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Introduction

This work deals with the stabilization of the uniform oscillations for the complex
G’inzburg—Landau eguation on the one-dimensional domain {2 = (0, L)

g —(1+ 16) = (1 —iw)u — (1 +i8) [u> utpue™F(u,t,7) Qx (0, +c0),
(P)g 52=0 80 x (0, +00),
u(:z, s) =uy(z,s) Q x [—7,0],

by means of some effects including some global feedback delayed terms where
1 78
F(u,t,7) = [myu(t)+maa(t)+mau(t — 7, z)+maa(t — 7)) with u(s) = f/ u(s,z)dz.
0

Here the parameters ¢, 3w, i, Yo, m; and 7 are real numbers, in contrast with the
solution u(z,t)=u,(z,t) + ius(z,t). We point out that most of our results remain frue
for N-dimensional domains and other types of boundary conditions.

This type of equations (called as of Stuart-Landau in absence of the diffusion term)
arise in the study of the stability of reaction diffusion equations as % D8 )5 =f(X )
where X : Qx (0, +o00) — IR and 7 is a real scalar parameter when the dev;atlon v from
the uniform state solution X is developed asymptotically in terms of some multiple
scales (see [5]). Coefficient ¢ measures the degree to which the diffusion matrix D
deviates from a scalar.

Notice that the presence of complex coefficients introduces important differences
with the classical Ginzburg-Landau equations arising in superconductivity ([2]).

Our main goal is to carry out a rigorous analysis to some recent studies of a more
descriptive nature, but of a great originally and interest, in which the delay term
F(u,t,7) is taken corresponding to my = 1,m; =0fori=1,2,3 and it was introduced
as a control mechanism (see [1], [6]). Here we also want to investigate the possibility
of controlling the turbulence by using other terms (see Remark 4).

We concentrate our attention on the so called slowly varying compler amplitudes
defined by u(:r t) = v(z,t)e”". Thus, v satisfy

—(1+ ze)gl" =v—(1+iB)v]> v+
—{—;Le”o [y v4ma Ve (mav(t — 7, 2)+myV(t — 7))]
‘g—;’ =0 on 88 x (0,+0),
v(z,s) = uyfz,s)e™s on  x [—7,0].

in 2 x (0, +00),
(F2)



We study the stability of wniform oscillations, i.e., special solutions of {P,) of the
form Vyesc(z,t) = pge"iet which determines completely py and 8. As we shall see, the
only effect of the delay 7 is that it controls the effective phase shift y(r).

In absence of delay (r = 0), and for L = 4cc and 4 = 0, it is known (see [5] and
[6]) that the Benjamin-Feir condition g < —% implies the instability of such uniform
oscillations. Here we shall assumne merely that

B<0ande >0 (1)

and we shall prove that this instability holds, in absence of delay, for L < 400 once
Yo € {3, %71) and o > 16051”1. Moreover, we shall also prove that when 7 > 0 1s suitably
chosen then the uniform oscillation becomes linearly stable. We point out that the
above stabilization phenomenon requires a non zero complex component perturbation
(notice that yo can not be zero) and that it applies to the case of 4 > 0 and e = # =

w = 0.

On the linearization principle

We start by pointing out that the existence and uniqueness of a solution of (P1)
can be proven once we assume that uge C([ — 7,0] : L*()) (see [3]).

We are interested in the stability analysis of the time-periodical function Vyesc(2,1) =
poe . In order to avoid the application of techniques for the study of the stability
of periodical solutions we can reduce the study to the stability of stationary solutlons
of some auxiliary problem by introducing the change of unknown z(z,t) = v{z,t)e?
where v(z,t) is a solution of (P;). Thus z{z,1) satisfies

% _ (1 4ie) 22 = (1 +if)z—(1+iB) =" 2+

+pet [TTZ1Z+W125+S*(“+6)T(mgz(t — 7, 8)+maZ(t — r,—))] in €2 x (0, +00),

P.
(F5) 9 — on 90 x (0, +o0),
z(z,s) = u,(z,s)el=9s on  x [—7,0].

Notice that 10w, Vyesc(2,t) = poe~ % is an uniform oscillation if and only if z(xz,t) =
Vaosel( 2, 1) et = 7., = po is an stationary solution of (Ps): i.e.

