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On the Haim Brezis Pioneering Contributions
on the Location of Free Boundaries

J.1. Diaz

1. Introduction

Starting in the seventies, and simultaneously to his beautiful results on the exis-
tence and regularity of solutions of many nonlinear PDEs, Haim Brezis produced a
series of papers in which, in a ploneering way, he rigorously found new qualitative
phenomena as, for instance, the compactness of the support of the solution of suit-
able problems posed on unbounded domains and, more generally, on the location of
this type of free boundaries (sometimes unexpected from the original formulation).

In this paper, we shall recall some of his results indicating their great impact
in the literature which remains being relevant and useful thirty years later.

Our presentation starts by making mention to his results on the support of
the solution of Variational Inequalities, specially on some ones arising in Fluid
Mechanics (Section 2). Some of his results on the support of the solution of semi-
linear equations are collected in Section 3. Finally, in Section 4, we shall recall his
works connecting compact support properties and the abstract theory of monotone
operators.

As Hafm Brezis commented at the official dinner of the Gaeta meeting, this
set of results looks like a set of geological, or archeological, layers (almost the
first ones among the generated by him) in his very vast production. Nevertheless,
as in Geology, the time and the life use to fracture such set of initially well-
ordered layers producing unexpected changes and mixtures. Something similar
is produced also in Mathematics and so, for instance, the study of some special
obstacle problem became of great interest to understand some limit behavior in
the Ginzburg-Landau model in superconductivity (see Sandir and Serfaty [62]).
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2. The support of the solution of a variational inequality
in fluid mechanics

Starting in 1973, Haim Brezis and Guido Stampacchia studied in a series of papers
(see [31], [32], [20], [68] and the presentation made in [56]) a very classical problem
of the Fluid Mechanics introducing a new approach. They considered the problem
of a flow past a given profile with prescribed velocity at the infinity.*

At the beginning of the seventies, the literature on the problem was very
vast, with important contributions by many authors: P. Molenbroeck (1890), S.A.
Chaplying (1902), J. Leray (1935), H. Bateman (1938), T. von Karman (1941), R.
Courant and K.O. Friedrich (1948}, L. Crocco (1951}, L. Bers (1954}, P. Germain
(1954), M.J. Lighthill {1955}, R. Finn and D. Gilbarg (1957}, R. Finn and .J.
Serrin (1958) (see a larger and detailed list of references in the book by L. Bers
[16]). From the mathematical point of view, the study of the incompressible case
was essentially complete after the works by R. Finn. The situation was entirely
different for the study of the compressible fluids.

Besides of studying the compressible case, another goal of the works by Brezis
and Stampacchia was to get some sharp estimates on the maximum velocity by
means of some method leading to some easy application of numerical algorithms
{Stampacchia mentioned in [68] the suggestion received from the Instituto per le
Applicazioni del Calcolo dall’Instituto di Meccanica Razionale del Politecnico di
Torino). In fact, with their works, they initiated the development of the study of
solutions with compact support on unbounded domains which would be extended
later to a general class of semilinear and quasilinear partial differential equations.

The new approach by Brezis and Stampacchia was to show, rigorously, how
the study of the associate hodograph plane (in the study of steady subsonic flow
for a non viscous fluid, past a given symmetric convex profile in the plane) leads
to a suitable obstacle problem on an unbounded domain.

They considered a closed convex profile P in R?, symmetric with respect to
the z-axis. They assumed the fluid to be irrotational and so, the velocity g = (u, v)
verifies the equations

div{pg) = 0, rot(q) =0
where p denotes the density of the fluid (a constant in the incompressible case).

It is also assumed that q — q., = (G0,0) as |(z,y)] — +oc and g-n =0 on JP.
Then, it is possible to define the stream function 1 given by

Yo = —pU Uy = pu.

Using Bernoulli’s equation, there exists a decreasing function p = h(g) relating
p with g= |q| which depends on the physical properties of the fluid (for instance,
h{q) = (1—-Cq®)* =1 for barotopic gases). Then g can be considered as a function

1This subject already attracted the attention of scientists and artists (as for instance, Leonardo
da Vinei (1452-1519)) since the beginnings of our culture.



