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ON A FREE BOUNDARY PROBLEM ARISING
IN CLIMATOLOGY
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Abstract

We present several results on the mathematical treatment of some diffusive en-
ergy balance models arising in Climatology. The model consists of a quasilinear
parabolic equation with a discontinuous function of the unknown (the co-albedo) at
the right hand side. The spatial domain is a two-duinensional compact connected
Riemannian manifold vepresenting the surface of the Earth. The free boundary cor-

responds to the level line u = ~10 for which there is a discontinuity in the co-albeda
function.

1 Introduction.

In this lecture we consider a diffusive energy balance model arising in Climatology given

by a nonlinear parabolic problem formulated in the following terms

uy = diw(|VulF~tVu) € @8(x)0(u) — G(u) + fz,t) in (0,T) x M,
()] |
u(x,0) = uo(z) in M,

where M is a U™ two-dimensional compact counnected oriented Riemannian manifold
without boundary and in consequence the differential operators must be understood in
the usual sense associated to the Riemannian metric of M. So, for instance, il p = 2
and M is the unit sphere the diffusion operator becomes the Laplace-Beltrami operator.
We assume T > 0 arbitrarily fixed, @ > 0. 5 € L™(M) and p > 2. The function §

is increasing and 3 represents a bounded maximal monotone graph in R? (of Heaviside
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type)- Through the paper we shall use the notation div(|[VulP~*Vu) = Ayu. This kind of
models were intreduced, independently, in 1969 by M.1. Budyko [7] and W.D. Sellers [50].
The models have a diagnostic character and intended to understand the evolution of the
global climate on a long time scale. Their main characteristic is the high sensitivity to the
cariation of solar and terrestiial parameters. This kind of models has been used in the
study of the Milankovitch theory of the ice-ages (see, e.g. North, Mengel and Short [47}).
The distribution of temperature u{x, ) is expressed pointwise after o standard average
process, where the spatial variable z is in the Earth’s surface. The time scale is considered
relatively long.

The model is obtained from the thermodynamics equation of the aimosphere primitive
equations via averaging process (see, e, g. Lions, Teruam and Wang [42] for a mathematical
study of those equations, Kiehl {40] for the application of averaging processes and Remark
1 for some nonlocal variants of (£)). More simply, the wodel can be formulated by using
the energy balance on the Barth’s surface: internal energy flux variation = R,~ R+ D,
where R. and R, represent the absorbed solar and the emitted terrestrial energy flux,
respectively and [ is the horizontal heat diffusion.

The absorbed energy R, depends on the planetary coalbedo (3. The coalbedo function
represents the fraction of the incorming radiation {lux which is absorbed by the surface. In
the energy balance climate models, a main change of the coalbedo occurs in a neighbor-
hood of a critical temperature for which ice become white, usually taken as « = —10°C.
The different coalbedo is modelled as a discontinuous function of the temperature in the
Budyko model and here it will be treated as a maximal monotone graph in R, 3(u) = m if
w < =10, fm, M] if u = —10 and M if u > —10, where i = i and M = @, represent the
coalbedo in the jce-covered zone and the free-ice zone, respectively and 0 < Gi < B, <1
(the value of these constants has been estimated by observation from satellites). In the
Sellers model, B is assumed bo be a more regular function. In both models, the absorbed
energy is given by R, = Q5(x)8(u) where 5(z) is the insolation function and () is the
so-called solar constant.

The Earth’s surface and atmosphere, warmed by the Sun. reemit part of the absorbed
solar flux as an infrared long-wave radiation. This energy &, is represented, in the Budyko
model, according to the Newton cooling law, that is, K, = Bu + C. Here, B and ' are
positive parameters, which are obtained by observation, and can depend on the greenhouse
effect. However, in the Sellers model, R, is expressed according to the Stefan - Boltzman
law R, = ou®, where o is called emissivity constant and now w is in Kelvin degrees.