0= (1+1i0)2e — (1 +:5) lszc,o|2 zoﬁ—,uei"‘0 {m1+m2+ei(“’+9)"(m3+m4)} Zooo  (2)
In order to keep some resemblance with [1] we shall assume that
mi+my = 0 and ma+my =1 (3)

Then we get the expressions pa(7) = (1 + pcos x(7))!/?, where x(7) = xo+ (w+6(7))7
and with #(7) given as the solution of the implicit equation

§=f— p(sin(xo+ (w+8)7)— Bcos (xo+ (w+8)7)). (4)

Notice that if 4 = 0 we deduce that po(7) =1 and that 8(7) = § for any 7 and that
po(0) = (1+ i cos xo0)'/2,8(0) = B — p(sin xo — B cos xo). It is not difficult to prove (see



Proposition 1) the existence and uniqueness of such a function #(7) and that 6 € C'.
Our main result is the following:
Theorem 1. Assume (1), (3), xo € (7,25),

3—my —2ms >0, my+mz >0, 3+2m3 >0, (5)

g > max{

?

1 38 — w + 3(w + F) sin xo -+ cos xo

|cos xal’ 5(—4) sin xo cos xo + 1
mg(Sﬂ—w—EZ—z) + 3(w + B) sin xo + (m1 + M3} cos Xo |

(3 —mq — 2m3) sin® g + (mq + ma) cos? xo + (—5)(3 + 21m3) $in Yo COS Xo

Then there exists some 7o € (0,1) such that if we assume T € (10,1) we get that
v(z,t) — po| < Me™ Huo(-, e — pOH .

The proof will be divided in two parts: first we shall show the applicability of some
abstract result on the linearized stability principle for the delayed problem

4—1;(1‘) = Au(t) + G(us) in X,
(ADP){ ‘ w(s) = uo(s) s € [—-7,0]. (6)

In a second part (Section 3) we shall check that the above conditions on the data of
the problem allows to prove that any eigenvalue A of the associate linearized problem
has Re()) < 0 which implies the result. Asin [8], X' is a Banach space (of norm |-|),

A is the generator of a compact semigroup {T'(¢)},5, satistying )
|7 (¢)|] < Me™ for some constants M and v,

function G : C — X, with C = C([-7,0] : ¥) of norm ||-]|, ¥ C D(A) with continuous
embedding ¥ C X, satisfies a local Lipschitz condition, i.e.

{ for any R > 0 there exists L(R) > 0 such that (s)

G(¢) — G(¥)| < L(R) | — 4| i 4,9 € Cand |[&],[l9]] < £

The notation 1, means that u, € C and that us(s) = u(t + s) for any s € [-7,0]. In
this abstract context, the stationary states (or equilibria) are given by the elements
Uoo € D(A) C X such that 0 = Aug + Gl ), where G € C' s the function which
takes constant values equal to 1. Further assumptions are needed:

3§ > 0 such that G : Bs(lie) — X is Frechet differentiable
(Bs(lis) = {¢ € C : ||¢ — Tio|| < 6}) of Frechet derivative
DGliice)p = [, dn(s)¢(s), ¢ € C for some 7 : [-7,0] — B(Y, X) of

bounded variation and the Frechet derivative is locally Lipschitz continuous
and, which is crucial,

{ for any A € C such that 3 v € D(A), v # 0, such that (10)

0= Av — dv + DG(fie)(eMv), then Red <0,



Proof. Notice that, since ¥ = L8(Q), G is well defined (ie. G(C) C X = L2(€0).
Given R > 0,6,4 € C with ||¢], ||| < R we have

1G(6) — G()] < (148 LY 4 (145 K (R)] 6(0) — $(0)ly + L |o(=7) = (=7)ly
where K(R) is the supremum, on the ball Bg(0) of Y, of the norm of the Frechet
derivative of the fanction H : ¥ — X given by v — |v|*v. Thus it suffices to take
L(R) = max{(1 + 2)}?L/* + (1 + *)'2K(R), uL'/*}. On the other hand, for any
& € C, since the non-local operator ¢ — % [E ¢(s)dz is linear, we can write DG(%Zs )¢ =

0. dn(s)6(s), with
dn(s)v(s) = So(s)[(1+i8)=3(1+iB) [Buo["Iv(s)+ (16)
e [ B (s) (mav (s)+ma¥(s))+e T8 (s) (mav(s)+mav(s))]| (17)

