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Abstract. The contributions of Amable Lifidn to combustion theory and fluid
mechanics are important enough to place him among the most brilliant specialists
in these fields and, of course, among the leading Spanish scientists of the last decades.
Without intention of being exhaustive, I would like to point out in this paper the
great impact of his dilated ceuvre in the field of applied mathematics, specially
in the education of several Spanish mathematicians, among which T have the good
fortune of being included.

Key words: Catalysis, homogenization, finite extinction time, lubrication, Coulomb
type friction problems

1. INTRODUCTION

The outstanding contributions of Amable Lifidn to cornbustion theory and fluid
mechanics always involve many mathematical arguments which are, in a sense, the
core of his ideas. In these pages, and without any intention of being exhaustive,
I would like to illustrate the great impact of Lifidn's dilated oeuvre in the field of
applied mathematics, specially in the education of several Spanish mathematicians,
among which T include myself. The selection of topics is motivated by my own ex-
perience, but the reader may find many other illustrations in other papers of this
volume. I would like to point out also to Lifidn's generous collaboration in the orga-
nization of mathematical meetings. Besides his active participation in many of those
occasions, it seems to me relevant to remember here the large international meebing
which we organized in collaboration with M. A. Herrero and J. 1. Vazquez; the 8th
International Colloquium on Free Boundary Problems: Theory and Applications,
Toledo, June 1993 ([30]).
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2. CATALYSIS: FRONTS AND HOMOGENIZATION

Perhaps one of the earliest contacts of the Spanish mathematical community with
Amable Lifiin took place in the first Spanish meeting on Differential Equations and
its Applications (I Congreso de Ecuaciones Diferenciales y Aplicaciones CEDYA.
E! Escorial, May 29th-31th, 1978).

In his lecture [51], Lifidn presented a cascade of mathematical models, obtained
via singular perturbation methods in the study of the temperature and concentration
in the interior of a catalyst particle. In my opinion, one of the main lessons of his
lecture notes was ab the time rather new for most of the mathematicians attending
the meeting, educated perhaps in excessively abstract mathematics. It dealt with
an initial model of the type

du

= An — quPe?vhY in 0 x (0, 00),

v (o-1)/v -

%= Ay 4 BuPe” in £ x (0,00}, )
%:a(l—u), g—zﬁv(l—v) on 952 x (0,00},

u(z, 0) = u;(x), v(z,0) = vilx) on £,

which can be simplified in several ways, depending on scaling. Some additional
conversations with Lifidn and his (then) Ph.D. student J. M. Vega, allowed several
of us o know their deep results (Lifidn and Vega [62]) on the “formation of the dead
core” typical of reactions of low order (p € [0,1))'. The study of this pheromenon
without any assumption of symmetry of the domain or the solution was the main
goal of a series of papers by J. Herndndez and this author ([25], [26}, [27]) and of
the monographs [20] and [21].

A sccond type of problems suggested by A. Lifidn concerned the homogenization
process related to the overall modeling in the presence of two spatial scales. In fact,
it is not difficult to track the scientific connections between Lifidn and one of the
pioneers in this area, E. Sdnchez-Palencia, before the latter moved to France at the
end of the sixties. Connections also exist with J. L. Lions; see [54] and [14], and
with collaborators of Sanchez-Palencia, specially M. Lobo Hidalgo.

Starting in 1985, on the occasion of the visit of C. Conca to the Universidad
Complutense de Madrid, we considered the homogenization of chemical reactive
flows through the exterior of  domain containing periodically distributed reactive
solid grains (or reactive obstacles). A partial account of our results can be seen in
Diaz [24]. The final version was published as a joint paper [19], incorporating also
C. Timofte, which we summarize in the rest of this section.

We focus our attention on two nonlinear problems that describe the motion of
a reactive Auid having different chemical properties. For a nice presentation of
the chemical aspects involved in our first model (and also for mathematical and
historical background) we refer the reader to Antontsev et al, {8], Bear [13], Diaz [23],
Hornung {44] and Norman [55] and the references therein.

Let {2 be an open bounded set in R* and let us introduce a set of periodically
distributed reactive obstacles. As a result, we obtain an open set Q° which will be

IThe mathematical consideration of the case of singular chemical kinetics wos considered in
Disz, Morel and Oswald {36} and Herndndez, Mancebo and Vega [42], among other papers. The
limit case ¥ — +oo, televant in combustion, was studied in Urrutia and Lifidn [60] and then in
Kapila, Matkowsky and Vegs [47]
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referred to as being the exterior domain; € represents a small parameter related to
the characteristic size of the reactive obstacles.