The heat diffusion [ is given Ly the divergence of the conduction heat flux £, and the
advection heat flux Fo. Fourier's law expresses £, = k. Vu where k. is the conduction

coefficient. The advection heat fux is given by F, = v-Vuand it is known (see e.s. Ghil
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and Childress {24]) that, to the level of the planetary scale, it can be modeled in termg -

of &, Vu for a suitable diffusion coeBicient ko So, D = div(kVu) with k =k, + k,. I,
the pioneering models, the diffusion coefficient k was considered as a positive constant,
Nevertheless, in 1972, P.H. Stone (53] proposed a coefficient k = [Vul, in order to consider
negative feedback in the eddy Auxes. So, in that case the heat diffusion is represented by
the quasilinear operator D = div(|Vu|Vi). Our formulation (P) take into account such g
case which corresponds to the special choice p = 3 {notice that the case p =2 leads to the
linear diffusion). These physical laws lead to problem (P) with B.{u) = G(u) — f . We
mention that the two-dimensional model (P) can be reduced, under special conditions, to
the one-dimensional prablem

(Pl){ w= (plo)ual~u), € QS()Alu) ~ Ry(u) in (~1,1) x (0,7},
u(z, ) = up(z) in (-1,1),

with p(z) = (1 — 2%)¥ where © = sinf and 6 is the latitude, Notice that again there is
no boundary condition since the meridional heat flux (1~ 2®) %, P2y, vanishes at the
poles & = +1, 7

In Section 2 we start by presenting some results on the existence and uniqueness of
solutions. We also include in this section some comments on the free boundaries associate
to the Budyko type model (the curves separating the regions {x : u(x,1) < ~10} and
{z :u(z,4) > ~10}). We end the section considering the stabilization of solutions as
L — oo to solutions of the associate stationary problem

(Po.s) — div([Vul"*Tu) + G(u) € @8(z)6(u) + foolz) on M.

Section 3 is devoted to the study of the number of stationary solutions according to
the parameter (, when 8 is not necessarily Lipschitz continuous and p 2 2. We also
study the bifurcation diagram of sclutions of

{(Foc) ~div(|Vul"*Vu) + Gu) + C ¢ QS5(x)B(u) on M.

2  The transient model

We introduce the following structure hypotheses: pz2,0 >0,

(Ha) M is a C* two-dimensional compact connected oriented Riemannian manifold
of R* without boundary,

(Hg) £ is a bounded maximal monotone graph in JR? jie. m< < M Vs € B(s).

(Hg) @ : IR — R is a continuous strictly increasing function such that G(0) =0, and
IG(o)] = Clo|" for some r > I,

95

(Hs) S:Ma R Sel™M),5 252 5>0 ace e M,

(Hy) Fe L=(M o< (0,T)), (resp. (HF) [ € L%(M x (0,00))),

(Ho) uo € L™(M). ‘ ‘ | ‘

The possible discontinuity in the coalbedo [unction causes thal (,P) does not have
classical solutions in general, even if the data wo and [ are smouﬁth, ’Ill'crefore, t;xeln'msl:
introduce the notion of weak solution. The natural “euergy space assoa'a.l.e ,LO (PYyis I:he
one given by V= {u: M = IR, w € L*(M). Vi € LP(TM)}, which is a ref-ivexwe
Banach space if 1 < p < co. Here TM denotes the tangent bundle a%ad, as 1\11@11L1011éd
before, any differential operator must be understood in terms of the Riemennian metric

g given on M (see, e.g. Aubin [3] and Diaz and Tello [15]).

Definition 1 We say thetf w : M — IR i3 « bounded weak solution of (P) if i) u €
([0, T); LHA)) NLPO, T3 V) NL™=(M = (0,T)) and ii) there evists z € L™(M = {0,T))
with 2(z,1) € Blu(z, ) we. (2,0) € Mx(0,T) such that

T
/ w(z, To(e, T)dA —f < wpla, ), w{a, t) vy didk
M 0
T T
o+ [ < |VulP*Vu, Vo > dAdl + / / Glu)udAdt =
0 JM Jo T