H. Brezis Contributions on the Location of Free Boundaries 219

of ¥, and ¥, and we get the equation
(1 s+ (1= oWy — ety =0 )
= = Wz T+ — 57 Wyy — AWy = s
a*(q) a?(@)’"" at(g)

where

2 _ h(g)
a*(g) = ile)

a(g) is the local speed of sound. In particular, (1) reduces to Ay = 0 when the
fluid is incompressible. The boundary condition along §P is ¢ = 0. Equation (1) is
a mixed type quasilinear equation which is elliptic in the subsonic range (g < ¢.)
and hyperbolic in the supersonic range (¢ > g.). Here g, is the speed of sound,
solution of a{g.) = ¢..

It is well known that if we consider ¢ as a function of q instead of (z, y) (the
hodograph plane) then equation (1) becomes linear in the new variables. More pre-
cisely, the hodograph transform, in polar coordinates, T : (z,y) — (u,v) — (6,q)

v
tg 0= —
90=—,

leads (1) to the Chaplying equation, which, by introducing

e ]
g = / —l(T) dr
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can be written as

Yoo + ktige = 0. (2)
This becomes the Tricomi equation when k(g) is replaced by a linear function near
o = 0. Notice that k(c) > 0 in the subsonic range (o > 0) and k() < 0 in the
supersonic one (o < Q).

Although the main interest of the hodograph transform lies in the fact that
we deal with a linear equation, this equation has to be solved on a domain which
is a priori unknown (the image of the profile P under 7 is not known since we
do net know the distribution of velocities along P). Because of the symmetry, we
have 4 = { along the z-axes and it is sufficient to study the problem in the upper
half plane where 1p > 0. Assuming that the flow is totally subsonic, the hodograph
transform leads the profile P into a curve I" {a free boundary) contained in the
region [¢ > 0]. If we denote by o = {(f) to this free boundary, it was shown in
Ferrari and Tricomi [51] that the boundary conditions satisfied by 4 along I" are
the following

op ___ROuql) 0w ROy

o T ko)(Er 90 T 1+ k) (%)
with R(#) the radius of curvature of P at the point 7 € P where the tangent
makes an angle § with the z-axis (we take R(#) < 0 since P is convex).
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FIGURE 1

Inspired by the work of C. Baiocchi [6] on a different hydrodynamics problem,
Brezis and Stampacchia introduced the change of unknown

ulf, o) = /'a BT 0, 1), (3)

18) q(7)

for o > {(8) and #; < d < 0. In order to identify the properties satisfied by u(0, o)
it is useful to introduce the set

D={0,0):6, <8<y, o> {0,0):020}

qe
o = / h(j’) i

[

where

[~

(goo being the x-component of the prescribed velocity at the infinity). Then, they
show (see the exposition made in [20]) that » verifies v > 0 in D and

—fi(%ug)a—uee*u=R in D,
u =10 on [,
Vu=20 onT,

u(0,0) = Constant = Hp 7 > 0cs,

where 2Hp coincides with the height of the profile. To get a complementary formu-
lation (i.e., without any explicit mention to the free boundary T') they introduce
the set Q = {(f,0) : 61 < 8 < By, ¢ > 0} and extend u to £ by choosing
u(0,0) =0 for 0 < o < {(0). Then, they show that u satisfies an obstacle problem
by introducing the functional space

V ={v:que L), qug € L*(), %fug € L*(Q), v =0 on 9}
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with the canonical norm and the closed convex subset
Ky={veV:v>0o0nQand u(0,0) = Hp for ¢ > 0. }.
Then, they define the bilinear form
1
a{u,v) = /(Euava + ugvg — uw)g’(o)dhdo.
0
After proving that a{u, v} is coercive on Ky, ie.,

alt, 1)

hul—oo [lully, —
o0 (el
they conclude that function u defined by (3) is the unique solution of the varia-

tional ineguality

uwe Ky , (4)
a(u,v —u) > [, R(O)vg*(o)dbde  for all v € Ky.

