§ = —(3p—2)/2p.

Using the assumption (13), we have 2(-) = [(C — 10B)/QS(-)] € 5(-10).
Then applying Lemma 3 we get

I (M -m)Q || §|lpe=n /Gt 1 v(7) W (Bl Ry 97
From Theorem 4 of Rakotoson and Simon [62], we have the estimate
v zee S Crll vz lzo:p) +C2 v 2y, VU EV, (14)
for some positive constants independent on the interval J. Then we obtain
Iy < (M = m)Q | § ||y C'(CLE(R, £) -+ tCa(R)H(R, 1)),

where now

-9

(fB(mo,R) P(*’C)er)

Ca(R) =
& (IB(zD,R) plz)dz

)p I w+ 30 | Fio.1y:r2¢ry) -

As in the proof of the uniqueness, we can assume C; small enough without

loss of generality. Then, there exists T* € (0,T] and A € (0, 1] such that
ME(R, ) +b(R, 1) < Iy

which Implies that

oF
ARY < (-9 /p 2
=t TR

for some u € (0,1) and for any t € [0,7*). The proof ends as in Diaz and
Veron [29](see also and Antonsev and Diaz [4]).
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Remark 5. The existence of the mushy region (for anyvalue of p € (1, 00))
can be proved for a different class of models by taking into account a dis-
continuous diffusivity (see Held, Linder and Sudrez [40]). In that case the
problem is a variant of the Stefan problem (see, e.g., Meirmanov [68]). It
would be interesting to find sufficient conditions implying the persistence
of a mushy region for any time ¢ > 0. The fact that a mushy region may
exist for the stationary problem can be found from the results of Diaz 7]
(see Theorem 1.14).

2 4. Stabilization of solutions when ¢ — +o00

In order to analyze the stabilization of the solutions of (P), following Diaz,
Hernandez and Tello [24], we assume the additional condition
- (Hoo)] f € L%®((0,00) x M) and there exists foo € V' such that

t+1
/ ) 1f(7, ) = foo(M|ydr7 — 0 ast— co.
t—

We start by recalling a global regularity of the solutions on (0, co).

Lemma 2 — Assume we are given ug € VNL®(M), fe L®(Mx(0,00))
AWEL((0,00); LHM)) and [ 1 fels, Y| 2 yds < Co, Vit > 0 where Cois
a time mdependemf consmnt Then there exists a weak solution of (P) such
that

we LP(0,00,V) and wy € L2(0,00; L2(M)). (15)

A key point in the proof is to check that o(t) = %fM [Vu(z,t)iPdA
satisfies
ot +1) < Cle(t) — ot + D] + 8(%) t >0, (16}

where C is a positive constant and #(t) > 0 when ¢ is large enough with
f(t) = O(1) when ¢ — co. Then, thanks to a technical lemma due to Nakao
[56], we conclude that ¢(¢) = O(1) which is equivalent to u € L*(0,00; V).

The following theorem proves the stabilization of the solutions u satis-
fying (15). As usual, given v bounded weak solution of(F), we define the
w-limit set of u by

wlw)={us € VAL® (M) : Tt,, — +oo such that u(ta, ) = uee in L* (M)}

Theorem 4 — Let ug € L (MINV and let v be any bounded weak solution
satisfying (15). Then, i) wlu) # 0 and if us € w(u), I, — +oo such that
(e, ty + 8) = Ugo in L2(—1,1; L*(M)) and ue € V is a weak solution of
the stationary problem associated to foo ; 1) in fact, if ue € wlu), then
i} — +oo such that u(-,fn) — Uge Strongly in V.
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Proof. Let tis be an element of w(u). Then,
lfee(tn + 8) — u(tn)niqm) <2 “utH%2((tﬂ—1~tﬂ,+1);[l2(1\4))‘

Since w; € L3(0,00; LA (M), [lwellizqrr, 16 v1yz2my — O When t, — o0
and by the Lebesgue convergence theorem we conclude that u(-,¢, +-} —
Uoo 0 L2{(=1,1); L2{(M)).