The first nonlinear problem studied concerns the stationary reactive flow of a
fluid confined in £, of concentration 47, reacting on the boundary of the abstacles.
A simplified version of this problem can be written as follows:

—DjAwE = f in (¥,

£
—D,%%— = aeg(u®) on S5, (2)
w=0 ond

Here, v is the exterior unit normal to %, a >0, f € L2(Q) and 5¢ is the boundary
of our exterior medium § \ TF. Moreover, the fluid is assumed to be homogeneous
and isotropic, with a constant diffusion coefficient Dy > 0.

The semilinear boundary condition on S¢ describes the chemical reactions which
take place locally at the interface between the reactive fluid and the grains. From
strictly chemical point of view, this situation represents, equivalently, the effective
reaction on the walls of the chemical reactor between the fluid filling 0° and a
chemical reactant located in the rigid solid grains.

The function g is assumed to be given. Two model situations will be considered;
the case in which g is a monotone smooth function satisfying the condition g{(0) = 0
and the case of & maximal monotone graph with g(0) = 0, i.e. the case in which g is
the subdifferential of a convex lower semicontinuous function G. These two general
situations are well illustrated by the following important practical examples:

av P . .
glv) = 560 o, >0 (Langmuir kinetics) (3)
and
B glvy=|uf'v, U<p< 1 (Freundlich kinetics). 4

The exponent p is called the order of the reaction. In some applications the limit
case {p = 0) is of great relevance. It is worth remarking that it we assume f > 0,
one can prove (see, e.g. [21]) that u® > 0 in Q\TF and v* > 0 in O, although «* is
not uniformly positive, except in the case in which g is & monotone smooth function
sabisfying the condition g{0) = 0, as, for instance, in example (3).

The existence and uniqueness of a weak solution can be settled by using the clas-
sical theory of semilinear monatone problems (see, for instance, [17], [23] and [53]).
As a result, we know that there exists a unique weak solution v* € V<NH 20,
where

Ve = {ve€ H (¥) | v=0on &}

Moreover, if in the second model situation we associate the following nonempty
convex subset of V=

Kf={veVe| G(U)ls= € LY($9)}, (5)

then «€ is also known to be characterized as being the unique solution of the following
variational problem: Find u® € K* such that

Di/ D D{(v® — o )da f Ff = uw)de + a {pf, GF) - Gl 20 {6)
he fie
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for all v* € K*, where £° is the linear form on Wal(Q) defined by

o) =¢ [ods Yo € W),
&

—> AFrom a geometrical point of view, we shall just consider periodic structures

obtained by removing periodically from €, with period £} (where ¥ is a given hyper-
rectangle in IR™), an elementary reactive obstacle T which has been appropriated
rescaled and which is strictly included in ¥, ie. T C Y.

As usual in homogenization, we shall be interested in obtaining a suitable de-
scription of the asymptotic behavior, as e tends to zero, of the solution u® in such
domains. We wonder, for example, whether the solution v® converges to a limit u
as € — 0. And if this limit exists, can it be characterized?

We proved in [19] that, in the second model situation (in absence of any additional
regularity on g), the solution u°, properly extended to the whole of ), converges to
the unique solution of the following variational inequality: u € Hg((2)

/ QDuD(v — w)dz > f Flv —u)dz — a|}|,8\T ﬂ‘”l f (G) — Gw)dz,  (7)
¢} §1 fl

for all v € H{2). Here, @ = ({gi;)) is the classical homogenized matrix, whose
entries are defined as follows:

_ . 1 Bx;
qu - Df JU + IY \ Ti 6] ; dy (8)
Y\

in terms of the functions X, i=1,..,n, solutions of the so-called cell problems

-—Axi =0 in Y\T,
W =0 on dT, (9)
xs Y — periodic.

Notice that if g is smooth, then g is the classical derivative of G.

The chemical situation behind the second nonlinear problem we treat in [19] is
slightly different that the previous one; it also involves a chemical reactor containing
reactive grains, but we assume that now there is an internal reaction inside the
grains, instead just on their boundaries, In fact, it is therefore a transmission
problem with an unknown flux on the boundary of each grain.

To simplify matters, we shall just focus on the case of a function g which is
continuous, monotone increasing and such that g(0) = 0; examples (3) and (4) are
both covered by this class of functions ¢'s and, of course, both are still our main
practical examples.

A simplified setting of this kind of models is as follows:

—DjAut=f in{),
—D,Av +ag(vf) =0, nQ\F
ut [ 7
-DIE = DFE on SE, (10)
ut =v¢ on 5%

u* =0 ondQ,
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where [, is a second diffusion coefficient characterizing the granular material fill-
ing the reactive obstacles. As in the previous case, the classical semilinear theory
guarantees the well-posedness of this problem.