T T
:/ / Q.S'(:r)z(lyt)vdAdt—#/ / .f'vn’.-idt+/ up(z)u(z,0)dA
Jo Jm o Jm M
Yo e [P0, T; VYN L™(Mx(0,T)) such that v, € LP(0,T; V'),

Theorem 1 There exzists at least a bounded weak solution of (P). Moreover, if T = 4o
and f verifies (HY ), the solution v of (P) can be extended to {0,00) x M in such a woy
that uw € C([0,00), LA M}) N L=(M » (0,00)) 00 L], (0,00; V). [

The above result can be proved in different ways. As in the case of the one-dimensional
model (Diaz {9]) we can apply the techniques of Diaz and Vrabie [19] based on fixed point
arguments which are useful for multivalued nonmonotone equations. Neverthel‘es& for
different purposes it is useful to get existence results via regularization of the muitlva.lvued
term B(u). See, e.g., Xu [56) and Feireis! and Norbury [22] for some special ‘fornmla,tu.ms
when p = 2. In our case it can be obtained as an easy adaptation of the results of Section
3. We also mention some results on the pumerical approach due to Lin and North [41),
Hetzer, Jarausch and Mackens [32], Bermejo [5] and Diaz, Bermejo and Tello [6].

The question of uniqueness has different answers for the different coalbedo {functions
under consideration depending on whether the coalbedo is supposed to be discontinuous

or not. For the Sellers model (§ locally Lipschitz), the uniqueness is obtained by standard
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methods (see e.g. Diaz [9]). Nevertheless, in the Budyko model (# multivaiued), there are
cases of nonuniqueness (in spite of the parabolic nature of (£)). The first nonuniqueness
result in this context seems to be the one given in Diaz [9] where Infinitely many solutions
are found for the one-dimensional model (P!) for any initial condttion w, satisfying

ug € C=(1), ug({z) = ug(—~z) vz € [0,1],
uo(0) = =10, v (0) =0, k=1,2 (1)
u:](l) =0, ué](a') <0, z¢ (0’ 1)

Notice that these initial data ug are very “flat” at the level —10. A similar nonunique-
ness result for the Budyko model with o suitable initial datum carries over to the two-
dimensional model when M = 5. Fach solution w;(x,¢) of {£') generates a solution
ta(w,y,t) of 2D model by rotation about the axis through the poles (notice that the ini-
tial datum us(x,y,0) is independent of the longitude), i.e. ua{w,y, 1) = wi(sinf, i) where
(#,¥) € 5% with latitude 9. It is not difficult to prove that u; is a solution of () for the
initial datum wu;(send, 0). Other nouuniqueness results can be found by using selfsimilar
special solutions as in Gianni and Hulshof [26].

In order to obtain a criterion for the uniqueness of solutions for Budyke type models

we introduce the notion of nondegeneracy property for functions defined on AM.

Definition 2 Let w € L™{M). We say that w satisfies the strong nondegeneracy prop-
erty (resp. weak} if there exist C >0 and ¢ > 0 such that for any ¢ € (0,¢)
He e M |w(z) 4+ 10] € e} € Ce (resp. [{z € M 1 0 < fwl(z) + 10] < ¢} £ Ce),
where |E] denotes the Lebesgue measure on the manifold M for all E C M.

Theorem 2 i) Assume that there exisls o solution u of (P) such that u(.,t) verifies the
strong nondegeneracy properiy for any t € [0,T). Then u is the unigue bounded weak solu-

tion of (P). ii)There exists at most one solution of (P) verifying the weak nondegeneracy
property.