To prove that u. is a solution of (Pg), we consider the test func-
tions v(w,t) = &(z)e(t — ¢,) with £ € VN LT (M) and ¢ € D(-1,1),
p> 0, f_ll @ =1. Then

/md[ ubiplt — ) /ti:fM e
/t_j /\4 Gu)ep(t — ty)

tn+1 tnt1
/ [ Qatett—1)- | ettt 2 sz,

tn—1 M
Changing variables, namely s = ¢ — ¢,, and defining U, (z, s) = u{z,tn +
s), we obtain that

Up — Ueo weakly in  L7((—1,1); V) Yo > 1
[VU,[P2VU, =Y weakly in L7((—1,1); LP(TM)) Vo> 1.
Applying Aubin’s compactness result (see e.g. Simon [66]), a well known
property of the maximal monotone graphs (see Brezis [14]) and Lebesgue’s

theorem, we get that z, — zeo € H{Uco) weakly in L7(Mx(~1,1)) Vo >
1 and G(U,) = Gluee) in L' (Mx(—1,1)). Letting n — oo, we arrive to

1
/ / Y Vip+ / Gltes )§ == / QSzDof—l—/ Feo€ YEEVNL=(M).
J=1JdM J M M A
Now, the main difficulty is to prove that
f Y (s, )e(s) = [Vue|”™ V.

Due to the coercivity of the p-Laplacian operator we obtain the following
inequality :

1
lim / f (VUL P2V, — |VyP 2V} - (Vites — Vi )io(s) dAds > 0,
M

=00 -1
(17)
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which holds for ¥ € V. We arrive to the desired convergence by taking
Y = Uoo + A£ and applying a Minty type argument to(17) as in Diaz and de
Thélin [28].

The proof of (ii) uses the coerciveness of the operator and the fact that

1
/ / (IVU P2V U, — | Vtioo P Vteo) - (VU — Voo )o(s) dAds — 0.
-1 JM

The inequality |¢ — (P < (J¢]P~2¢ — [EP=28) - (¢ = {), ¥¢, € € RY allows us
to obtain

n—00

t
lim / / VU, — Vuus|Pls) dAdds = 0, Yo,
-1J M

This implies that there exists a subsequence {sn }new, Where s, € (1,1}
such that

lim ] [Vulty + 8n, ) — Vg [PdA =0
M

T—CQ

and so we prove the assertion.

Remark 6. If uo. 1s an isolated point of w(u), it is easy to see that in fact the
ahove convergences hold as t — co {and not merely for a sequence t,, — oo ).
The proof of this convergence is an open problem in the remaining cases. In
fact, in some cases the set of stationary points is a continuum (see Remark
11) and the convergence when t — oc is far from trivial (for some results in
this direction see Feireis] and Simondon [34]).

Remark 7. A result on the convergence (in a suitable sense) of the free
houndaries to the free boundary of the solution of the stationary problem
is given in Diaz [22] (see also Gianni [36]).

Remark 8. The question of the approximate controllability was considered
in Diaz [?] and [21]. To avoid technical difficulties, in these articles the man-
ifold M is replaced by an open regular bounded set (2 of R? (here IR? can be
also substituted by IRY with N € IN ) and p is taken as p = 2. As a bound-
ary condition on (0,7} x 8¢, it is chosen the one of Neumann type since it
leads to a set of test functions for the weak formulation very similar to the
one corresponding to the case of a Riemannian manifold without houndary.
The case of an internal control is considered by taking f(z,t)=v{z,t)xw
with v the control to be searched, and ., the characteristic function of w,
a given open hounded subset of 2. Thus, the new formulation is now the
following: given yp, ya : & — R and £ > 0, find v, : w x (0,7) — IR such
that d(y(T : v-),v4) < & where, in general, y(7 : v) represents the solution
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of problem

ys — Ay + G(y) € @S(2)f(y) +vxw in02x(0,7)
Py Xy on 852 x (0,T)

on

y(0,) = wol") on £,

where n is the outer unit vector to 9f2. It is shown that the answer to the
approximate controllability question depends on the asymptotic behaviour
of the nonlinearity G(y) of the equation. If, for instance G(y) = |y/P~2y,
then the approximate controllability property holds when p € (0,1] but if
p > 1, an obstruction phenomenon appears, implying the impossibility of
the controllability for general data. Some results concerning a special class
of data for the superlinear case p > 1 are presented in Diaz [21]. We point
out that in 1955, John von Neumann [57] proposed to control the climate
by acting on the albedo and that this still remains a mathematical open
question. Finally, we mention the “rain making” (see Dennis [17]) as a
practical example of the application of control problems in environment.