Having solved (4), if we denote by
DT ={(f,0) e Q:u(f, o) >0},

when DT does not intersect the axis {& = 0}, the curve T, boundary of DT,
represents the distribution of velocities along P. If D+ intersects the axis {¢ = 0}
we conclude that g is too large and there exists no totally subsonic flow past P.

In this way, their treatment? allows to apply, in an automatic way, well-known
algorithms for the numerical approximation of u (see, for instance [53]).

But this nice results were not entirely complete since in order to estimate the
maximumn of the speed gumax = max g it was needed to get some lower estimate on
the location of the free boundary I'. They proved that if ga > go is the solution
of the equation

B ! Geo ' h(q«)o) T dT] (5)
with Ry, := ming |R{#)] > 0 and if g4 < g. then, the maximum velocity satisfies
that gmax < ga. To do that, they construct the auxiliary function

o k(r) g
o) = { fman L et LSS o

H | _aa 1 /q h{r)

Goc

q(T)
0 fo0<o <A,

where

qC
A:f —h(T)dT,
4

A T

2In my meodest opinion, this new approach to such a classical problem has many common in-
tellectual points with some other cultural creations of the value as, for instance, the Rhap-
sody on a Theme of Paganini, Op. 43 by Sergei Vasilyevich Rachmaninov or Les Demoiselles
d’Avignon.(1907) by Pablo Picasso (oeuvre in which many people find some motivations on The
Visitation (1610-14) by Domenicos Theotocopoulos “El Greco” ).
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and they prove that it is a supersolution of problem (4). They also proved that the
comparison principle holds for this problem and so the inequality u < ¢ leads to a
lower estimate of the free boundary, D™ C [o > A], and, finally, to the conclusion

Jmax < gA.
In the incompressible case, equation (5) reduces to

H g4 g4

R, qoo[ 1+10g QDOL
and, in the particular case of an sphere (H = R, and log qi;‘: = 1) it is obtained
that gmax < egoo (some explicit computation shows that gmax = 2¢0)-

Before passing to recall other results by Brezis on the location of free bound-
aries, we must mention some other papers on the study of subsonic flows inspired
by the articles by Brezis and Stampacchia. The previous study was extended to
the case in which the flow presents a free boundary S (the sillage, boundary of
a wake) where ¢ = gg in Brezis and Duvaut [26]). They proved that if g5 < geo
then the wake disappears ai a finite distance of the profile but that when ¢gs = g
the free boundary converges to (0, +oc¢) as |(z,y)| — -+oo. The problem was later
developed, from the numerical point of view, in Bourgat and Duvaut [17]. Some
sharper estimates on the location of the free boundary in the hodograph plane
were ohtained in [37] and [41]. The problem concerning an obstacle in a channel
was considered in Tomarelli {69] (see also Bruch and Dormiani [33]). The case of
non-symimetric convex profiles was studied in Hummel [55] and later extended by
Shimborsky [66] to plane channels, Venturi tubes and flow around a Joukowski
airfoil. A careful study of the convergence of solutions and free boundaries was
given in Santos [63], [64] (see also the presentation made in Rodrigues [61]). Many
references on the collision of two jets of compressible fluids can be found in the
books Friedman [52] and Antontsev, Diaz and Shmarev [4].

3. The support of the solution of semilinear (multivalued or
sublinear) second order equations

Simultaneously to his works with Stampacchia on the above fluid mechanics prob-
lem (the paper [32] was received on June 28, 1975), Brezis found that the support
of the solution of other variational inequalities (of obstacle type) for a general
second order elliptic operator verifies also similar compactness properties. So, in
Brezis [18] (see also [19]) he studied the compactness of the support of the solution
of the multivalued semilinear equation
Lu-gu)ys f inf,
{ u = a0 (6)
= on 912,

where § is a smooth unbounded domain of RY, T is a second-order elliptic operator