The proof is & modification of the results of Diaz (9], Diaz and Tello [15] where a
slightly different of nondegeneracy property was used. We shall exploit the fact (adapted
from Feireisl and Norbury [22]} that [ generates a continuous operator from L™(M) to

(M) Vg € [1,00), although 5 is discontinuous. More precisely, we Lave (see Diaz [9],
Diaz and Tello [15])

Lemma 1 (i) Let w, € L™{M) and assume that w satisfies the strong nondegeneracy
property. Then for any q € (L) there exists C > 0 such tha! for any 2,7 € [~ (M)
with z(z) € flw(x)) and i{x) € J(i(a)) a.c. 2 € M, we have that

H z -z “Lq(M)S (bu, - Jlllu{c n w— 1 ”ifi () o |J\4|L/q}_ (2)
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(i) [fw,d € Lo(M) and satisfy the weak nondegeneracy property then
11, ¥

[ (z(x) — 2(x))(w(z) - B(z)dA < (b — ) |l w - W [ Loy - (3
M

Idea of the proof of Theorem 2. Assume that there exist two bound led weak
lutions u and i@ of (£), where u verifies the strong nondegeneracy property. Taking
solut

{u— it) as the test function we get

l“c-l_ I wl(t) - a(Of O — Gla) ) u — 8)dA+
Lo [ i - opaas | ot - 0t
/ < Vu()P* Vult) - lVﬂ(tHPl_Zsz(t), Vau(t) - Va(t) > dA =

- Q/ (28) = 3, 1) e, 1) — i, ))A. (4)

for some z € B(u) and 2 € Ad). By using the embedding V' = L={M)ifp>2and
v o L(M)forall o € [1,00) if p = 2 {recall that M is a two-dimensional compact

H M LI} 3 .t 5 ;-Lt
Riemannian manifold: see, e.g. Aubin [3]) we arrive 2

Co lfu— “[m(M)

.12
%% Nw— i Fany < (GQ | S ooty — . )l w = 0 oo pany +
+Co || u — i H%,?(M)a {5)
in the case p > 2 and
= L e +
P w=tlppy & (GRS leoecany = &) ) Lo (M)

+lfu—i “LZ(M) +E:Tl‘“:: (6)

istinguish two cases:
for the case p = 2 where € and o = o(e) . Now, we distinguish ¢

Ca liw = & Wzmign : . by Gronwall’s
CASE L UCQ N S lee — T < 0and p > 2 the result holds by Gronwall's

Lemma (the case p = 2 is sumhu)
[l a M o= M
CASE2: £ CiQ 11 S |l "_Tj,;_ﬁﬂ > 0, we consider a suitable rescaling (/ 5)

3 3
given by the dilatation D of magnitude § > 0 on the manifold (M, g), D : M C R — R,

D(z) = & = dz. So problem (P) in the new coordinates becomes

i Srdivan, (Vg BP~2 Ve, ) + GLE) € QSBE) + fin (0, T)x M,
(Pg) L_L(G”Z) = ‘LL()(%) on Jw‘y
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Clearly, if i is a solution of (Ps) then &(8z,t) is a solution of (P). Moreover, the uniqueness
of (F5) implies the uniqueness of {P), and conversely. A careful study of the dependence
an 4 of the involved constants (see Diaz and Tello (15]) allows to see that if we define the

- e 82 1M [y - g2
constant AVﬁ:O!,JQ “ 54 HL*"(M” _ Lo My)

o we lave that lim ', s = 0. Thig
12,04 S—+0

fact allows us o reduce the proof to Case 1 and the proof of (i) follows. For the proof of

(ii) we use the second part of Lemma 1 and so

ld . 114 . " Collu—12 ne ) - o
g M= [2< (CaQ |l 5 [l gowppy =tz d & I Mu—afl +Collu—al;
i

where Cy is the constant of the weak nondegeneracy property (Lemma 1). The uniqueness
- ||p—2
e —a I

follows as in (i), by studying the sign of the constant Q) IS Hrmgany — G
L

and
by rescaling when it is negative.