3. On the stationary problem

We consider the problem (Pg ) obtained in the last snbsection. Following
Diaz, Herndndez and Tello [24], we made in this section the additional
assumptions
—(H) G satisfies (Hg) and limjyj_ [G(s)| = +o0.
—{H.) foo € (M) and there exists C; > 0 such that —|| foc|lr=rary <
flz) < —-C; ae ze M
—(H}) there exist two real numbers 0 < m < M and € > 0 such that /3 {r}=
{m} for any r € (—o0,—10—¢) and A(r) = {M} for any r € (—10+¢, +c0).
—10+4€)+ oo SoM

—(He,) G(~10—¢)+C; >0 and ot g(_lg)_i'{j]g’f M < S‘im.

A function u € V' N L®(AM) is called a bounded weak solution of (Fy £)
if there exists z € L°(M), z(z) € O(u(zx)) a.e. z € M such that

fM({Vu[p“\_/u) VvdA + [m Glu)vdd = /M QS(x)rvdA+ /M foov dA,

for any v e V.

3.1. Existence of at least three solutions for suitable Q

We start with a multiplicity result given in Diaz, Herndndez and Tello [24]
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Theorem 5 — Let u,,, uy be the (unique) solutions of the problems
(Pn) —Apu+Gu) = QS(z)m + foolz) on M,

(Pu) = Ayu+G(u) = Q@M + faolz) on M,

respectively. Then: i) for any Q@ > 0, there is a minimal solution u (resp.
a mazimal solution T) of problem{Po.f). Moreover, any other solution u
must satisfy

U < u < u ST uy (18)

GHQSom — || fooli Lo (any) ' (19)
lequm < G HQSim —Cy),
GHQSoM — || fooll L=y}
lequar < G Y QSIM —Cy). (20)

#) for any Q there is, at least, a solution u of (Po,r) which is a global
minimum of the functional

Sy = [ [Tupaa+ | cuas- | frowda - | @stwaa,

on the set K = {w € V, Glw) € LY(M)}, where § = 8j. Moreover, if
(Hg, ) holds, then: iii) if 0 < Q < 1, then { Po ¢) has a unigque solution
U= U, < —10, u is the minimum of J on K, and

G = follzoe () < nglo inf [|ull oo (aty < éi{{lo sup ||ufl g v

S g_l(_cf)r

i) if Qo < Q < Qs, then (Pg 5) has at least three solutionsu;, i = 1,2,3
with up = upg, up > —10, Uy = Uny, ug < —10and ug > uz > up on M.
Moreover, wy and us are local minime of J on K NL¥(M) and, if p> 2,
and v) if Qu < @, then (Pg 5) has a unique solution u = upr, u > —10, u
is the minimum of J on K and |Jul| gee (rg) — -+o0 when Q) — oo, where

_G(-10-¢+C; _ G(~10+€) + [ foollL=(an)
Gr= S\ M @2 = SoM (21)

Sim Sgm
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Proof. i) It is a consequence of the fact that the comparison principle holds
for problems (F,,), (Pu) and then the method of sub and supersolutions
can be applied (see e.g. Amann [1]). ii) The conclusion follows from the
Weierstrass argument by using Lebesgue convergence theorem. iii) From
assumption (He, ) and since 0 < ¢} < (J;, we obtain that #; < —10—¢ and
overlineus < —10 — €. The proof of v) is analogous to i}.

