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Abstract

In this paper we study the number of steady solutions of a nonlinear model
arising in Climatology. By applying a shooting method we show the existence
of infinitely many steady solutions for some values of a parameter (the solar
constant). This method allows us to determine how many times a solution at-

tains the critical temperature (—10°C) at which the coalbedo is assumed to be
discontinuous.

1 Introduction

The model is based on a global energy balance over the Earth surface. The unknown
is the mean temperature over each parallel and the time scale is considered relatively
large. These models were introduced independently by M. Budyko and W. Sellers on
1969.

The energy balance is obtained when one expresses the heal variation in terms of
R, — R, + D, where R,, I, represent the absorbed and the emitted energies by the
Farth and D2 the heat diffusion which is given by a second order elliptic operator. By
expressing each component of the above balance in mathematical terms as function on
the temperature u, we obtain a nonlinear parabolic partial differential equation. The
general spatial domain for this kind of models is a compact two-dimensional Rieman-
nian manifold M simulating the Earth. Often, the two-dimensional model is reduced
in a one-dimensional model by considering the averaged temperature over each parallel.
Such simplification considers the temperature u(x,t) only dependent on the latitude A
and z =sinA. By assuming North South symmetry, the obtained model is

e~ () - G) 1 C € QB(), (L) € (0,7) x (0,1),
(Po) { we(t,0) = uy(t,1) =0, te (0,7,
(0, 7) = ug(x) z € (0,1).



In the pioneer models, the diffusion operator was linear (p = 2). Later, Stone [1972]
proposed a nonlinear diffusion operator for this kind of models (p = 3) in order to
consider the negative feedback in the eddy flux. The formulation in (P) include both
cases. In this equation it appears a multivalued term f(u) which represents the plan-
etary coalbedo (the fraction of the incoming radiation flux which is absorbed by the
surface). This term is multiplying by the Solar constant Q. From the physical point
of view, such a constant can have small variations depending on the obliquity of the
terrestrial axis, eccentricity of the Earth orbit, etc.

These climatological models have been studied by different authors. These models are
sensitive with respect to variations of the parameter . By using a shooting method
we show that there exist infinitely many equilibrium solutions for some values of ().
This result give more precision than the obtained for two-dimensional climatological
models (see Diaz — Herndndez ~ Tello [1997] and Arcoya — Diaz — Tello [1998]), where
it was proven that there exist at least three stationary solutions for values of Q in a
bounded interval, as well as the uniqueness of solution for §) big or small enough. As
a consequence of such results we can affirm

(i) if @ < @y or @ > @ then the stationary problem associated to (Py) has a unique
solution;

(i) if Q1 < @ < (7 then the stationary problem associated to (FPy) has at least three
solutions,

where G(—10) + C G(-10) + C
—10}+C ~10) +
Q1 = J——j\"j"m and G2 = T: (1)
with m and M the infimum and the supremum of 3, respectively.
The results of this paper improve also a part of Tello [1996], where we assume p = 2. We
also mention the works Hetzer [1992], Drazin-Griffel [1977], North [1993], B. Schmid
[1994] for other analysis of multiplicity of solutions.

2 Multiplicity of stationary solutions.

We are concerning with the stationary boundary value problem associated to the model
(Pﬂ)a

(P) —(JW P2 + Glu) + C € QBu) =€ (0,1),
u'(0) =u/'(1) =0,
where p > 2 and ¢ > 0. We assume the following conditions:

(H,) P is a bounded maximal monotone graph of the Heaviside type defined by

™, if < —10,
Bluy = [, M| if u = -10,
M if u > —10,

with 0 <m < M,

o



(H,) G is continuous increasing function with G(0) = 0 and lime0 |G(5)] = +o0.

(H,) G(—10)+C > 0.

We will say that u is a solution of (P) if v € C*([0, 1]) and there exists z € L°(0, 1),
z(z) € B(u(z)) a.e. z € (0, 1) such that u verifies the equation —(|v'|P~2u') +G(u)+C =
)z in the weak sense.

The main goal of this paper is to prove that there exists an interval of @ where the
problem has infinitely many solutions.

Theorem 1 If Q1 < @ < Qq then (P) has infinitely many solutions. Moreover, there
exists Ng € IN such that for every K > Ny there exists at least a solution ux which
cross its level ug = —10, ezactly K times.

Proof.