Remark 1. It is possible to gve several sufficient criteria for the nondegeneracy
property. For instance, in the one-dimensional case, if up € C*((—1,1)) is such that there
exists €g > 0 satisfying that the set {x € (~1,1): |ua(z)} + 10| < ¢} has a finite number
of connected components [; with j =1, ., N and for any j there exists x; € I; such that
up{z;) = 10, and Jup,(x)| = & for some & > 0 and any z € I; close to x; then there
exists a solution u(x, ) satisfying the strong nondegeneracy property on (0, 7") for some
T" (see Diaz and Tello [15]). Some results on solutions with {Vu| % 0 on the level where
f becomes multivalued for a similar bidimensional problem are given in Glanni [25] (see
also the recent results by Ham and Ko [28] for a related problem with 4 = 0). Results
on the continuous dependence with respect to the initial datum under nondegeneracy
assumptions were obtained in Gianni [25] for the case in which M is an open regular
set. Although the general case is technically more complex the same approach could be
applied to this purpose,

The discontinuity of the albedo function assumed in the Budyko model { 8 multi-
valued) generates a natural free boundary or interface ¢(t) between the ice-covered area
({e-€ M :u(z,1) < —10}) and the ice-free area {{z € M u(z,t) > ~10}). The free
boundary is then given as ((t) = {z € M : u(z,1) = —10}. In Xu [56] the Budyko model

for p = 2 is considered in the one-dimensiona) case. He shows that if the initial datum ug
satisfies

uo(z) = wp(~u), ug € C3([~1,1)), up(2) < 0 for any z € (0,1)
and there exists ((0) € (0, 1) such that (ug(z}) + 10)(z — ¢(0)) <0
for any @ € [0,((0)) U (¢(0), 1],

then there exists 2 bounded weak solution u of (P) for which the set {{t) = {¢,(r}} U
{¢- (1)} with 2 = ¢4(t) a smooth curve, C-(t) = ¢&(t) and ¢4 () € C={[0,T")) whete T*
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the first time ¢ for which {4(¢) = 1. He also gives an expression for
ated results for a model corresponding to p(z) =1 can ‘l)c
22}, Gianni and Hulshof [26] and Stakgold {52]). We point

be applied for such an initial datum. For the study of

is charac!;erized as
the derivative ¢h(2) (some rel
found in Teireisl and Norbury
t that the unigueness result can . '
o boundary in the bidimensional case Gianni {25}, o
free' roretation of the size of the separating zone C(t) for other models is in fact
T il llite pictures (Image of the Weddell sea taken by

the

; contmw‘aml;l CItesilO];;(':ri;l)ZOl'lil(;J56‘11587) chow that the separating region between the
the s2te 1 ;O_ O»covel:ed zones ;s not a simple line on the Earth but a narrow zone
ice_{ree‘ = fi . lie‘ are mixed. Mathematically it could correspond to say that the set
e e e /\Cla :('v t) = 10} is a positively measured set. In the following we shall
g;(:o)t:t;{li; fet as th;:’m'ushy region (since it pla‘y[s ;}l;e same role than in changing phase
taz. Fasano and Meirmanov |12}). .

pmble'ms?(ie: ;i;lzlii;iimum principle it is possible to show that if p = 2 the inferior

Ufsllli mlushy region M (1) is empty even if the interior of A (0) is a nonempty o‘penl su
zet OGianni and Hulshof {26]). As we shall see this is not the case when p > 2 (recall that
see ‘ .

3 in Stone [53] ). A necessary condition for the Budyko model (with R, = Bu + &)
p=

o

for M{t)s# 0 is that
C-10B¢e [ﬁiQ‘S(:xr),ﬁwQS(m)] for a.c. v € M. (7)

111 1 104 : - 5 =relv pyresent
It is possible to show that il p > 2 this condition is also sulficient. Here we merely presen
is p

a result for the one-dimensional case.

Theorem 3 Let p » 2. Assume (7) and wg € L) .s'uf'h that there exist wg € IRun(l
Ry > 0 satisfying M(0) = {x € [ 1 ugl2) = —10} 2 Blzo, Ro)(= {4 & [ e — 1U|<f i(;}e{.]
I u is the bounded weak solution of (P) satisfying the weak non-dcgerwmcy proper 1}/ r: i
there ezists T= € (0,T) and a nonincreasing function R(t)’fmih R(0) = Rq such the
M) ={z el uzt)= —10} D B(zy, B(1)) for any t € [0,T7).