If we define ¢ as being:

e | vl zEr
G(I)ﬁ{vs(z) z € Q\TF,

and we introduce
A= Dfld i Y\T
- D,jd inT,
then our main result of convergence for this model shows that 8° converges weakly
in H1() to the unique solution of the following hamogenized problem:

LN I
¥ et anrrglu}l = in £,
o omdn; Y \T]g( y=f (11)
u=0 ondN

Here, A% = ((a;)) is the homogenized matrix, whose entries are defined as follows:

1 s
9 . L. od
&5 = Vgl 1’[ (au + aik 6"‘/};) dy, (12}

in terms of the functions X, 4 =1,...,m, solutions of the so-called cell problems

{ —div(AD{y; +x )y =0 inY,
’ (13)

X, Y periodic.

Notice that the two reactive flows studied in the paper [19}, lead to completely
different effective behaviors. The macroscopic problem (1.4) arises from the homoge-
nization of a boundary-value problem in the exterior of some periodically distributed
obstacles and the zero-order term occurring in (1.4) has its origin in this particular
skructure of the model. The influence of the chemical reactions taking place on
the boundaries of the reactive obstacles is reflected in the appearance of this zero-
order extra-term. On the other hand, the second model is again a boundary-value
probler, but this time in the whole domain {2, with discontinuous coefficients. Its
macroscopic behavior (see (1.8)) also involves a zero-order term, but of a completely
different nature; it is originated in the chemical reactions occurring inside the grains.

The approach we used is the so-called energy method introduced by L. Tar-
tar [59] for studying homogenization problems. It consists of constructing suitable
test functions that are used in our variational problems.

Also, let us mention that another possible way to get the limit problem could be
to use the two-scale convergence technique, coupled with periodic modulation, as in
j16].

Regarding our second problem, i.e. chemical reactive flows through periodic array
of cells, a related work was completed by Hornung et al. [46] using nonlinearities
which are essentially different from the ones we consider in the present paper.
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3. THE p-LAPLACIAN IN FLUID DYNAMICS

A second set of problems in collaboration with A. Lifidn concerned with one of
the archetype of quasilinear partial differential operators: the p-Laplacian

A= div([Vaf 7 Vu), 1<p<eo.

During some time, this operator was cansidered as an academic illustration of nonlin-
ear diffusion operators but without any relevant role in applied frameworks. Perhaps
it was the reason (and because the often use of it in the J.L. Lions' school literature:
see. .. Lions [53]) why the operator was sometimes called as the “French nonlinear
Laplacian”.

In the mentioned meeting CEDYA I presented several results on the

%% = div (]Vu|p_2Vu) in Q=(0,00)xQ
PPY w(t,z) =0 on 8 =(0,00) % 8,
(0, z) = up(z) in zefl,

with 1 < p < co. In [28], (20} we proved that if p > 2 then there is finite speed of
propagation ( Le., if supp(ug) C B(Q,7) CC £, then the solution of problem (F?)
satisfies that supp(u(t)) is a compact set for any ¢ > 0, but, if 1 < p < 2 and
wy = 0, up % 0, then u(t) > 0 or u(t) = 0 in Q for all ¢ > 0 ([29}).

On the other hand, the finite time estinction of the solutions of (P?) when ﬁ—fz <
p <2, N >2wasproved in [12], and, for 1 <p < };,2%, in [43] (see also [7]).

I remember very well the moments in which I explained the results to A. Lifidn (at
the cafeteria of my Faculty) and how [ast he mentioned me its possible connections
with some problems in fluid mechanics. This was the origin of out paper Dfaz and
Lifidn {[31]). We considered there the discharge of & turbulent and perfect gas in a
pipeline occupying the interval {0, L) and with a section of diameter D very small
in comparison with L. We use the hydraulic approvimation to arrive to a system of
equations for the density p, velocity u, pressure p and temperature T

dp | Blpu) _
Bt + or 0
du du gp 1
P T PYEs = Tas 3 ulu (14)
(.al{ n ui (-7 + luz) N . (=T — ltﬁ)
at "ty —1 2 at 2 v—1 2
p
;=T

(we used renormalized t € [0,+00) and x € [0,1] variables avowing the appearance
of the friction term f = AL/D with X the Darcy-Weissbach coefficient). We replace
third equation (the enthalpy equation) by

du

& |

where we used the Reynolds analogy for the modeling of the heat supply received
by the fluid from the boundary

ruinp/) = -G L@ -1 - T (15)



384 SIMPLICITY, RIGOR AND RELEVANCE IN FLUID MECHANICS

We assumed the initial and boundary conditions corresponding to an static ini-
tially full pipeline with one closed boundary point and other in which the discharge
make teke place at the pressure pg (po > pa) and temperature Ty (for any time)

Wz, 0} =0, T(0,z) =1, p(z,0)=1 z €(0,1),

uw(0,t) =0 >0,
u(1,t) . _
—7T(1,t) <1 if p(1,t) = Pa,
u(1,¢)
=1

———f),T(]_’ 3 = if p(1,t) > Pa.

