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ABSTRACT
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i. Introduction.

Semilinear elliptic equations of reaction-diffusion type have been used widely in the
last thirty years as models for a variety of problems arising in applications (population
dynamics, combustion, chemical reactions, etc.). They give rise to many interesting
mathematical problems. in particular for what concerns existence and {maybe) mul-
tiplicity of positive (or nonnegative) solutions, which are often the only meaningful
in the physical situation. A simple example is given by

—Au=Af{u) in,
u=10 on 082

where (1 is a smooth bounded domain in RV, A is the usual Laplacian modeling
(linear) diffusion, A is a real parameter and f is a nonlinear reaction term satisfying
usually f{0) > 0. Of course, f can also depend on x (and on Vu), other boundary
conditions, even nonlinear, can be imposed, etc. (see the books [10] and [22] and its
references).

If the nonlinearity fis C1, or at least locally Lipschitz, a simple argument imvolving
the Maximum Principle shows that nonnegative solutions {(i.e. u > 0in 1) are actually
positive (u > 0 in Q). But if f is not Lipschitz at zero (with f(0) = 0) then it
may happen that nonnegative solutions have a “dead core”, i.e., regions of positive
measgure in 2 where the solution vanishes. The same situation may arise in models
with nonlinear diffusion which give rise, after a change of unknown, to problems with
non-Lipschitz nonlinearities. These free boundary problems were extensively studied
in the early eighties (see [10]).

Here we deal with a class of problems which, maybe, posses both positive and
“dead core” solutions. More precisely, in Section 2 we consider the quasilinear elliptic
one-dimensional problem

—(WP 2w + eu™ = Au? in (—1,1),
Pre { u(£1) =0 (1)

where p > 1 and @, A are positive numbers and 0 < m < g < p— 1, which corresponds
to the case of strong absorpiion with respect to the diffusion (see [10]). Hence this
includes semilinear equations with non-Lipschitz nonlinearities, as —Awu 4 0% = by
0 < a<f <1, and quasilinear degenerate equations as as —(|u'|* ')’ + au = Au?.
Some comments on previous work are given below.

In Section 2 we sketch the results we have obtained and partially written in [11].
Here we use phase plane arguments for the associated ODE and get a complete picture
of the solution set. We show how these methods also work in our case and get results
close to [4], [23], [22]. There is, however, a remarkable difference, since the “lower
branch” of positive solutions “stops” at some critical value Ay giving rise to “dead
core solutions”. A more detailed version of these results will be given in [12].
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In Section 3 we sketch how similar ideas can be developed when §2 is a smooth
bounded domain in RY. We consider the problem

—Au=Aw?—u?) g,
u=20 on 90

(see [20], [7]) and sketch a proof of the existence of at least two positive solutions for
X large which is still valid when —A is replaced by a second order linear operator not
necessarily in divergence form. The essential tool here is a result by Dancer [9] (see
also [18]) saying that in the interval between ordered sub and supersolutions [ug, u°]
there is always a solution 4g € v € v° with index 1, i(u) = 1. This extends a result
by Brezis and Nirenberg [6] for operators in divergence form. Finally, in a series
of Remarks we give indications about how to modify the arguments (and results)
in order to deal with non-Lipschitz {and singular) semilinear elliptic problems and
degenerate operators involving the p-Laplacian.

2. The one-dimensional problem

To state our main result for problem (1.1) it is useful to introduce the notation
Flw) = w9 —w™ and F(r) := [] f(s)ds. We also introduce rp = (q/m)*/@=™) {the
unique zero of F(r)). Let Ay > 0 be given by

N A (p_‘l)l/p -/TF dr (r—1)(g—m)/(p—1-m) 2)
H PPy ()P -

Notice that A; < oo thanks to the assumption m < ¢. We have

Theorem 2.1 There exists a Ag € (0, A1) such that: a) if A € (0, M) there is no pos-
itive solution, b) if A = Aq, there is a unigue positive solution u(:, po(Aa)) {pe(Ao) ==
llull.)s ) if X € ( Ao, M), there are two positive solutions p(-,X) = u(:, p—(A)) and
Q(‘a)‘) - U(-,M.;_(A)) (/‘t—i-(A) = !Ep”m? M—(A) = ”(J“m) ]‘/IO’F‘EO’UE’."‘, p(:A) < Q('i’\)
on (—1,+1} and /' (£L,p..(A)) = 0. d) if X > Ay there is one positive solution
a(-, A) = ule, pe (X)), e)Finally, if A > Ay there is a family of nonnegative solutions
which are generated by u(-, p_(X1)) and for A > Ay we have p_(A) = (‘—;—)1/(’1_7")6' with
C = |Jul-, p— (M)l o - More precisely, let vibe the function defined on |z| < L, A1),
Lia, M) = a“(p_l_q)/(q_m))\gp_l_m)/(q_m} by the identity

n(2) = CEMOmu(ar (o ) e ().