Proof. We shall use an energy method as developed in Dfaz and Veron [18]. Gl\llﬁn u
bounded weak solution of (P) we define v = u +10. As in Lemma 3.1 of the above

N o nd
reference, by multiplying the equation by v we obtain that for a.e. R € (0, ) an

te (0,T) we have

[ r ;) dudr <
5/ |-u(z:,£)l2d1'+/ / p(w)[osPdadr + BA [B(r  Joedadr <
2 B{wo ,R) Jo JB{rq R) . J Blxa,

¢ -
< [ plugl? v, - Avdsdr + / / {Q5z ~ C + 108 }vdudr = L+ 1
“Jo JsteR) ¢ ' Jo B
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where p(a) = (1—2?) ! S{zo, R) = 8B(x0, R} = {zo—R}U{zo+R} and 2(z,1) € ﬂ(u(.a,i))

v
2 -
for a.e. © € B(xg, B) and ¢t € (0,T). We introduce the energy [unctions

t
E(Rt) = // p()|ve[Pdzdr
0 JB(z,R)
6(R,t) = sup ess/ [o(z, 7)|*dz.
B(xo,R)

9grst

Using Holder's inequality and the interpolation-trace Lemma of Diaz-Veron {18] we get

9E )(rf~1J/p (f:f )1/7;
L < z=(A,t v[fdzdr <
b= (BR( ) 0 S(JAU,R)l |

a-op (08 fp=1)fe ; ip §41/p ! (1=0)/2
< Gt 6R(R,¢) (E(R, )7 4 R VPO R0V bR, ) ,

where § = p/(3p - 2) and § = —(3p — 2)/2p. Using the assumption (7) we have tha
()= [(C — 10B)/QS(-)] € B{—10). Then applying Lemumna 3 we get that

t
L < (M-m)Q| S =i cffu 1007 1y 7
iFrom Theorem 4 of Rakotoson and Simon [49] we have the estimate
o o< Cull ve lorsm +Ce 1w ooy, YW EV (8)
for some positive constants independent on the interval J. Then we obtain L < (M-

m)Q || 5 |lpwry CCLE(R, t) +tC3(R)B(R, 1)), where now

p=2
(j.B(‘Un R)ﬂ(-'l?)!d:r)
CB(R) = ) H u 10 ”ﬂm o .
cr (IB(JJG,R) P(l')dl')p L((0,T):L2 (1))

As in the proof of the uniqueness, we can assume Cy small enough without loss of gen-
erality. Then, there exists T* € (0,7] and A € (0,1] such that A(E(R, ¢) + b(R, )} < 1,
which implies that AE#* < (U=0/P2E for some p € (0,1} and for any ¢ € (0,7*) and the
proof ends as in Diaz and Veron [18] {see also and Antonsev and Diaz [1]).

Remark 2. The above proof can be adapted to the two-domensional problem by using
local analysis. The existence of the mushy region (for any value of p € (1,00)) can be
proved for a different class of models by taking into account a discontinuous diffusivity
(see Held, Linder and Suarez {30]). [t would be interesting to find sufficient conditions
implying the persistence of a mushy region for any time t > 0. The fact that a mushy
region may exist for the stationary problem can be found from the results of Diaz [3] (see

Theorem 1.14).

In order to analyze the stabilization of the solutions of (P), following Dfaz, Hernandez
and Tello [13] we assume the additional condition
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(Hoo) fe L ((0,00) M) and there exists [ € V7 such that

1t
/ 1 F(r,) = Sl )hwrdr = 0 a5t -+ o0
-1
We start by recalling a global regularity of the solutions vn {0, 00)

Lemma 2 Assume g € VLM, fe L@ (Mx(0,00))N WEH(0,00); LY (M) and

< ore Oy s o time indepc stant. Then theve
L1+! ]]fg(s,‘)HLl(M)ds <y, Yt > 0 where Cy is a time independent consten hen thed

ezists ¢ weak solution of (P) verifying
we L7(0,00,V) and w € L0003 L)) (9

A key point in the proof is to check that o(t) = ,‘;JM |‘\_"u(:zr,t.)|”dA satisfies that
(t+1) < Cle(t) = wlt+ )] +0(t) ¢ >0, where C' is a positive constant and 8({) > 0
ihen t is—large enough with 8(t) = O(1) when ¢ ~+ ca. Then, thanks to a technical lenuma
due to Nakao (44} we conclude that p(t) = O(1) which is equivalent to u € L=(0,00; V).