The system has the same characteristic lines that the Euler system

dz dz
—_— =, 5 = -+
dt v di wEa
with a = /T the sound speed. We show that, asymptotically, there are two
different steps in the discharge: in the first one (very short, of the order 1/ f) all the
terms at the equation (15) are of the same order but the auxiliary conditions can
be simplified allowing a local study made by using the Riemann invariants
a a
2———+uand 2—— —u.
(v—1) (v-1)
In the second step, when t >> 1/f we show that the second and fourth equation
can be simplified, by neglecting lower order terms and using some suitable variable
scales), to
dp 1

Oz—a—z—-z-plumand%:T:l.

Then, from the first equation we deduce that p satisfies that

ap 8 |a?|”* . (o), _

Ef_am(ﬁ sign | 5 V=0 t>0, x€(01),
2. =0, p(Lt) =P t>0,
plx,0)=1 z € (0,1).

Notice that since v > 0, making p* — p? := w we arrive to the doubly nonlinear
parabolic problem

6%—(;”’)— g =0 t>0, z€(0,1),
%—Zi(o, =0, w(l,f)=0 t> 0, (16)
w(z,0) = wp z &€ (0,1),

with ¥{w) = (w 4+ ™)™ which (5 2 nondecreasing function of w. The correct
exponents are m = 2 and g == 3/2 nevertheless other interesting cases are m = 7/4
and g = 11/7 (case of very polished pipes) and m = 1 and g = 3/2 (laminar regime).
The existence and uniqueness of solutions of a larger class of problems of this type
was the main motivation of the paper [37]. In the paper {31] we study the finite
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extinction property: there exists a finite time &y such that w{z, ) = p forany t = &
aund = € (0,1).

By using an integral energy method (in the spirit of [7]) we show that the property
holds if p, > 0 and g < 2 (for any m > 0 arbitrary) either p, = 0 and m{g—1) < L.
Those assumptions are, in some sense, optimal since, if by the contrary, we assume
pa = 0 and m(g— 1) = 1 we show the existence of two positive constants 7, 7 such
that

e MHy(r) < wiz, ) < e MEFy(s), for any £ > 0 and z € (0,1),
where M and v are the first eigenvalue and eigenfunction of the problem

—A = \tm z € (0,1),

(NEP){ %(0) =0, (1) = 0.

{notice that v(x) > O for any = € (0,1)). Moreover we prove that if p, = 0 and
m(g — 1) < 1 then the discharge is global at time ¢ =ty since we prove that there
exists an increasing sequence &, — tp and a solution v > 0 of the stationary problem
(N EP) such that the function

wlz,t)
f 0<
o(t,3) = Fo) if 0<t<ty
0 if ¢ 21,

with g(£) = [AM(1—m{g—1))(fo —t)]m, verifies that z(ts, ) — v™(z), as n — oo,
in IF(0,1), for all 1 < p < co. This result extended some previous theorem due
to Berryman and Holland {15] for the case of linear diffusions ¢ = 2. More recently,
the limit case ¢ = 1 (and m = 1) was considered in Andreu, Caselles, Diaz, Mazdn
[4]. This corresponds to the so called total variation flow equation

%% = div (I%j—l) (17)

arising in many questions related to differential geometry, image processing and mi-
crogranular materials (see, for instance, Kobayashi and Giga [49] and its references).

4. A SOURCE OF PROBLEMS IN LUBRICATIGN

The lecture by A. Lifidn “Problemas matemdticos de lubricacién hydrodindmica”
given at the Seminario de Matemdtica Aplicada of the Universidad Complutense de
Madrid (UCM) on April 14th 1986 was the origin of a long production by many
Spanish mathematicians. In this lecture, he presented the cavitation phenomena as
one of the harder free boundary problems formulated in fluid mechanies. The cor-
rect mathematical condition satisfied at the free boundary attracted the attention
of many mathematicians. Moreover the question of the uniqueness of the associ-
ated weak solutions of the stationary problem was the main goal of the thesis by
8.3, Alvarez at the UCM which appeared later coauthored with his thesis adviser
(Alvarez and Carrillo {1]). The evolution problem was considered in Alvarez, Carrillo
and Diaz [2] and Diaz [22].

The mathematical interest for this type of problems propagated very fast to
specialists of the universities of Santiago de Compostela (Bermides de Castro) and
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Vigo (Durany). The doctoral dissertation of C. Vazquez {who maintain today a great
activity in this domain with collaborations with different authors) was one of the
consequences, as well as the celebration of the international meeting Mathematical
Modelling Lubrication (G.Bayada, M.Chambat y J.Durany ed.) Universidad de Vigo
in 1991.