Then, for any v, |y] <1 —1UN), I(A) = (A /NP t-m/a=mie=1) the function

o (2y @@=y, (z — y)L{a, A1), for |z —y] < I(A)
rley) = { 0. for la—y| > 1) ’
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is a solution of Pxa. In fact, if N is a positive integer and A > Ay Nlg—m}/(p=1-m}
given a vector v = (Y1, Y2, -, YN} with
1<y, — I, 5 +IA) Sy —UA), i=1,.,N—-1Lyn-+IA) <1

and if we define the set of solutions of Sy(A) as the one given by functions of the
form
oy M = wba ), for o= u] S 1),
0, for |z —w) > HA),
then the set of nontrivial and nonnegative solutions of P(X) is formed by S(A) jointly
with q(-, A} where §(X) is the set defined by S{A} = U;V:]LSJ-()\).

The proof will be obtained as a consequence of the study of the bifurcation diagram
for the auxiliary problem

~(['P2 ") = vt —v™  in (-L,L),
p(L){ W(£L) = 0
in which we consider the equation on a general interval {(—L, L) and take L as variable

parameter. We shall prove that
Theorem 2.2 We define

W= | 2)
T DI Sy (Rl — FEDVP .
Then (1) = 0 has a unique root g € (rp,00). We introduce the numbers Ly = y(uo)
and Ly = v(rg). For L > Lg we denote by py (L) to the largest solution of the non-
linear equation L = (i), and for Ly > L > Lg let u_(L) be the smallest solution.
Then we have the following cases: i) if L € {0, Lg) there is no positive solution, i)
if L = Ly, there is a unigue positive solution v(., uy(Le)), i) if I € (Lo, L1], there
are two positive solutions P(-, L) = v(~,p_(L}) and Q(-, L) = v(-, p4.{L1)), Moreover,
P(,L) < Q(-,L) on (=L, L) and v'(£1,p_(L1)) = 0, ) if L > L, there is one
positive solution Q{-, L} = v(-, (L)), v) for any L > L; there is a family of nonneg-
ative solutions which is generated by v{-, p.(L1)). In fact, for any h, |h| £ L — Ly,
the function
v [ vl —hp—(L1)) for |z — h| < Ly,
s(#,h) = { 0 for |z —h| > L1,
is also a nonnegative solution. If N is a positive integer and L > NL;, given a vector
Y= (yhyZ: JyN) with —L < yi_Ll: yi+L’1 < Yi+1 _L17 1= 1,N_1: yN+L1 < L
the function
v(@ —yi, p—(L1)) for [z —w| < Ly,
s(a:,y):{ 0 for |m—yii>L1,fori=1,..,N

is o nonnegative solution. We call Sy{L) the set of such solutions r(x,y). Finally,
for L > Ly let N be the integral part of L/Ly and let S(L) = UleSj(L). Then the
set of nontriviel solutions of P(L) is formed by S{L) joinily with Q{-,L).
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2.1. Proof of Theorem 1 from Theorem 2.
Let uy o be a solution of Py, Then the change of variables

upa(@) = ( %)1/(q—m)v(za“(z)—l—q)/(q—m) Alp—1=m)/(g—m)y (2.3)

transforms uy, o into a solution v of the problem P{L) with L := o~ e A and,

conversely, any solution v of problem P(L) into a solution of Py o. We define Ap :=
[y(uo) ofp=1-a}/(g=m))(a—m)/(p—1-m) From Theorem 2 we get that the bifurcation
equation L = ~(u) for the solutions of P(L) leads to the equivalent bifurcation
equation

o~ P—1=a)/ (g—m) y(p—1-m}/(g~m) _ Y(llurall o (2}1/(0—"!)) (2.4)

for the solutions of Py . Since y(uo) is the minimum value of v we deduce that if
A < Ag equation (2.4} has no solution and for A = Ag there is only one solution. This
proves a) and b). Since the range of the branch v; is [y(uo), +00) we deduce that
for any A > Ap the equation (2.4) has, at least, a solution which implies the existence
of a solution of P o, (-, A). If A € ( Ag, A1], from the contimuity of the branch vy,
we deduce the existence of a second solution of the equation (2.4) which implies the
existence of the solution p(-, A). Both roots correspond to the two solutions u— < w4+
of the equation L = -y(p) and then