The following theorem proves the stabilization of the solutions u satislying (9). As
usual, given u bounded weak solution of (P), we define the w-limit set of © by wlu) =
{ug €V N L=(M) 1 Ft, — oo such that by, ") =% e in LA(M)}

Theorem 4 Let ug € L¥(M)NV and let u be any bounded weak solubion satisfying (9).
Then, i) w(u) # & and f ux € wlu) then I, — +oo such that u(st, + &) = Ug 11
LA(—1, 5 LA (M) and ue, & V i3 a weak solution of the &'i{L!ior.uu'y problem assacmte'to
Foo 7 1) i fact, if uy, € wlu) then (.} = +oo such that ul- f.) = ue strongly in V.

Remark 3. If w.. is an isolated point of wiu) it is easy to see that in fact the above
convergences hold as ¢ = oo {and not merely for a sequence {, — oo ). The proof of this
convergence is an open problern in the remmaining cases. [n fact. in some cases the set of
stationary points is a continuum (see Remark 11) and the convergence when ¢ — oo is
far from trivial (for some results in this direction see Feireisl and Simonden [23)).

Remark 4. A result on the convergence (in a suitable sense) of the free boundaries

to the free boundary of the solution of the stationary problem is given in Gianni [25).

3 On the stationary problem

We consider the problent ( £y, ;) obtained in the last subsection. Following DHaz, Herndndez

and Tello {13] we made in this section the additional assumptions
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(Hg) @ satisfies (Hg) and limpye, [G(s)] = 400.

(Hyw) fos € L°2(M) and there exist C; > 0 such that — fuoll Loy < fla) € ~C
a.e o€ M

(Hﬁ) there exists two real numbers 0 < m < M and ¢ > 0 such that B(r) = {m} for
any v € (—o0, =10 —¢) and J(r) = {M} for any r € (10 + ¢, +oa).

(Hey) G(=10—¢)+ €y > 0 and G(~10 + ¢} + || foo ]| Lo tm) < S[)ﬂ/[.
; g(-10 —€) + O - Sim
A function u € V N L(M) is called a bounded weak solution of (Pg,;) if there exists

£ € L7(M), 2(z) € f{u(z)) a.e. z € M such that for any v € V'

/M(|vu|v-‘2vu) - Vud A + /M G(u)vdA = ./M QS(z)zvdA + /M FouvdA.

We start with a multiplicity result given in Diaz, Herndndez and Tello [13]
Theorem 5 Let uy,, up be the (unigue) solutions of the problems

(Pm) —Ayu+Glu)

GS(zym 4+ foo(z) on M,
(Par)  —OQpu+Glu) = QS(z)M + fuulz) on M,

respectively. Then: i) for any @ > 0 there is @ minimal solution u (resp. a mazimal

selution u) of problem (Py ;). Moreover any other solution u must salisfy

Um g u < u <% S Upng (10)
G7HQSom —~ [ fullLoan) S um < GHQS M — C)), {11)
GTHRSM — || fuallporny) Sunr € GTHRSM - C)). {12)

it) for any Q) there is, at least, a solution u of (Po.s) which is a global minimum of the
Junctional

J(w) = :—)/M|Vw(’”clA+[MG('U))dA—-/A/(_fwwdA—/MQS(z)j(w)dA,

on the sel K = {w € V, G(w) € LY(M)}, where § = 8j.
Morcover, if (Hp,) holds, then: iii) if 0 < Q < @y, then (Pa ) has a unigue solution
U =tim, u < —10, u {5 the minimum of J on K, and