Another set of results, originated this time in the postgraduate course “Intro-
duccién a la Mecdnica de Fluidos”, given by A. Lifidn and this author since 1996
{the first two years also in collaboration with M. Garcfa Velarde) concerned the
question of the regularity of solutions of some very simple problems arising in lubri-
cation. In Diaz and Tello [38] (see also Tello [57], [58]), we present the mathematical
treatment of a problem of hydrodyramic lubrication, relevant in the applications,
which leads to a formulation lacking a classical solution. So, the solvability must be
necessarily boarded in terms of weak solutions. This type of arguments, justifying
the needed of weak solutions, is typical of nonlinear hyperbolic equations. What
we underline in that paper is that this situation also arises with some linear elliptic
equations which are relevant in the applications, and not merely a mathematical
exercise searched as a sophisticated counterexample.

Consider, for instance, the problem of the lubricating the friction between a fixed
undeformable solid presenting some abrupt edges and a regular surface in movement
by using an incompressible fluid in the separating region. This kind of problem
frequently appears in different engineering applications, as in “feecdbox” or “shaft-
bearing” systems. We assume, for simplicity that the surface reduces to the one
given by z = 0 and that it moves with a given velocity (U, ¥5,0), (i.e. parallel to
the own surface). Let h(t,z,y) be the distance between the surface and the solid.
That we want to describe is the fluid velocity u = (u,v,w) and pressure P. We
suppese the fluid incompressible of density p (a positive know constant). Starting
from the usual conservation principles

. dp :
mass conservation — + div(pu) = 0,

at
momentum conservation pu; + p(uViu = —V P + plu,

using dimensional analysis and supposing i stnall with respect the solid size, we can
simplify the momentum equation leading to the system

apr *u .
~ + bas = ¢ in the z component,

ab  oh ‘
B_y -+ Faa = 0  in the ¥ component,

apP .
= in the z component.

The boundary conditions are
u=v=20 w=% on z=4

4y - =v—Vp=w=0 on z=0
Therefore, we have that

w= L8,
T 2udu
1 9P
——z
2u By

(= B) + Uo{1 =),

(z=h) + Voll=3).
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The fiow is given by

h Ush h3 apP
o = ) udz = - g

h WwWh R OP
y = jc vdz = ==

2 Top oy
Integrating in the mass equation, we get that
dph 8 d .
—_— + - =0 Q
at + a,r [PQ:&‘] + ay [P‘h] m ]
P—F=0 on d0.

If, for simplicity, we suppose that h{t, -} = h(-} we arrive to the, so called Reynolds
equation

a Uh h® 0P a Wh h® ap

R kL iy BV v _ 2 % y=_0 inQ
(P) Bﬂ:( 2 12ud= I 8'y( 2 12uy By) 0 inth
P-FR=0 on 82
_ In fact, in what follows, we shall always assume that
ke L®(),0 < hg < h{z,y) < h,ae onfd (18)

We point out that more general situations, in which the surface is more compli-
cated, can be considered by expressing the pde in terms of a general coordinates
system (o, B, z) associated to the surface, getting formulations of the type

8. Udh W ap 8. Voh K aP )
Dt By b D (gt — G} =0 in QY
aa(gﬂ 2 gﬁlgﬂgq aa) + a'ﬂ(gﬂ 92 Ga 12#95 aﬂ) mn

P—Fy=0 on B8

In order o present an example where no classical solution of (P) may exits we con-
sider the case in which (g, y) is discontinuous (case of solids with abrupt edges).
This is specielly easy to present in the unidimensional case (ie. an uniform solid
which is understood as unbounded), We start by recalling the notion of weak solu-
tion:

Definition We say that P is a weak solution of (P) if P=u+ Pywithu € HY )
satisfying that

h3 h 1
/. 73 Ve Vb do = [ 5(00,T) - Vido, 4 € HR(. (19)

A standard application of the Lax-Milgram theorem allows to prove the existence
and uniqueness of 2 weak solution P. In the special discontinuous unidimensional
case, if & = (0, L) and

h(z) ={ ’;‘1’ itz e %)‘ (20)
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then the weak solution P is non of class C* and so is not a classical solution since
the one dimensional Reynolds equation becomes

a Uh B OP(z), .
{*[2 “ o e 170 B 21)

P-PB =0 on &5
and the {unigue) weak solution is explicitly given by:

—ﬁu?wE+3—WIQa:—i— P ifo<cas<d
s (22)
L;;M’E(menzvo L <s<L
1

EEIR e [L_i]_l_
4 [R} R3L A3 HRE
Then, obviously, P & C"({) (nevertheless, it is easy to see that function given by
(22) satisfies that P € Wh(0, L)).

The study of the regularity of the weak solution of (P) associated to 0 = (0, L} x
(0, B) and eventually discontinuous separation functions h{z,y) as

P{z) =
Gy

where

if x L
wen={ b §red?) (23)

where 0 < hg < hi, is far to be trivial. For instance, the regularity C%(0),
Yo € {0,1), of the weak solution of (P) is a direct consequence of the regularity
theory (see, e.g. Kinderlchrer-Stampacchia [48]). The WP(Q) regularity is & more
delicate question due to the lack of continuity of h. As far as we know, there is not
any general result in the literature that could be applied directly to this case. The
main resulk of Diaz and Tello ([38]) {see also the generalization made in [58]) shows
that, in fact, P € Wleo(Q2}.