We start by computing the intersections between the graphs G(u) + C' and QB(u).
These are constant solutions of problem (P) and the number of intersections depends
on the value of the parameter ) > 0. We compute without difficulty two significative
values, @1 and Q2. If @ = Q1 or Q) = (), then the graphs has two points in common.
Moreover, if @) < ()1 or () > () then the intersection is only one point. If Q) < @ < Q-
then the intersection points are the following:

u =G H@m — C) < ~10, uy = =10 and wy =G QM - C) > —10. (2)

Step 1. We study the phase portrait (u,u') for an auxiliar Cauchy problem. Since the
equation (P) is conservative, we get the conservation of the total energy

|/ ()"

; + V(u(z)) = E, Va € IR, (3)

for some constant & and for the following potential function

Vi - { (@M - Chu- ), w10, "
1 (@m = C)u— Gu) - 10Q(M —m), u < —10,
where G(u) = [ G(s)ds. This function V' allows us to get the trajectories (u,u’)

corresponding to each energy level £, from the equation (3) (notice that V' is continuous
but it is not C1). From the restrictions of —V on the sets © < =10 and z > —10 are
convex, we get that V' has three relative extrema: two of them are maxima, 4, and us,
and the other uy is a minimum. So, we get three constant stationary solutions: (u,,0)
and (us,0) are saddle points and (uy,0) is a centre.

If Q) < @ < Qg then V(ug) < V(us) and V(uy) < V(u;). We obtain trajecto-
ries which does not cross the axis w' = 0: they correspond to the energy levels
E >max{V(u1), V(us)}. The trajectories corresponding to the energy levels E < V (u,)
and min{V(ui), V(us)} < E <max{V(u)),V(uy)} cross the axis v = 0 exactly
in one point. Finally, if V(u,) < EF <min{V(u;), V{us)} we find periodic trajec-
tories (which cut in two different points (o, 0) and (b,0) the axis ' = 0, where
) < a < —10 < b < uy) and the others only in one point.



When we try to compare V'(u;) and V{uz) we find a significative value of Q, which we
call @3 € (Q1,Q2), verifying V{(uy) = V(us). We obtain three different cases for the
phases portrait (u,u').

(a) If @1 < @ < @3 then V(us) < V(u;). There exists a homoclinic orbit with
w-limit equal to ug, which separates a region of the periodic orbits of the others.

(b) If @ = @3 then V(u1) < V(us). There exists two heteroclinic orbits with w-limit
equal to u; and ug, respectively, which separate a region of the periodic orbits of
the others.

() If Qs < @ < Qg then V(uz) < V(uy). There exists a homoclinic orbit with
w-limit equal to u;, which separates a region of the periodic orbits of the others.

In order to solve the boundary value (P) we shall use a shooting method, which is
described in the following step.

I~
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Step 2: Shooting method. We consider the following Cauchy problem depending
of the parameter p,

~([WP Y + G(u) + C € QB(u), =€ RT,
() ¢ w(0) =0,
uw(0) = u.

Our purpose is to determine the values 1 such that the solution of (P,) verifies v/(1) =
0.

From the phases portrait studied in the first step we deduce that the solutions which
attain at least two times value u' = 0 are the solutions given by the periodic trajecto-
ries, that is, the associated to energy level V(u,) < E < min{V'(u1), V(us)}. The idea
is to choose the periodic trajectories which starts in (i, 0) and arrives to (A,0) at the
time z = 1. That is, integrating the conservation law equation (3), we obtain

#{1) ds 1
f [
wo) +/P(E - V(s)) 0

where the sign of ¢/p(F — V' (s)) is the same of v'. The period of the periodic orbit of
the phases portrait is given by the expression:

-0 ds b ds
=2 e e 2

where (a,0), (b,0) are the two different points in which the trajectories pass by the
axis ' = 0. This is equivalent to say that a and b verify: u, < a < =10 < b < us
and V(b) = V(a) < min{V{uy), V(usz)}. Consequently, there exists b* > —10 such that
V(0*) = min{V (u1), V' (u3)}, then, the below condition can be written as —10 < b < b*.