e = |P{ M) (A)l/(Q—m)’#_*_ = 1R Ml (2)1/(q—m)

a
for a suitable A which proves that ||p(-, M)l o < lla(-, M)||o- Moreover, since p(-,A) =
(%)1/(q—m)P(ma—(p—I—Q)/(q—m))\(P—l—fn)/(q—M) . L) and
q(- )\):(%)1/(9“”1)Q(ma"(i"_l_q”(q“m)/\(1"_1_"’”)/(’4“’”):L), using iii) of Theorem 2, we
get ¢). Part d) is proved in a similar way.

Remark 1 Some related results in the literature are the following: The case of m > 1
was studied in [15] in the larger class of possible changing sign solutions. Their results
are of a completely different nature to our Theorem 1. A closer result can be found
in Section 2 of [5] where the authors consider the same equation for p = g = 2
but locking for 27-periodic solutions on . We point out that several points of the
description made in Theorem 1 remain true for the same type of problems in higher
dimensions (see [12]). In this last direction it is interesting to mention the paper [§]
where the authors consider the case p=2,0 <m <1 < g < (N +2)/(¥ —2) in RY,
N > 3. Nevertheless, no multiplicity study is made there. ]
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2.2. Proof of Theorem 2

Lemma 1. A function v 45 a positive solution of problem P(L) if and only if

1 s dr
G fum FG =By o e el < L

where p € [rr,00) and L >0 are related by the equation ¥(u) = L.
Proor. If a positive solution exists then necessarily it will have a maximum g > 0
in some point ¢ € (—L, L). So, let us consider

~(J' P2 = f(v)
¢P { o(C) = i, 1(¢) = 0.

If 4 < 7y (the zero of f) no solution of CP may satisfy P(L). Multiplying by v/,
integrating by parts and using the initial conditions and that v* < 0 near z = { we
find

—'() = A7 (F () - Plo() (2.5)

where A(r) := [(p—1)/p]rP. Tt is easy to see that if r is the (unique) positive number
such that F(rg) = 0 then if g € (ry,rr} no solution of CP may satisfy P. So, let
1 € [rp,00}.When it = rp the integral of the function v may have a second singularity
at r = 0 which is integrable. For a positive solution v of problem CP, v = 0 only at
7 = £ L. Therefore ¢ = 0 and the proof holds. b

The next result shows some general qualitative behavior of the graph of y{(u).

Proposition 2.3 We have (i) v € Clrr,00) N CY{rp,o0); (i) v{p) — +oo and
¥ () — +oo as p — +oo. (i) ¥ () = —ccesplrE '

Proor. It is useful to introduce the function

B p]_/p B 1 dr
M) = 2510 =0 [ o F
Then
Wy = Ak 7 Pl (26)
b Py (Flw) — Flrp)e |

For 1t € (rp, 0o) we have that /(1) # 0 and it is not difficult to verify that the integral
in (2.6) is convergent and that A’(u) € Clrp, ), A € C{[rr,00) x [0,00)). For the
rest of the proof it is useful to introduce the auxiliary function 8(¢) := pF(t) — tf(¢).

Then we get
L1 r (0() — 6
N =0 [ e @D
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The proof that A’'(pt) — —~c0 as 2 |rp uses Fatou'’s lemina and that foﬁ WW;
is not integrable. Property (iii) is proved in a similar way.

In order to get a more precise information on the number of zeros of function /(1)
we need some different arguments.

Proposition 2.4 v/(u} = 0 kas a unigue root pg € (Ty,00).

PrOOF. We follow closely the proof given in the nondegenerate case [23]. The
following properties hold: A} There is a g1 € (rr, c0) such that 8{r) < 0 on (0,11)
and A(r) > 0 on (3, 00). B) There is a poy € (0, p1) such that 8'(r) < 0 on (0, ua) and
#'(r) > 0 on (p2,00), and C) There exists a ps € (0, p2) such that (78(r))’ < 0 on
(0, 1) and (r8(r))’ > 0 on (p3,00). It follows from properties A and B that A'{x) >0
on (p1,00) and, if rr < p2, A'(p) < 0 on {rp, pg). It is clear that necesarily A’(u)
has at least one zero in the interval J := [max(r g, 2}, g In fact, there can be at

most one by proving that
A'(p) + CA'(u) >0 (2.8)

on this interval J, for some C > 0 (notice that then A”(x) > 0 on any of such zero).
The proof uses the formmila