The proof of iv} is divided into several steps. First, we construct two
constant subsolutions V; and two constant supersolutions U; such that

Vo <« Uy <« —10-¢ <« —-10+4+6e < V7 < Uy, {(23)

proving the existence of, at least two solutions of {Pg_r). Later, we introduce
the approximate model (Pé)

(P3) —Dpu+G(w) = QS(x)Ba(u) + foolz) on M,

where 3y is the Lipschitz function 3 = %(I AT~ A1, A > 0 (the
Yosida approximation of ). Since § verifies (Hj), we get that ) is a
bounded and nondecreasing function VA > 0, fa(s) = B(s) for any s ¢
[~10 — €, —10 + ¢ + AM], Br(s) — B(s) in the sense of maximal monotone
graphs when A — 0. If 7 is a Lipschitz function, we take simply 8y = j3.
The existence of a solution of (Pé,) is obtained by a topological fixed point
argument.

Let us show the convergence of the mentioned solution of (Pé) to a third
solution of (Pg ;). For A < Ap {a certain positive parameter) Uy, Uy are
supersolutions of(Pé\) and Vi, V5 are subsolutions of(Pé)‘ So, arguing as in

i), we obtain two families of solutions {u}} and {u3} of (P3) such that

=104+ AgM < W
Vo <uj

Moreover, since 8y(u3) = B{u}), we deduce that uf = u;. Analogously, we
conclude that u = uy . In order to prove that (P3) has a third solution

u}, different from up and u3, we show the applicability of a result due to
Amann [1] to the function F{v) = (—A, + G)"HQS(-)Br(v) + fc(+)) on
the space F = L™°(M). Finally, we get the a priori estimates

/ |[VusfPdA + Q(u)\)u,\d}l:/ QS(QS),@,\(U,\)UAdAJr/ JoctiadA.
J A M M MM

/ @SB usdd + [ fumdd <Cr
M JAA



318 Diffusive energy balance models in climatology

which allows to conclude that uy — u strongly in L?(M), Ba(ua) — weakly
in L2(M) and that 8, — @ in the sense of maximal monotone graphs
(s0, z € B(u) see, e.g.,Benilan, Crandall and Saks [10]). Moreover, we get
that limy—o || Vuy — Vu |peray = 0. Since uj — ug uniformly and
1y > —10 + €p, there exists €; such that Ve < €5, u§ > —10+¢, which is a
contradiction ( uz necessarily crosses the level—10).

Corollary 1 — Let R.(u) = Bu + C with 8 given by (1), -10B+C >0
and —g—f; < % Then we have i) if 0 < @ < :—%—%C, then (FPo.p) has a
unique solution, it) if _—?’—BIJ—C < @ < —_—lgﬁn—“LC, then (Pg,y) has at least
three solutions, iit) if M < Q, then (Pg,;) has a unique solution.

Remark 9. As pointed out in Hetzer [44], the uniqueness of solutions for Q)
small and () large still holds if conditions (Hj) and (Hg) are replaced by G €

CHR), B € CHR—{—10}), m < B(r) < M, ¥r € R—{-10}, mf{gfgj;, re

U, ~10—€]} > 0, where I := G~ (|| faoll o= (r) and inf{ S, 7 € [-10+
e, +00)} > 0. Indeed, if Q) is small enough, we can construct a supersolution
showing that any possible solution u satisfies that Y < u < —10 — € on
M. Then, any solution u must satisfy —A,u + F(z,u) = foolz) with
Flz,u) := Glu) — QS(x)B(u). Since F(x,u)is a strictly increasing function
on [U,—10 — ¢], for a.e. & € M we have the uniqueness of solutions. The
assumption on G leads to a similar conclusion when @ is large enough.

3.2. S-shaped bifurcation diagram

As a continuation of the previous results we can improve the answer for the
special formulation

(Po.c) —div(|VulP2Vu) + Glu) + C € QS(z)B(u) on M.

Following Arcoya, Diaz and Tello [6], we shall describe more precisely the
bifurcation diagram and in paltlculal we shall prove that the principal
branch (emanating from (0,G71(~C)) € R¥ x L*(M)) is S-shaped, i.e. it
contains at least one turning point to the left and another one to the right.
By a turning point to the left (respectively, to the right), we understand
a point (Q*,u*) in the principal branch such that in a neighborhood in
IR* x L*(M) of it, the principal branch is contained in {(Q,u) € Rt x
(M) /@ < Q" Hrespectively, {(Q,u) € IR¥ x L=(M)/Q = Q). :
previous result is due to Hetzer [43], for the special case of p = 2 and
3 a C? function. He proves that the principal branch of the bifurcation
diagram has an even number(including zero) of turning points. Our main
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result already improves this information showing that indeed, this number
of turning points is greater than or equal to two.