If p=2and G(u) = Bu where B is a positive constant, it is posible to obtain the
explicit expression for 7,

o, (2422 4 10VB /2B (-10))) (E8m —10VB+/2(E-V(<10) )
T“ﬁLn (QM—CW \/—) G-Qm . . /5 ’ (6)
M-C 4B (¢=2m +avB)

where (a,0) and (b, 0) are two different points of the periodic orbit.
If p > 2, under the hypothesis (H;), we have obtained the following estimates for
the period 7 of a periodic trajectory which contains the points (a,0) and (b,0) with
a < —10 < b,

ST STy,

where
= (10 (Glun) = G(-10)) F + (=10 - 0)! 3 (G(~10) - Ga)) HYD
no= Lo 10)7HGlun) - G0 + (10— ) F(Ge) — G ). (9
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We have used the Mean Value Theorem for G to get these estimates.
The solution w of (P) satisfies one of theses four equalities:

N w0) = p = b, u(l) = a,
IN u0) = p = qa, u(l) = b,
IIT) w(0) = p = b = u(1),
IV) w(0) = p = a = u(l).

The solutions of type I and II cross the level —10 an odd number of times, while for
the solutions of type III and IV, it is in an even number of times. We only analyze the
case I, the others can be analyzed in an analogous way. Moreover, case I is the unique
case verifying that w(0) > w(1), and this makes that this is the more realistic because
x = 0 represents the Equator and x = 1 the North pole. So, we assume

w(0) = p = b > —10,

u(l) = a < —10.
We notice that every p determines a, as the unique solution of V(s) = V{u) on

(uy, —10). Now, the problem is to study whether exist or not u such that the time to
arrive from p to a, is exactly z = 1, after N complete turns and a half, that is,

N+ /““” ds___ / B o)
~10 {/p(E -V (s)) w) {/p(E —V(s))

Then, for every p € (—10,0*), we have 7(n) and we are interested in the number of
solutions (N, u) € IN x (—10,b%) of the equation (N + %)T(M) = 1, that is,
2

In order to see that, we study the functions 7 and 75. We observe that = (1) and 71 (1)
are continuous and increasing functions on the interval (—10,0*), where

T —— Uy if Q € (Ql: QB];
Vo< ug, Vi) = V(0 ifQ e (Qs, Q)
Moreover, the function has a vertical asymptote p = b*. From 7 (-10) = 7(—10) = 0

and the properties of 7 and 75 we get that there exists Ny such that for all N > N
there exist 1y and pg such that

2

2N +1
Thus, we can conclude that there exists p € (f11, go) such that (N + L)7(u) = 1. So,
we obtain that for each IV > [Ny there exist a solution of (P) which cross 2N + 1 times
the level —10.
Thus, we have proved the existence of infinitely many solutions of (P) for @ € (@4, Q-).
On the other hand, the construction allows us to deduce the family of solutions obtained
is uniformly bounded because every solution w of (P) verifies u; < u(z) < uy (in fact
u' is also bounded since (u,u') is a periodic trajectory).

Ti{) = = 7a(p2). (10)



3 Final Comments and Open Problems.

Theorem 1 shows that the studied simple model has a complex behaviour under small
and critical variations of (). The results of Theorem 1 open some new problems:

Problem 1. We know that the solutions u(¢,z) of the evolution problem (1-D and

2-D models) go to a stationary solution when ¢ — oo in the following sense: We define
the w - limit set as

wt) = {1 € WH(Q) N L®(Q) : It, — 400 such that u(t,, ) = ue in L2(2)}.

We have proved:

Let ug € L®(Q)NWH7(Q) the initial data and let 4 be the solution. Then (i) w(w) # 0,
(ii) if weo € w(u) then 3t — +oo such that w(t, +8,) = v in L2(—1,1; L2(Q)) and
Ueo € WHP(Q) is a weak solution of the stationary problem. (iii) Actually if ua, € w(u)
then 3{{,} — +00 such that u(f,, ) — 1 strongly in Wh?(€).

Now we know that the model has infinitely many stationary solutions. Which is the
limit of u(t, =) when we consider V¢t? How can we distinguish such a limit w4 in terms
of the initial datum and f(¢,-) among the infinitely many stationary solutions? Is it
true that w(u) is formed by a single element uq, or it is formed by a multiple set of
stationary solutions.

Problem 2. The model studied in Diaz - Hernandez - Tello [1997] includes the inso-
lation function S(z) and the multiplicity of at least three solutions for Q € (@, Q3)
was proved. [t would be interesting to extend the conclusion of Theorem 1 to the
1-D model including the insolation effect. A related work for a 1-D EBM, with linear
diffusion (p = 2), is due to G. Hetzer [2000]. So, second open problem is to analyze
the number of solutions for the 1-D model with R,(z,u) = QS{x)A(u), p > 2 and B
multivalued.

Problem 3. For the 2-D EBM we know that there exist at least three stationary

solutions for @ € (Q1,@s). Is it possible the extension of the results of Theorem 1 to
2-D EBM?
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