for any v €C([—7,0]: L#()) and any s € [-7,0], where So(5), 6—-(s) denote the Dirac
delta at the points s = 0 and s = —7 respectively. By well-known results, we have that
y : [=7,0] = B(Y,Y) has a bounded variation. Finally, it is easy to check that DG(Zw )
is locally Lipschitz continuous as function of Zs, (and of the rest of its arguments).
Remark 3. We point out that the above linearization process uses, in a fundamen-
tal way, the linearity of operator A. Other linearization principles can be introduced
but its rigorous justification can be harder than the above arguments. For instance,
very often it is used the representation for the unknown as z(z,t) = plz, t)ei?l®t),
In this way, the delayed nonlinear equation (F3) leads to a coupled system of de-
layed equations for p and ¢. This is the procedure followed in [1] and [6]. In spite of
the possibility of to state a linearized principle for such nonlinear system we want
to mention what is the main difficulty added to the process by using this repre-
sentation. Let us denote P : IJR? — C to the representation P(p,¢) = pet?. No-
tice that P is nonlinear and that if q = (p,¢) then z(z,t) = P(q(z,t)) and the
(P3) can be formulated as %ﬁ + AP(q(-t)) = G(P(q(-,t)),). By using that the
matrix B(q(-t)) =gradP(q(-}) is not singular, we can arrive to the simpler for-
mulation %2(-.¢) + B(q(-#))" 4P (q(-))=B(qa(-t))'G(P(q(-t)),). This delayed sys-
tem can be also (formally) linearized but notice that then the diffusion operator
B(q(-,t)"1AP{q(-,t)) becomes now quasilinear on g and thus the mathematical jus-
tification is much more delicate.

Study of the eigenvalues of the linearized problem

Tn this section we shall study the eigenvalues A € €, A = & + @b of the linearized
problem (10). We start by proving the existence and uniqueness of 6(7)

Proposition 1. There exists a unique function 6(r) such that
(1) — A + p(sin (xo + (w + 8(7)) 7) — fcos (xo + (w+8(r))7)) =0

for any T € [0,1]. Moreover § € C".
Proof. It is enough to see that, by the implicit function theorem, () is characterized
as the (unique) solution of the Cauchy problem associated to the ODE

d, . —[p(eos (xo + (w4 0(r)) ) (w + ) + Bsin (xo + (w + (7)) 7))] (w + 6(7))

E(T) N 1+ plcos (xo + (w + 0(r)}7) 7 + Bsin (xo + (w +8(7)) )T




We recall that in our case, Ze = po and so, by using (9), we arrive to the linear
problem

—(1+ie)2% = —(a+ib)z + [(1 +i6)-3(1 + iB)s3)]z
(Py) +petxe [ml z-L gt e e Tileto=b)r (mgz+m4"z")]

9z _ on Of).

dx

in {1,

As usual, the linear structure of the equation leads to the research of nontrivial
solutions of the form z(z)= A,cos(mnz /L) (recall that the eigenvalues for the usual
Laplacian operator 5)—; with homogeneous boundary conditions on = (0, L) are given
by k(n) = mn/L with n = 0,1,2, ... with the associate eigenfunctions by {cos(kz)}nx1)-
In order to keep a coherent notation with the one used in [1] we introduce the nota-
tion A = ap -+ ib; for the real and imaginary parts of the eigenvalues. Notice that
J¥ cos(mna/L)dz = 0 for any n = 1,2, ... Then we get that

(ar + i) — (1+ie) (—k*) = (L+1i8)=3(L+iB)pp

+M€ixo [,’nl+m250k+e—ar+i(w+6—b)f(

m3+m45gk)]
where 8o denotes the Kronecker delta function. We arrive to

ap = —k?—2—3ucosx(r)+ p(mi+mador) cos ot
o pue ™ (mg+rngbor) cos(xo + (w + 0 — br)7),

b = 6 —ek? —38(1+ peosx) + p(mi+mador) sin xo+
e~ (ma+mydor) sin(xo + (w + 0 — bp)7).

(18)

The previous equations are transcendent and we cannot get an explicit expression for
the real and imaginary part of the eigenvalues (for some similar franscendent equations
arising in delayed ODE's see [4]).

Now, we focus our attention in the dependence of aj and by with respect to 7. So,
by the regularity of the invelved functions we can assume

a = aro + a7 + o(7), by = bro + b7 + o(7),

as we get, for instance, by a “formal” series development in powers of 7 argument.

Here we used the Landau notation (f(7) = o(r) means that f9) 4 0 when 7 — 0).

The terms of order zero in 7 are obtained by making 7 = 0 in (18)
ago = — (2 + kz) + j1cos Xo(m1+mz5ok—|-m3+m45ok) (19)
bro = 4 — ek® + 3uf3 cos xo + psin xo(rny+mador + ma+rmador)-

So, we can state a first result concerning the case without any delay
i
leos xo|

Proposition 2. Assume 7 = 0, xo € (] 2y and p > Then the uniform

27 2
16t

oscillation Vyese(z,t) = poe*% is linearly unstable.