We end this section by making reference to some inverse problems, also suggested
by A. Lifidn in the mentioned postgraduate course (see also his notes [52]). After
the pioneering work by O. Reynolds, in 1886, it is well-known that the pressure of
a lubricating fluid filling the gap between two solid surfaces satisfies the, so called,
Reyuolds equation involving the distance function, A, between both planes, as a
crucial coefficient. Nevertheless, in most of the applications function / is not known
o priori. The hard disc of computers or the compact disc player are two examples
of the many real situations where this kind of problems appear.

Although several works have been devoted to the study of this problem when
some extra information is added to the formulation (see, e.g. the articles Bayada [10],
Bayada and El Alaoui Talibi {11] in which the total load supported by the surfaces is
prescribed), it seems not well observed the necessity of to imposc suitable conditions
on the additional information in order to get a well posed formulation.

In Diaz and Tello ([39]) we consider the simple case in which the surfaces are
two parallel planes and so the unknown distance between both planes is merely a
time function h = A(t), for t € (0, T).with T > O given. So, the unknown are the
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functions (A(t), P(z,y,t)), where P denotes the pressure and {z,y} € ©, an open
and bounded set of R?. We assume given the initial distance between the planes

R(0) = hq, (29

the external pressure F, (o positive constant), the initial pressure distribution P(z,0)
= Py(z) (only for the case of a compressible fluid) and the relative velocity (U, V)
of the superior plane (in fact here assumed to be a constant vector). In this note we
also assume to be known the total force applied upon the superior plane and that it
has only a nonzero component, (1), in the z-direction (orthogonal to the planes).

The main goal of ([39)) was to give some sufficient conditions on (£) in order to
solve this inverse prablem. Moreover, in the incompressible case, we shall show that
our sufficient condition on F(t) is also necessary for the existence of a solution {h, P).
We recall that in the case of an incompressible Auid, under the above conditions,
the Reynolds equation deals to the linear elliptic inverse problem: assumed known
F(t) find (k, P) such that

—div(h{t)*V P) = —I'(3}), in £2 % (0,79,
P=F, on 80 » (0,T} (25}
{ F(t) h Jrﬂ(P(I? yrt) . Pa)dmdy for t & (O,T).

In spite of the simplicity of the abeve formulation, it seems that the study of nec-
essary and sufficient conditions on F{t) was not clearly indicated before in the
literature. The incompressible case (Problem (24) and (25)) can be solved by using
the auxiliary problem

—Aw=1, inf),
{ w=70, on 652 (26}
Consider
) = jn w(z, y)dzdy.
and assume that
P.K{Q)
Flt) > -0t (0,00). 27)
® max(zpealw(z, 1)} (0.00)
then we shiow that if
¢ K
— 28
[0 F(s)ds > ~~g" V¥ £ € (0,00) (28)
then there exists a umque solution (h(t), P{z,y,1)) of the problem { 24), (25) such
that Wit At
h_a((t_)j = w}%, (and therefore, sign(h') = —sign(F(t)))- (29)
1
. Jr 2 g E
In particular h{t) = {h—% + R fo F(s)ds] and
Ft)
= . 30
Plownt) = Zgyul@) + B (30)
Moreover, if there exists to > 0 such that
t K@) i K(®)
= — - 0,1 31
jo Fls)s =~ and jﬂ F(s)ds < ~~5p" Vi€ (0t0) (31)
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then A{f) — oo when t 7 fg and P(z,y, tp) = %&%w(z,y) + P,

The compressible case is more delicate since the associate problem becomes
parabglic and of quasilinear type. To simplify the formulation, we consider the
simpler case in which the spatial domain is reduced to a one dimensional interval
I = (0,L) (so, there in no dependence of data and unknowns with respect to the
y-variable), Then, under some conditions on the degree of compressibility of the gas
(see, e.g., Friedman and Tello [40]) we arrive to the following inverse problem for
the Reynolds equation: assumed known F(t) find (h, P) such that

ﬂ%-@ + Uh(t)g—i— - ea—i((ah(t)z + ﬁh(t)3p)aa—i) =0, inlx(0,T),
P(z,0) = Fy(z), in I,

P(0,t) = P(L,t) = Po,

for t € (0,7),

F(t) = fn(P(I,y,t) - P.,)cla:dy,

(32)

where Py, o, B, € and U are known positive constants and 7' is small enough. Some
results for this problem were given in ([39]).