-1 . . .
G~ llzosgan)) < }21{% inf ||u|| poogaqy < él\lg’[l) sup ||l peoanu < GH(=Cy),

i) if Q2 < Q@ < Q, then (P ;) has at least three solutions, u;, 1 =1,2,3 with u; = uyy,

up > =10, uy = up, uy < 10 and w; > ug > uy on M. Moreover u; and us are local
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inima of J on K 0 L=(M) and, if p = 2, on K, and o) i Qu < Q, then (Po,) has o

unigue solution w = iy, u > —10, u is the minimum of J on KN and [Jullp=qagy = +oo

when @ =¥ +09, where

G(=10—¢) + ¢ G(=10 + ¢) + | cllLoan

=T = SuM "
~10 — ¢ ‘ G(=10 4 &) + || fooll e
O = Gl 10q &+ 0y 00 = G(—10+ C)f Il foclls, (r) (14)
om Spne

Corollary 1 Lef R (u) = Bu+C with f given as presenied ol Iniroduction, —108+C >
0 and ila- < % Then we have 1) if 0 < Q < %. then (Pg ) hus o 'imiquc-S()_l[utiorL,
ii) lf:—l;—?’wﬁ <0< -ng:c then (Pa ) has at least three solutions, ii) if =IOBE -

Sgm

then (Py.r) has a unique solufion,

Following Arcoya, Diaz and Tello [2] we shall describe more precisely the bifurca-
tion diagram and in particular, we shall prove that the principal branch (emanating from
(0,671 (~C)) € R* x [™(M)) is S-shaped, i.e. it contains at least one turning point to the
left and another one to the right. By a turning point to the left (respectively, to the right),
we understand a point (7, u™} in the principal branch such that in 2 neighborhood in
R % L™ (M) ol it the principal branch is contained in {(Q,u) € BT x L*(M}/Q < Q)
(respectively, {(Q,u) € R* » L™(M)/Q > Q"}). A previous result is due to Hetzer [33]
for the special case of p =2 and # a C* funetion. He proves that the principal branch
of the bifurcation diagram has an even number (including zero) of turning points. The
following result already improves this information showing that indeed this number of
turning points is greater than or equal to two. ’

We make the additional assumption

: _ G(=10+¢)+C  5aM-
(He) G(~10— ¢} +C >0 and '—Wg(mw o w T S

We start by considering the problem with # a Lipschitz funciion (as in the Sellers

model).

Theorem & Let 3 be a Lipschitz continuous funciion verifying (Hg). Then I eontains an
unbounded connected component which is 5-shaped containing (0,67 (~C')) with at least
one turning point to the right conteined in the vegion (1, Q2) % L™{M) and another one
to the left in (@3, Qu) x L™(M). a

The proof has several steeps: we first prove that I has an unbounded component

containing the point (0,G~}(—C)) by using a resul due to Rabinowitz [48]. The we study
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the bifurcation diagram for the auxiliary zero - dimensional models

(P) G +C = Q5f(w) weR,
(P)  Gw+C = Q%HPn) uweR

Finally, by a comparison argument we get that the branch is necessarily S-shaped.

QOur next result aveids the Lipschitz assumption made in Theorem 6.

Theorem 7 Let § a general maximal monotone graph satisfying (H3) and assume (Hc).
Then & has an unbounded S-shaped component containing (0,G7(—C)) with ut least one
turning point to the right contained in the region (Qy, @2) x L=(M) and ancther one to

the left in (Q3, (Qs) x L(M), respectively. 3

To prove Theorem 7 we approximate problem (Ppe) when  is not Lipschitz con-

tinuous and show the convergence of the principal branches C, of these approximating

problems to a S-shaped unbounded connected set C of solutions of (Pg,¢) by applying a
topological lemma due to Whyburn [35]

Remark 5. By using a shooting method it is possible to show (see Diaz and Tello

[16] that there exist infinitely many equilibrium selutions for some values of () when we
study the one-dimensional problem

() + But C € QB(u) e (0,1),
(Puag) { w{0) = (1) = 0.

If @ < @ < @y then (Pyg¢) has infinitely many solutions. Moreover, there exists
Ky € IV such that for every ¥ € IV, K > Kg € IV there exists at least a solution which
crosses the level uy = —10, exactly & times.
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