Proof. From (19) we see that agp > 0 and since 7 = 0 we get the existence of at least
one eigenvalue A of the linearized problem with Re(A) > 0 which implies the result.

The first order terms in 7 are calculated below



Lemma 3 We have

Gkt = [%]T_—O =Q+k) +p[3w+p)sinxe + (ma+mador) (38 — €k* — w)]
+p2{ =3 sin? xo + 34 sin xo cos xo+ (20)
+{ma+maydor) [sin? xo + 28 sin xo cos Xo+
+(my+madort+ma+mador)] (sin? xo — cos® xo) }.

Proof. Differentiating in (18) we get that

= [32] = [apsinx(n) %]+l ax) pem o (my bmador) cos(xo + (w46 b))

— e~ (mz+mabor) sin(xo + (@ + 0 —be) 7)), 20 [d(—w%_bkk] o T

= (3psin xo) (w+ B — psin xo — fcos xo)) —
— (= (2+ k) + pcos XD(7711+mz50k+m3+m450k)) p(ma+mador) cos xo—
—pu(ma+mador) {w + B — p(sin xo — fcos Xo0) — bio) sin xo.

Thus, by using the expression for by (see (18)) we obtain that

apy = (3pesin xo) (w+ B — p(sin xo — f cos xo)) —
— (= (2+k*) 4 pcos volrng Fmador+ma+mador)) f£(rma-+imador ) cos xo—
—p(mgt+mydor)(w + A — psin xo — F cos xo)) sint Xo
(3psin o) (w + B — psin xo — B cos xo)) —
— (= (24 E) + e cos xo(my+mador+ma+mador)) po(ms+madoe) cos xo—
—pu(ma+mador){w + B — p(sin xo — £ cos Xo)) sin Xo
+ (g +imador ) (48 — ek? 4 3uf cos xo + psin Yo(mi+mador + ma-+mado)) sin xo.

In consequence

apy = (24+ &%) 4+ p (3 (w4 B) sin xo — (ma+mador) (w+ 5) + (48 — €k?) (m3+m450k))
—i? (3 sin xo(sin xo — £ cos xo) + cos” Xo (m1+madok+ma+mador ) (ma-+mador)) —
+p2 (ms+mador) [(sin xo — B cos xo) sin xo + (38 cos xo + sin xo (m1+ma2dor + ma+mydor)) sin xo]

which proves the result.

Proposition 3. Assume (1), xo € (7, %), (3) and

36 —w 4 3(w + B)sinxo + €os X0,
5(—f)sin xpcos xo + 1 .

p > max{0,

Then oo + dgp < O
Proof. By using (19), (20), and (3) we get
ago + apy = pu[(38 —w + 3{w + B) sin xo + cos Xo) — #(5(—f) sin o cos xo + 1)].

Then, the assumptions imply the positivity of the coefficient of (*and the result holds.
Proposition 4. Assume (1), xo € (7, %), (5) and

mg(30 —w — 5%;) + 3(w + B) sin xo + (m1 + m3) cosxo
(3 — mq — 2ms) sin? xo + (m1 + ma) cos? xo + (=5)(3 + 2ma) sin xo cos xo ‘

u > max{0,

Then, for any n > 0, ago + agr < 0. Moreover, for any n > 1 and any 7 € (0,1],



Ao + GrmnT < Gr(1)o T Cr(1)17-
Proof. By using (19), (20) we obtain that

2
am

aro + g1 = u[(mg(‘Bﬁ —w—e%5) + 3(w + B) sin xa + (M1 + m3) cos Xo)
—u{(3 — mq — 2mg)sin® xo + (M1 + ma) cos? yvg + (=5 (3 + 2ms3) sin xp cos xo)]-

Again, the assumptions made on the parameters imply the positivity of the coefficient
of 4? and the result holds. Moreover
nyo — Gr(nyo + (G — arpyn) ™ = —k(n)? +E(1)7 — (mack(n)? — msek(1)*)T < 0.
The proof of Theorem! is now complete since from Propositions 3 and 4 we deduce
the existence of some 7 € (0,1) (independent of n. € IV) such that for any n > 0 we
have app + a7 < 0 for any 7 € (70,1). This implies the hypothesis of the abstract
result and the conclusion follows.
Remark 4. Notice that Theorem 1 applies to the case my = my = m3 = (0 which
corresponds to a formulation similar to the one of [1]. Moreover, it also applies to the
choice my = &, my = —1 — &, mz = 0 and my =1, for any & € (0,1) which corresponds
to a formulation quite close to the pioneering paper [7] (concerning chaotic ODEs).
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