&2 a
L= _;&ij—amié)mj +zl‘:aﬁa—rl;7 +a
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and A is a maximal monotone graph in R? such that 0 € 3(0). He assumed that
a; € CHO)NLZ(); a0 € L2(Q),
for every » > 0 there is a(r) > 0 such that
3. a6k = afr) i€ forz e, |z| <r £eRY,
a(z) > > 0forz e Q.
It is clear that if problem (6) has a solution with compact support then, necessarily
i has also compact support and

B7(0) < f(z) < AH(0) for |z] large,

“where [37(0), 57(0)] denotes the interval 5(0). These conditions are not sufficient
but he proved in [18] that they “almost” sufficient. More precisely, he proved that if
o € C*(09), ¢ has compact support and 5%(yp) € L=(59),

feLE(Q) and 57(0) < | 1iim infessf(z) < ' llim supessf(z) < BT(0), (7}

xr|{—o0 ZT|—0C
then (6) has a unique solution with compact support, u € W#P(§2) for all p < oa.
The proof was based in the explicit construction of suitable radially symmetric
super and subsolutions defined in the whole space RY. Besides to study the op-
timality of assumption (7), by particularizing 7 as different multivalued maximal
monotone graphs in R?, Brezis stated, as corollaries, the existence and uniqueness
of a solution with compact support to some minimization problems of the type
. "1 9 1, 9 .
Min WeHA (), u30 /(5 [Vul™ + 3 [u]” — fu)dsz,
w=@ on J8, supp u compact

and
1 9

) 5 1
Mo e / (5 IVal®+ 5 I
u= on H0

In that paper, he wrote the following remark:
It has been shown by several authors that some nonlinear variational
problems have a solution with compact support (see [5], [15], [59]). It
would be of interest to unify these various results.

He added a footnote to this remark:

A new result in that direction has been obtained very recently by

M. Crandall.

At this time he also knew the results on the support of the solutions of the
porous media equation by Oleinik, Kalahnikov and Yui Lin, Barenblatt, Aronson,
Peletier and many others3.

3 As a matter of fact, the study of this subject was one of the several points suggested by Haim
Brezis to this author as thesis subjects, during their first meeting, on April 1974. Roughly speak-
ing I could summarize a large part of my own scieniific production as an attempt of to give an
answer to the above mentioned remark by Brezis. To be more specific, the reader is sent to the
monographs Diaz [38} and Antontsev, Diaz and Shmarev [4].
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The interest of Brezis on the support of solutions of variational inequalities
was extended to the parabolic case in his paper with A. Friedman [27]. They study
the obstacle problem

ug — Au+ Bu) 20 in (0, o) x RY, (8)
u(z,0) = uo(z) on RY.

with 8 the maximal monotone graph in R? given by

@ ifr <0,
Blry =4 (-00,0] ifr=0,
0 ifr>0.

Besides proving the compactness of the support of the solution u(t,.), for any
fixed t > 0 (once ug has a compact support), they proved, by first time in the
literature, the property of support shrinking (concerning positive initial data ug
such that ug(z) — 0 when |z} — oco0). They also give fine estimates on the support
of u(t,.) and prove the extinction in finite time (i.e., the existence of t* < oo such
that u(z,t) = 0, on RY, for any t > t*). This paper was the inspiration of many
subsequent researches by different authors (Tartar, Evans, Knerr, Veron, J.I. Diaz,
Herrero, Vézquez, G. Diaz, Gilding, Kersner and many others: see, e.g., references
in the monographs [38] and [4]). We must mention also the study of first order
hyperbolic Variational Inequalities made in Bensoussan and J.L. Lions [11] for
linear operators and Diaz and Veron [50] for nonlinear balance laws.

In a paper with A. Bensoussan and A. Friedman [12], Brezis reconsidered
the question of the location of the free boundary for variational and quasi vari-
ational inequalities but now by means of the construction of local supersolutions
which, in particular, allows to get estimates on the support of the solution also for
bounded domains. This technique was extended to a very general class of nonlinear
equations in [39] and [38].