1 [* {52000 F) — (p+ 1/p)(6:0)(62£)}
" _ 2
Al = #227/0 (61F)2pr 1) o
where (8 2)(r) = h{g) — h(r) and (§2h)(r) = ph(p) —rh(r), 0 < r < p. cC
The crucial point in the rest of the proof of Theorem 2 is that v/(+1, p—_(L1)) = 0.
This follows from (2.5). Similar ideas can be found in Proposition 3 of [4]. 0

Remark 2 Theorem 2 holds for a larger class of functions f (see [12]). A very
interesting situation occurs when p > 2 and, for instance of f{v) = v(I — v)(v ~ a),
for some a < 1. In that case it is possible to show the existence of nontrivial solutions
taking its maximum on a positive measured subset (see Diaz and Kichenassamy [13]}.

3. The case of a bounded N-dimensional domain

In this paragraph we deal with the general case of any smooth bounded domain in
RY. Except in the case of a ball, the ODE methods of Section 2 do not work any
more and should be replaced by variational or topological arguments.

In our exemple below we obtain immediately a supersolution, which provides a
very simple a priori estimate as well, and then, by a rather intrincate argument we get
a subsolution for A large. Hence the existence of a maximal positive solution will follow
from the usual argument ([1]) telling that between ordered sub and supersolutions of

{ —Au=f(z,u) in, {3.1)

u =10 on 90,
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with f smooth enough, there is always at least a solution u, ug < u < u°. Brezis and
Nirenberg [6] have proved that there is always a solution of the associated functional

1
J(u) = E/;]Vuﬁdm—/nF(m,u)dcc,

with F(z,u) = fnu f(z,s)ds. A very nice application of this result was used in [3],
together with the Montain Pass Lemma of Ambrosetti-Rabinowitz, in order to exhibit
a second positive solution for the corresponding problem. Since it is known that local
minima have index 1 (a result due to Rabinowitz [21] for C? functionals and to Amann
{2} in the case C1), it seems reasonable to guess that the corresponding result should
be true for general second order operators with smooth coeficients. Such result was
proved by Dancer, it is actually a corollary of a general abstract result in Banach
spaces (namely Theorem 2 or Corollary 1 in [9]) whose assumptions seem not easy to
check in concrete examples. A different proof for the case of equation (3.1), which is
still valid for singular problems (see [16], [L7] and its references) can be found in [18].
We consider now the problem

{ —-Au=Au?*-v%) inQ,

u=0 on of). (3.2)

‘We have the following

Theorem 3.1 There exists a A > 0 such that for any X > X problem (5.2) has at
least two positive solutions.

PROOF (SKETCH). It is obvious that u° = 1 is a supersolution to (3.2) and,moreover,
an easy argument using the Maximum Principle shows that it provides an a priori
estimate for positive solutions as well. Then a rather intrincated argument provides
for A > 0 large enough a positive subsolution ug{A) < 1. Then, by the above mentioned
result there is a solution () such that ug(A) < u(A) < 1, with i(u())) = 1if A > A,
for some A > 0.

On the other side u = 0 is a local minimum for (3.2), and, by a simple linearization
computation around 0, $(0) = 1. But it is known {[1}) that ([0, 1]) = 1 and then the
properties of the index ([1]) and a simple counting argument show that there exists a
solution 0 < v(A) < u(A) such that #{v(A)} # 0. O

Remark 3 This result was proved by Rabinowitz [20] by using a combination of
variational methods and degree theory. See also the works of Clément and Sweers [7],
Gardner and Peletier [14] and its references. Problem (3.2) is not actually a particular
instance of the genral framework in the Introduction, but we prefer to illustrate the
method in this case. O

Remark 4 The above proof still work if we replace it by u"—vf withl <r <s,
and even allow 0 < 7 < 8 < 1, even if now the linearization around zero cannot be
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performed. On the other side, —A can be replaced by a second order uniformly elliptic
linear differential operator in general form with smooth coefficients.

The first part of the proof could still work in the singular case (e, -1 <r < s < 0)
but zero is not a solution and the second part is meaningless, at least in this version.
The suitable tools are given in [16] and then applied in [17]. O

Remark 5 The method of sub and supersolutions also works for quasilinear problems
with the p-Laplacian, but it remains the difficulty of getting a suitable subsolution
(for an index result see Kichenassamy [19]}. O
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