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Preface

This collection of articles reflects some of the main subjects discussed at the International
Conference on Partial Differential Gquations, heid at the University of Fez, Fez, Morocco. All
the articles in this volume were subject (o a strict referceing process. Most of the papers reflect
the authors' contribution to the conference, the purpose of which was to present reeent progress
and new trends in partial differential equations (PDE). The papers appearing in this volume
adhere to this comprehensive goal. Some of the papers arc surveys, while others. contain
significant new resubts. 1 is our hope that the volume will be a vatuable source for specialists
in PDE. Further, by providing extensive references, it should help young researchers to find
valuable litcrature.  Topics treated include eigenvalue problems, maximum principle.
degenerale equations. elliptic and parabolic sysiems, and asymptotic behavior of solutions.

The conference was organized by the Faculty of Sciences, Dhar Mahraz, of Fez.
Financial support came from the Faculty of Sciences and Technology of Fez, the International
Mathematical Union, and the European Mathematical Socicty. Many colleagues in Fez
worked hard in the organization of the conference and in the preparation of this volume, in
particular, E. Azroul, A. Benlemlih, A. Elkhalil, and A. Elmaht and the researchers Y. Akdim
and S. Elmanouni. [t is a pleasure for us to thank all the people and institutions who
contributed 1o the success of the conference and the realization of this volume,

Abdelmounjib Benkirane
Abdelfattah Touzani
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On the Asymptotic Behavior of Solutions of a
Damped Oscillator under a Sublinear Friction Term:
From the Exceptional to the Generic Behaviors

1L Dine and A Lindn

J1L Dia

Facuitad de Matematicas
Universidad Complitense de Madrid
S80A0 Mawdreid, Spadn

A. Linan
E.T.8.1. Aeronauticos

Universidad DPolitéenica de Madrid
28040 Madrid, Spain

1 Introduction

We study the asymptotic behavier of solutions of the equation

may + ] ot =0 (1

where
ae(0.1) (2.

and prw? > 0. We shall work with the forimmlation
a ) Yy =00 (3

which is attaint by dividing by w? and by introducing the rescaling iy = giAe-la(Ar
where

S B 1 .
A= - and [ = Tl (4

Notice that the m-rescaling uses the assumption (2) (it fails for o = 1) and that in
foraundlation (3) we have not written the label * for the sake of the notation,
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The limit case & — 0 corresponds to the Coulamb friction equation
oy Fsign(n) +x 30 ()

where sign is the maximal monotone graph of IR? given by

-1 ifr <0,
sign{r) = ¢ [-1,1] ifr=0, (6)
1 if > 0.

The limit equation when a — 1 correspouds with the linear damping equation
ay a4 =0 (7)

We recall that, even if the nonlinear terni |.'1:,|“'l 2 is not a Lipschitz continous
function of m, (recall (2)), the existence and uniqueness of solulions of the associale
Cauchy prohlem

T o in:,i"“i a+r=0 >0,
Py 7{0) = 2y (8)
1, (0) = 1y

(and of the limit problems Fy and P corresponding to the equations (5) and (7)
respectively) is well known in the literature: sce, e.g. Brezis [1]. An easy application
of the results of the above reference vields to a rigorons proof of the convergence of
solutions when a — 0 and & — L.

The asymptotic behavior, lor £ — 0, of solutions ol the limit problems Py und Py
is well known (see, for instance, Jordan and Smith [3]). Iu the first case the docay is
exponential. In the second one it is easy to see that “given a and vg there exist a finite
time T = T{xp, 1) and a number ¢ € {~1,1] such that =(f) = ¢ for any £ > T'(ap, v0)".
For problem P, it is well-known that (x(#), 7 1#]) — (0,0) as # — 20 (see, e.g. Haraux
2)).

The main result of this paper is to show that the generic asymptotic behavior above
described for the limit case Py is only exceptional for the sublinear case o € (0.1) since
the generic orbits (m(t), z()} decay to (0,0) in a infinite time and only two of them
decay to (0,0) in a finite time: in other words. when a — 0 the exceptional hehavior
becomes generic.

2  TFormal results via asymptotic arguments

We can rewrite the equation (3) in as the planar system

=y ]
- 9
{ o= =gl ©)
which, by eliminating the time variable. for y = 0, leads 1o the differential eguation ol
the orbits in the phase plane
-l
—r - ‘u“ If
TRE— LA M (1())
it
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and that allows us to carry out a phase plane description of the dynamies.