5. ASYMPTOTICS IN COULOMB FRICTION TYPE PROBLEMS

In a series of joint works ([32], [33], [34]) we study the asymptotic behavior of
solutions of the damped oscillator

My - e 3y 4 iz = 0, (33)

where @ & (0,1) and g, &k > 0. In fact our work was related to the formulation

g+ |z =0 (34)
which is attained by dividing by k and by introducing the rescaling £(£) = Yz (M)
where A = % and A = Wr,ﬂljmg Notice that the z-rescaling fails for o = 1.
In that case there is no well defined scale for z and the equation is reduced to
Ty + Oy - = 0 with 8 = ﬁ remaining as a parameter to characterize the
dynamics. The limit case @ — 0 corresponds to the Coulomb friction equation

Ty + sign(z) +z 30 (35)

where sign is the maximal monotone graph of IR? given by sign{r) = ~1, if r <
0,[-1,1] if r = 0, and 1 if r > 0. The limit equation when o — 1 corresponds with
the linear damping equation
Tt Yx b= Q. (35)
We recall that, even if the nonlinear term |z,|*”" z; is not a Lipschitz continucus
function of 2 , the existence and uniqueness of solutions of the associate Cauchy
problem
P { 375¢+|Igln_1$g+$=0 t>14,
1 &(0) = 2g, 2:{0) =g

(and of the limit problems Py and P corresponding to the equations (35) and
(36) respectively} is well known in the literature: see, e.g. Brezis [17]. An easy
application of the results of the above reference yields to a rigovous proof of the
convergence of solutions when o — 0 and o — 1.
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The asymptotic behaviar, for ¢ — oo, of solutions of the limit problems Fy and
P, is well known (see, for instance, Jordan and Smith [50]). In the first case the
decay is exponential. In the second one it is easy to sec thab “given zq and g there
exist o finite time T = T(%g,vg) and a number ¢ € [~1,1} such that z(t) = ( for
any £ > T{zq, )" For problem P, it is well-known that (z(t), m(t)) — (0,0} as
t — oo (see, e.g. Haraux [41}),

The main result of papers [32] and {33] was to show that the generic asymptotic
behavior above deseribed for the limit case Py is only exceptional for the sublinear
case o € (0,1) since the generic orbits (z(t), % () decay to (0,0) in a infinite time
and only two one-parameter families of them decay to (0,0) in a finite time: in other
words, when a — 0 the exceptional behavior becomes generic,

Wo started with some formal results via asymptotic arguments. We can rewrite
the equation (34) in as the planar system

{ Iy =Y = (37)

=z —y* Y

whicl,, by eliminating the time variable, for y # 0, leads to the differential equation
of the orbits in the phase plane
—z "y
ya: - y (38)
and that allows us o carry out a phase plane description of the dynamics.

Wa remark that the plane phase is antisymmetric since if y = (=) is a solution
of (38) then the function y = —(-xz) is also solution. So, it is enough to describe
a semiplane (for instance z > 0). By multiplying by = and y, respectively, we get
that (2% + p2) = 2]y|*™". On the other hand, it is casy to see that (1/z,1/y)
satisfy a system which has the point (0,0) as a spiral unstable critical point. For
values of 2% +3? >> 1 the orbits of the system are given, in first approximation, by
x? 41 = C hecause JA* "y is smali compared with 2. The effect of this term is to
decrease slowly C with time giving the trajectory a spiral character. Fora =1 the
character of the trajectories close to the origin depends on the parameter 3. For
B > B.:= 2 the origin is a stable mode and for B < f. is a stable spiral corresponding
to underdamped oscillations. It should be noticed that for a > 1 the origin becomes
a stable spiral poink. The limit case & — +co can be described analytically with
two-time scale methods (see [34]).

We proved that there are two modes of approach to the origin and so that the
origin (0,0) is o nade for the system (37). The lines of zero slope are given by

-z ="y (39)

So the convergence to (0,0) is only possible through the regions {(,y): 2z >0,
y < ~3/*} U {(z,y) : £ < 0, y > {—2)"/*}. Let us see that the “ordinary” mode
corresponds to orbits that are very close to the ones corresponding to small effects
of the inertia. Due to the symmetry it is enough to describe this behavior for the
orbits approaching the origin with values of z > 0 and y < 0. Let —y =7 > 0.
Equation (38) takes the form

T = —a + " (40)
The line of zero slope is i = z/* and we search for orbits obeying, for 0 <z <<1,
to the expression § = z¥° -+ z(z) for some function z(z). If we anticipale the
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condition 0 < z(x) << =%, equation (38) takes the “linearized form” LaGz 4
£z, — az1~3)z = 0. Thus the first term can be neglected, compared with the last
one, and then the solution can be written as z{z) ~ Cexp{—[a?/2(1 - Cx)]z‘ﬂlr:_nl}
with C an arbitrary constant (which explain the name of “ordinary” orbits). This
type of orbits are given, close to the origin, by the approximate equation (39), which
for the orbits that reach the origin from helow implies that § ~ £'/* ~ —% and so,
integrating the simplified equation

dx 1/
T (41)
we pet that o e
af{l-c
o) ~ [T ()

and so that it takes an infinite time o reach the origin.