We cannot end this part of the section dealing with multivalued equations
without making mention to the results on qualitative properties of solutions (inde-
pendently of his deep results on the regularity of the solution) obtained by Haim
Brezis on other different (but typical) free boundary problems. This was the case of
the dam problem (considered firstly under general geometry conditions in Brezis,
Kinderlehrer, Stampacchia [28] and later improved by Brezis’ students J. Carrillo
and M. Chipot {35]). Brezis returned on this problem in [24].

The interest of Brezis on mathematical problems suggested by the Environ-
ment was recently illustrated with the organization (jointly to this author) of the
meeting between the Académie des Sciences and the Real Academia de Ciencias on
Mathematics and Environment held at Paris, 23-24 May, 2002 ([25]). The meeting
was additionally an occasion to render homage to the memory of Jacques-Louis
Lions.

Another different problem studied by him was the magnetic confinement
of a plasma in a Tokamaks. Tn collaboration with H. Berestycki [13], he intro-
duced some variations to a previous formulation by Mercier and Temam giving
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many qualitative properties for the solutions. The problem was latter consid-
ered by many authors: Ambrosetti, Mancini, Damlamian, Caffarelli, Friedman,
Kinderlehrer, Nirenberg, Stakgold, Bandle, Marcus, Sermonge, Mossino, Rakoto-
son, Blum, Gallouet and Simon, among them. Let us mention that the modelling
of other types of magnetic confinement plasma fusion machines, the so called Stel-
larators (as, for instance, the TJ-II of the CIEMAT, Madrid) presents important
differences with respect to the usual model for Tokamaks (see Dfaz and Rakotoson
[49]).

As a natural continuation of the Brezis result on the multivalued semilinear
problem (6) and in connection with the above mentioned footnote of his paper, he
studied with Ph. Benilan and M.G. Crandall, the support of the solution of the
equation

~Au+Bu) > f mRY,
when f € L'(RY) improving his results of {18] and considering also the case in
which f has a compact support. They proved that the necessary and sufficient
condition on A in order to get a solution with compact support is that

ds
0 /J(8)
where j is the convex primitive of 3 (i.e., such that 8§ = ). This criterion was
extended to the case of quasilinear problems of the type

~Apu+puw)3 f inRY, (10)

< 400 (9)

in Diaz and Herrero ([43], [44]) where Apu = div(|[Vuff "2 Vu), p > 1, to the
criterion p
2 <t 11
0 {/(s) ! ty

which, for instance, now applies to Lipschitz functions F(u) if p > 2. The abave
results were extended in many directions in the literature. For instance, the study
of the semilinear elliptic equation (6), but now on a bounded domain §2 and with
f =0o0nand ¢ = 1 on the boundary, was studied by Bandle, Sperb and Stakgold
[8] (see also [42]) showing that condition {9) is, again, the necessary and sufficient
condition on 8 for the formation of a internal free boundary (the boundary of the
dead core). The most general result in connection with the necessity of condition
(11) was due to Vdzquez who extended, in [70], the Hopf strong mazimum principle.
Many other contributions on this subject were produced by many authors (Veron,
Serrin, Lanconelli, Diaz, Saa, Thiel, Kamin, Pucci, Zou,...: we send the reader
to the monographs [38] and [4], and the recent survey Pucci and Serrin [57] for
detailed references).

In seems interesting to point out that in Brezis and Nirenberg [30] the authors
use the transformation u = e~ to study the singularity of v, solution of —Av +
}Vv|2 = h2(v) for a suitable function h?(v), by analyzing the vanishing at a single
point of u, sohution of a semilinear equation of the type {6).
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In collaboration with E. Lieb [29], Brezis also studied the support of a (vector)
solution u of some nonlinear elliptic systems arising in the study of the Minimum
Action to some Vector Field Equations. They proved that, under suitable condi-
tions, |u| is a nonnegative subsolution of a semilinear equations similar to {6}. The
study of the support of solutions of nonlinear systems and higher order equations
was carried out by many authors: (Bidaut-Veron, Bernis, Antontsev, Bertsch, Dal
Passo, Shiskhov, Andreucci, Tedev, Cirmi, ...: see [38] and [4] for detailed refer-
ences).