We remark that the plane phase is antisymmetric since if y = w(x) is a solution
of (10) then the function y = —p(—a) is also solution. So. it is enongh to describe a
senuiplane (for instance & 2 0). On the other hand, it is casy to see that (/2 1/y)
satisfy a system which has the point (0,0) as a spiral unstable eritical point. For
values of 72 + 32 >> 1 the orbits of the system are given, iu first approximation, by
2?4+ y? = C hecanse |y1°_' y is small compared with 2. The effect of this term is tu
decrease slowly € with time giving the trajectory a spiral character.

We shall prove that there are two modes of approach to the origin and se that the
origin {0,0) is a node for the system (9). The lines of zero slope are given by

-1

—r=y" Ty (n

So the convergence to (0,0} is only possible through the regions

{ry) x>0y < —a YU [ ) s <0y > (—a) ) {12}

Let us see that the "ordinary” mode carrespands to orbits that are very close to the
ones corresponding to small effects of the inertia. Die to the synumetry it is enovgh to
describe this beliavior for the orbits approaching the origin with values of + > 0 and
y < 0. Let —y =7 > 0. Equation (10) takes the form

Gl = —w 4+ (13)

The line of zero slope is
i=ale (14

and we search for orbits obeyiup, for 0 < » << 1, to the expression
g=al"t2(r) (15

for some function z(x). If we anticipate the condition 0 < a{r) << ="/, equation (10
takes the “linearized form”

3 (,L__” L (LAX,

male Ty v, - aah el = (. {10

&)
Thus the Arst term can be geglected, compared with the last one, and then the solition
can he writlen as

. _2i-a)

2(2) ~ Cexp{~[c®/2(1 —a)ja™ "5 (v
witlt € an arbitrary constant (which explain the name of “ordinary” orbits). This type
of orbits are given, close 1o the origin, by the approximate equation (11}, which for the
orbits that reaclt the origin from below fwplies that

il

1o

g



166 Diaz and Lifidan

and so, integrating the simplified equation

dz Ve
ar (19
we geb that
0
() ~ [ | 20
() [(l—(l')(ﬁ~+«ﬁ|)l (20)

and so that it takes an infinite time to veacl the origin.

Some different orbits approaching the origin can be fonnd hy searching among
soliitions with large values of |y} compared with !:1r|”“. Thus, close to the origin,
the orbits with negative y are “vory close” 1o the sohvions of the equation fouud hy
replacing (13) by the simplified the equation

e = 01" (21)

corresponding to a balance of inertia and damping. The solution ending at the origin
( #(0) = 0) is given by
ilr) = —{(2 — a)r}i/tz-el, (22)

Notice that it involves no arbitrary consiant. 1t is easy to sec thal this curve is 1nnigue
in the class of solutions such that () > 0 i{ > 0 (a symmetric curve arises fory >0
and 7 < 0). This justifies the term of “extraordinary” orbit. The time evolution of
this orbit is given, for » << 1, by integrating the equation

o

- = (2 = a)a]/t) (23)

and so

1 (2-a)(1~q)
(2 - (,1)[ 2a
where in general A1), = max{0,A{f)}. This indicate that the motion (of this approx-
imated solution) ends at a finite time. fo, derermined by the initial conditions which,
by (23} must satisfy that

a(t) = (tg — 1) | metal, (24)

ty~ 202 =0 gl] R {23)

We point out that the two exceptional orbits emanating from the origin spiral around
the origin when 2% 2 prows toward infinity and so each of them is a separatrix curve
in the phase plane.

We end this section by pointing ont that the sohition of problem (P} for O < a <<
1 takes an asymptotic form which can be casily described. The differential egnations
of the orbits “stinplify” if y 5 0 is finite and a — 0 to

yy, = —w — 1fory >0 (26)

and
Bl = x4 Llor = =y > 0. (27)
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The solutions are circles with center at » = —1 ify > 0 and center # = 1 il y < 0
joined. An orbit formed with half circles with centers at 2 = =1 or & = 1 when it hits

the interval (0,1) from below it is transformed iuto an orbit that reaches the origin
following very closely that segment, governed by the equation (18) of solntion (20}
I the limit o — 0 we found that any point ¢ € [—1,1] s an asymptotically stable
stationary state of (Py). . .