Semilinear problems with discontinuous forcing terms on an open boun-
ded set and with Dirichlet boundary conditions have been considered in
Ambrosetti [2], Ambrosetti, Calahorrano and Dobarro {3], Arcoya and Cala-
horrano [5] (see also Drazin and Griffel [31], North [59] and Schmidt [65] in
the context of energy balance models).

We make the additional assumption

G(-10+¢)+C  SM
~(Hg) G(—~10 —€) +C >0 and 00— +C < S

We start by considering the problem with S a Lipschitz function (as in

the Sellers model).

Theorem 6 — Let 3 be a Lipschitz continuous function verifying (HE).
Then ¥ contains an unbounded connected component which is S-shaped
containing (0,G~1(—C)) with at least one turning point to the right con-
tained in the region (Q1,@2) x L={M), and another one to the left in

(@3,Qq) x L®(M).

Proof. Step 1. ¥ has an unbounded component containing (0,G~1{=C)):
We claim that the following result, due to Rabinowitz [61], can be applied
to our case: “Let F a Banach space. If F: IR x E — E is compact and
F(0,u) =0, then T contains a pair of unbounded components C* and C~
in R* x B, IR~ x E, respectively and CTNC~ = {(0,0)}". To do so, we
consider the translation of u given by v := u — G~1(~C). Obviously, v is a
solution of

—Apu + Gv) = QS(z)B(v) on M (24)

where G(o) = G(o+671(—=C))+C and B(0) = f(o+G~1(~C)). We define =
in an analogous way to X. Let E = L°°({M) and define F(Q,v) = (-4 +
6)~HQS(z)A(v)). Then F is the composition of a continuous operator and
a compact one (recall that p > 2}, so F is also compact. On the other
hand, if @ = 0 problem (24) has a unique solution v = 0, so F(0, O)
O In conclusion, ¥ contains two unbounded components C”Land c-

* x L®(M) and IR™ x L™(M) respectively and crné- = {(D O)}
Smce T is a translation of £, T contains two unbounded components C* and
C~ on R* x L (M) and IR_ x L% (M) respectively, and that CTNC™ =
{(0,G71(—C)}. Since @ > 0 in the studied model, we are interested inC™.
In order to establish the behaviour of Ct, we also recall that for every g > 0,
there exists a constant L = L(g) such that, if 0 < ) < g, then every solution
ug of (Pg,c) verifies [uglize(ary < L(g). Since the principal component
is unbounded, its projection over the @-axis is [0, 00). On the other hand,
if @ is large enough, (Fy,) has a unique solution ug, and this solution
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is greater than G~Y(QSyM — C). Since imygj..ca |G(s)| = oo, then the
unbounded branch containing (0,§~(—C))C™" should go to {oo, 00).

Step 2. Bifurcation diagram for two auxiliary problems: We consider the
auxiliary zero-dimensional models

(P)  Gu)+C = Q58) uelR,
(P} Gw)+C = Q5:Bn) uck

The number of solutions to these problems depends clearly on the values of
0. Let us call ; and T the bifurcation diagrams of (P1) and (F3), respec-
tively. By assumptions (Hg), (Hj3) and (Hc), the principal components of
¥; and &y arve S-shaped. We also remark that the sets

K{ = {{Q,uqg) € R?.0<Q< g—%ﬁ)—_’_g, ug = Q_I(QSim — ),
K = {(Quug) e B2 : @ = LTI L o —gv0sim - o))

are contained in &;, i =1, 2.
Step 3. A comparison argument: If Q@ < Q3, there exists ug solution of
(Pg.c) such that ug < 10 —e. Thus ug satisfies