Some different orbits approaching the origin can be found by searching among
solutions with large values of |y} compared with lcc[” “  Thus, close to the origin,
the orbits with negative y are “very close” to the solutions of the equation found by
replacing (40) by the simplified the equation

Tife = ° (43)
corresponding to a balance of inertia and damping. The solution ending at the origin
( §(0) = 0} is given by

Pe) = {2 - a)a}/). (44)
Notice that it involves no arbitrary constant. So this curve is unique (a symmetric

curve arises for y > 0 and = < 0) which justifies the term of “extraordinary” orbit.
The time evolution of this orbit is given, for z << 1, by integrating the equation

& 2 - e (49)

and so 1 (@ a)(1—a)
=t) = (2 —a)[ 2o

(tg — £} =M=,

where in general A{f)y = max{0,h(t)}. This indicate that the motion (of this
approximated solution) ends at a finite time, &y, determined by the initial conditions
which, by (45) must satisfy that vg ~ £[(2~a) Jzolf/*~* We point out that the two
exceptional orbits emanating from the origin spiral around the origin when 2?4yt
grows toward infinity and so each of them is a separatrix curve in the phase plane.
Notice that due to the autonomous nature of the equation, if x(2) is the solution
of the Cauchy problem (7.} of initial data (2q,vg) then for any parameter 7 > 0
the function #(t) := z(t + 7) coincides with the solution of (£,) of initial data
{(r),2:(7)). Tn this way, the above extraordinary orbits give rise to two curves of
initial data for which the corresponding solutions of (Fy) vanish after a finite time.

We end this section by pointing out that the solution of problem (FPs) for 0 <
a << 1 takes an asymptotic form which can be easily described. The differential
equations of the orbits “simplify” if y s 0 is finite and &« = 0 to Yo = -2 -1
for y > 0 and §§; = —z + 1 for § = —y > 0. The solutions are circles with center
at £ = ~1 if y > 0 and center z = 1 if y < 0 joined. An orbit formed with half
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circles with centers at © = —1 or = = 1 when it hits the interval (0, 1) from below
it is transformed into an orbit that reaches the origin following very closely that
segment, governed by the equation (41) of solution (47). In the limit 0 — 0 we
found that any point ¢ € [~1, 1] is an asymptotically stable stationary state of (F).
In a second part of the papers we proved some rigorous estimates on the decay. In
{[32]) we used o fixed point argument to show that there exists two curves I'y. and
I'_ of initial data (zg, o) for which the solutions z(t) of the corresponding Cauchy
problem (B,) vanish after a finite time. Moreover, we give some additional results
on these two curves:
(i) Near the origin the curves I'. and I'_ can be represented by two functions,
y = . (z) and y = @ (z) solutions of the equation {38), where ¢, : [0,£] = (—c0,0]
and .. : [~¢,0] — 10, +00), for some £ > 0.
(i) Functions o4 and p_, satisfy that 0.(0) =0

€ ds 0 ds
<f0 WQD.‘.(S) and f_s =P < +00. {46)

In particular, ¢/, (%) | —oo when z | 0 and ¢ (z) T +co when 2 1 0.
(ili) We have

—CaT= < @e(z) < —z% for 7 €[0,€] and
(~2)f < (z) < C(—z)7= for 7 € [~¢,0),

for some C' > 0.
(iv) There exists a z, € (0,z] such that py(z.) = ~(z)% and (—3,)7 = @_(z,).
Moreover the regions Dy. := {(z,4): = € [0,%,] and p(z) <y < —x%)}, D_ =
{{z,7): 5 € [-z5 0] and (—2)s €y < o_(z)} are time invariants for equation (38).
In order to prove that the decay to zero in an infinite time is more generic than
the decay to zero in a finite time we obtain sharper invariants regions
(i) There exists a § € (0,,) small enough such that the regions DY := {(z,4) € D, :
z € [0,7,—5] and —z* -4 exp{—[az/Z(lwa)}z“&?l} <y<—zF}, D8 = {(my) €
Doz e[z, 46,0 and (-z)7 <y < (—x)= + Fexp{[a?/2(1 - @)}z 1)} are
time invariants for equation (38).
(ii) If (o, va} € D% (respectively D®) then the solution z(t) of (Fa) satisfies
that z(t) > C £/~ (respectively z(t) < —C ¢~=/1~2}) for some C > 0 and any
t>0.

0~ e (47)

and so that it takes an infinite time to reach the origin.

The above results were improved in Amann and Diaz [3] and, specially, in Vdzquez
[61] which contain a completely rigorous proof of the asymptotic part. For some
results on a related system see Diaz and Millot [35].
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