3 A rigorous proof of the existence of the extraor-
dinary orbits

We have

Theorem 3.1 T/;.m"re exists a,b, with) < a < (1 —a)V0= < ), R > 0 and #y > U
such that for some inibial data (g, 1) satisfying

O ) {23,
and

atg =0 <y < /0 (24)
the associate solution 2(+) vanishes identically for any t > tg. Moreover this solulion

is uniquee in o suitable class of solutions.

proof As il the previons section, it is nseful fo work backwards in e, Lo we -
search X @ [—19 0] — IR such that

X(=t)=m(o— 1), if L0 t). {30

with @ solution of (3) such that 2:(ty) = 0. So, X (=tg) = wg and X(0) = 0. The phase
plane becomes now

X,=Y
Vo= =X = YRty (31

where s = —f & [~1y0]. We define the Banach spaces

E = {(XeC[-t,0: X0 =0}X|| <cc} where
NXT = = sup X ()]

sE{~to.l)] ISI(L"““““J

and

Vo= Y eC[-,0:Y(0) =0,V <2} where
= sp Ll

s€f=10,0] |.5‘El/“~n) I
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We also define the operator 7: £ x V — E x V given by
TN = (= [ YOI, [ (VD= V0) + KONV (32)

Then, it is clear that if (X, Y) is & fixed point of T then (X, Y) is the scarched solution.
We introduce the closed and convex sets

Kp o ={X B i@V Xis) <0, Ve € [0, 0]}
Sap @ ={Y eV ials| Y00 < Y(s) < b]s]U, Vs € [0, 0]}

Let us prove that it is possible to chose b, 0 and 2y such that 7 let a contraction
such that T(Kp % 84() C Kr x 84 ln that case the existence of a fixed point would
be consequence of the Banach fixed point theorem (which implics also the unigqueness
in this class of functions). We shall use the norm

XY o= max (X IYH) (43)
Let X € Kp and Y € S,,. Then, since
() 0 1 — o .
_ S (e pfae - PV 0=e) L‘_w_) q(2ea)/{1—u) .
0> / Y (r)dr 2 [ bir| dr = b= sl , (34)

a sufficient condition to have the first component of the condition T(Kr x S|} C
Kr x &4y satisfed iy

(1-a) .

< RE

0(2 ) S R (35)
On the other hand,

(1 — )]s V=) R((Sl ”2(.\’)) Is| (8-20)/41~a)
- 2a

v

0 1
LU e v o)+ xenn
/‘()(IY('r')EQ_l V() + X()dr < (1 —a)ls i{ima),

Thus, two sufficient conditions to have the second component of the condition T(Kr *
841} C Kr x 84 satisfied are

(l 3 e
o] — f > 36
a*{l - a) - (3—2(1 > (36}
) < b (37)

To see that 7 is a contraction it is enough to check that
DT, 0 < 1 (38)
Y(X,Y) € Kpx Sop where DT s the Gateaus derivative of 7. Bt

-0 xi] \
(DT, V)6 = (- [ nidr [ o VO ) 4 EeNdr). (39)
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Moreover,

— l__ “ o a)
/ [l ] /4 =k = 1||7f||| l | (oot (10)

i—./ rdr| <

and

A

()
[yt + g

()
< o L 0
Is 8
Nl

ot s 4~
|"”H|| ( “ | |(| -20)/{1-a}

(3 - Z{\)

for any (X, V) € Ng x Spp. Then

DT D), (€l < HIM{E; Ik, e = )" [l + ll£|! | ol

(
(41)
and so
DT = s DT V) (E)l] < max =)
(NS (2—a)
. 1 —n 3
afl = aja™ !y (%“:%)"; (o]

But o € (0. 1) implies that M < 1 and so the contreaction property is assured if

(1o}

(1 - o 'u-—-l
a(l —a)a®! + (3~ 20)

[tol” < 1. (42)

Now, it is easy to check that conditions (35), (36).(42) arc satisfied if we take a, b such
that

[l = a0 < g (L — )0 <, (43)
then ( )
-«

RE!(‘ZT—- @) {44)

and finally

e (3 - 2a)
U<ty < e ‘ ) e et
<ty < mm[R(1 o) | T T

(1-a(l —a)a"hye (43)
It is possible to give a rigorous version of the rest of the results of Section 2. The
details will be published elsewhere. ‘
The first author thanks to Laurent Veron and Alan Sokal for the conversations
maintained long time ago.
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