QSam < —DNpu+Gu)+C < Q5,m on M.
Let u}g and uQQ be the solutions of the problems

Gluy+C = Q5m on M
G+ C = Q5m on M,

respectively. That is, (@, ub) and (Q,u%) live in B; and Yo, respectively.
Now, if @ < @3,

—Ajud + g(u?('g) < —Ayug + Glug) < —Ayub + Gup),

and so by the comparison principle for the monotone problem —Aju +
G(u) = f € L*(M) on M, we have that ug

leg ug < ulQ Therefore, the component of & starting in (0,G7H{—-C)),
lives between & andZ, to arrive at (Qa,ug,); where ug, is the minimal
solution of (Pg,). Analogously, if we denote by ug, the maximal solution of
(Pg,), we can prove that the component o3 which connects (Qa, uQQ) with
(00, 00) lives between ¥y and Ly, From @ < @3, the branch containing
(0,G71(—C)) is un bounded and by the uniqueness of solution for (FPo.c)
when @ > @4, we get that this branch is necessarily S-shaped. =

Our next result avoids the Lipschitz assumption made in Theorem 6.




J.I. Diaz 321

Theorem 7 — Let 3 a general mazimal monotone graph satisfying (Hj)
and assume (He). Then & has an unbounded S-shaped component contoin-
ing (0,G71(—C)) with at least one turning point to the right contained in the
region (Q1, Q2) x L (M) and another one to the left in (@3, Qa) x L (M),

respectively.

To prove Theorem 7, we approximate problem (Fp ) when 2 is not
Lipschitz continuous. We only need to show the convergence of the principal
branches C,, of these approximating problems to a S-shaped unbounded
connected set C' of solutions of (Pg ¢ ). For this reason, let us recall the
notions of fiminf and lmsup of a sequence of subsets C,, of a metric space

X:

liminf C, :== {p¢ X : for any neighbourhood U{p) of pin X

dng e IN: U(p) NGy £ 0 Vn > nel,
limsup ¢y, = {peg X : for any neighbourhood U(p) of pin X

n—oo

U{p) N C,, # 0 for infinitely many n}.

A lemma due to Whyburn [70] shows that if i} lim, .o inf C,, £ 0 and
i) US2 O, Is precompact, then lim,, .o sup €, is a nonempty, precompact,

closed and connected set. Proof of Theorem 7. The method of super and

sub solutions proves that if @ > (o, then there exists a solution of (Fp o)
greater than —10 + ¢, Analogously, we know that if 0 < @) < @3, then {Fp)
has a solution smaller than —10 — ¢. It is clear that these functions are not
‘the unique solutions of (Pg ) in those intervals and that the uniqueness
holds at least in the Q-intervals [0,G)) and {QJ4,c0). Since we can not
apply directly Rabinowitz theorem to our problem, we consider the family
Brn=n{I - (I -2p)"1), n €N to approximate 3 in the sense of maximal
monotone graphs when n — oco. Notice that since Bverifies (I};), then 3,
is a Lipschitz bounded nondecreasing function (see Brezis [14]) and that
Bn(s) = B(s) for any s € [-10 — ¢, =10 + ¢ + ], vn.
Let u, be the solutions of the approximated problem

(PR)  — Aptn +Gun) +C = Q5(x)Fn(un) on M

and let ¥, the bifurcation diagrams for (Fg). Let us denote by 5, the
component of ¥, containing (0,G7!(~C)). By Theorem 6, every S, is
an unbounded, connected and S-shaped set. First of all, we are going to
prove that lim sup 5, is a connected and closed set of solutions to problem
{Pg)- In order to apply Whyburn® result, we consider the sets Ci (7> Qu)
defined as S, N ([0, 4] x L=()), ¥n € IN containing (0,5 1{-C)). It is
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easy to see that these sets are connected and that i) is verified. Let us
check (ii),u32,C} is precompact. Since X is a Banach space, it suffices to
prove that every sequence {(Qy,ur) hew C WS, CY contains a subsequence
{(Qu, ,ur,)} converging in X. From Q; € [0, j], there exists Q € [0, 7] and
a subsequence of {Q;}which we still call {@Q;}, such that @, — Q. On the
other hand,u; is a solution of the problem

~Apu[ + Q(uI) +C = QS(CL‘)ﬂl(ul) on M.
Taking u; as a test function in this equation, we obtain the estimate

B oo UlSleM +CPM
[ iwupdas [ Sirass i (28)

where | M| is the Hausdorf measure of M. Then u; is a bounded sequence
in V. From the compact embedding V' € L°°{AM) when p > 2, there exist
u € L=(M) and asubsequence {u;, } of {u;} such that uy, — uin L=(M).
If p = 2, then {1} is a bounded sequence in the Sobolev space H*(M).
From the compact embedding H2(M) C G(M), we deduce the existence of
a subsequence {uy} and u € C(M), such that uy. — v in L= (M), Thus
U2, ¢ is precompact. Then by Whyburn's result C7 = limy o0 sup C3 is
a connected and compact set in X. Moreover, since every S, is unbounded
and fixed @, the solutions ug are uniformly bounded in L>*{M), for @ < Q,
we have that CJ n ({§} x L®(M)) # 0, for all j e N.

Now, we prove that the set C7 is contained in &. Let us see that for every
Q € [Q1,Q4], we have that every (Q,u) € 7 verifies that u is a solution of
(Pp) (notice that it is true for every Q € (0, Q1] U [Q4, +o00) from CI =09
in these intervals). Let (Q,u) € C7 = lim,,_.o sup C}, that is, there exists a
subsequence of (@, tr) € C, such that (Qn,, un,) — (@, u) in Rx LX(M).
From estimate (25) and the compact embedding H2(M) C L>(M) (for
p=2)and V ¢ L[ M) (for p > 2), we deduce the existence of u € L™ (M)
and a subsequence of {(Qn,,%n, )} which we call {(Qn,,un, )}, such that

(O, un,) — (Q,u) in IR x L*(M),

Since /3, — [ in the sense of maximal monotone graphs of R?, we have that
On, (tn,) — z € B(u) weakly in L2(M). Using a Minty’s type argument
we deduce that u is a solution of the problem (Pg ). Thus (@, u) € ¥ and
C7 ¢ % Since for all n and 7, CL N ({7} x L=(M)) # B, there exists
{(4,1n) tnew such that (j,u,) € CJ, that is,

— At + Gtn) = §8(@)Bnltn) —C  in M.

Using that the operator (A, +G)™! is compact in L®(AM), there exists
a subsequence u,, — u in L®(M). Thus (j,u) € C7 and C7 n ({j} x
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L>=(M)) # 0. Since j > Q4, u; Is the unique solution of (FPg ). On the
other hand, we know that ZN(j, 00) x L (M) = TN (7, 00) x L=(M). So,
we have obtained a connected unbounded set which starts in (0, G71(—C)).
The proof ends with the argument used in the proof of Theorem 6 for
Q2 < Q3.
Remark 10. We point cut that our results remain true for the more general
equation

~div(k(z)|VulP>Vu) + G(u) + C € QS(x)B(u) on M,

where k(z) is a given bounded function with k(z) > kg > 0 a.ex € M,
representing the eddy diffusion coefficient. When M = 8!, it is usually
assumed that S(z) = S(A) and k(z) = k(A ¢) with A the latitude and ¢ the
longitude. So, in that case, the corresponding solutions are not ¢g-invariant.

Remark 11. By using a shooting method, it is possible to show (see Diaz
and Tello [27] that there exist infinitely many equilibrium solutions for some
values of (7 when we study the cne-dimensional problem

(W PY + Bu+C € QB() z€(0,1),
(Proc) { W(0) = /(1) = 0.

If @ < @ < Qg then (P g,) has infinitely many solutions. Moreover,
there exists Kp € IN such that for every K € IN, K > Ky € IN there exists
at least a solution which crosses the level ug = —10, exactly K times.

Remark 12. After my lecture at the Collége de France, Professor J.L.
Tions pointed out to me the reference Rahmstorf {63] where a S-shaped
diagram bifurcation curve arises in the context of the Atlantic Thermohaline
Circulation in reponse to changes in the hydrological cycle.
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