‘We briefly mention here that besides the use of the super and subsolutions
method we also know other useful tools to this purpose such as appropriate en-
ergy methods [4], the application of rearrangement techniques leading to measure
estimates on the dead core and coincidence sets ([38], [48], [9]), ete.

4. Compact support properties and the abstract theory of
monotone operators

The fundamental contributions of Haim Brezis to the abstract theory of maximal
monotone operators on Hilbert spaces (and accretive operators in Banach spaces)
are well known (see, for instance [22]). Even in that period of full dedication to
that line of research he also was interested in many different applications to non
linear partial differential equations (see, for instance, his lecture at the Vancouver
International Congress of Mathematicians [23]). This abstract theory allows to
get, also, general results for the numerical analysis of difficult problems generating
a free boundary (see, for instance [14]) and can be applied to show the connections
on the behavior of the free boundaries associated to some parabolic problems and
the ones associated to the family of elliptic problems generated by time-implicit
discretization [1].

But which T would like to illustrate here is the way in which such special
problem, as the flow past a given profile mentioned in Section 2, seems to have
been the starting point of an abstract result in the framework of the maximal
operators in Hilbert spaces.

Although it was not explicitly said anywhere, it seems to me that his results
on the support of the solution of second order elliptic variational inequalities could
be the motivation for the study of the abstract Cauchy problem

{ (1) + Au(t) > f(t) in X,
U(U) = Uugp,

in the case in which X = H is a Hilbert space and A4 : D{4) — P(H) a maximal
monotone operator multivalued at 0 (with 0 € intD(A)). So, in a pioneering way,
he obtain in [23] the first abstract result on the finite extinction time property. He
proved that if we assume f(¢) such that

B(f(t),¢) C AQ, for ae. t > ty, for some ¢ > 0 and t5 > 0, (12)
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then the property of finite extinction {ime holds (there exists t* € fty, +00) such
that u(t) = 0, in H, for any £ > ¢*) in a similar way to his results with A.
Friedman on the semilinear equation (8). In contrast to the use of the comparison
principle made in his previous results for elliptic and parabolic partial differential
equations, now he merely used the fact that A is a maximal monotone operator
and assumption (12).

Brezis considered in [23] a classical pursuit problem (already proposed by
Leibnitz but modelled, now, in terms of a multivalued system associated to some
suitable ordinary differential equations, i.e., with 4 = R”) as a simple application
of the above abstract result. It turns out that assumption (12) is difficult to be
checked in order to get some possible applications to partial differential equations
(where, for instance H = L*(Q?)). This was the motivation of the work [39] in
which the property of finite extinction time was proved for Banach spaces X
and A : D(A4) — P(X) a multivalued m-accretive operator. Several applications
for the special case of X = L°°({2), to some parabolic problems of the type (8)
with £ a multivalued maximal monotone graph of R* (including second-order
parabolic ohstacle problems) were given in that paper. By working, again, on the
space X = L°°({2) and using a certain duality with some fully nonlinear parabolic
equation, the above abstract result yields to the extinction in a finite time of
solutions to multivalued nonlinear diffusion equations of the form

u — Af(u) 3 f,

arising in several contexts ([36]).
The finite extinction property can be proved also (via this abstract result)
for other nonlinear multivalued parabolic problems of the type

s — vAu — gdiv (]ggf) = F(t2) i Qu,
% =0 on Tas,
u{0, z) = up(x) on Q,

for v > 0 and g > 0 and f (¢, z) £ 0. Such formulation arises in very different
applied problems (non-Newtonian fluids of Bingham type, image processing, mi-
crogranular structures: see references, for instance, in [3]). Moreover, coming back
to the similarity with the unexpected mixtures of geological layers mentioned at
the Introduction, it seems interesting to point out that the above multivalued
operator is also related to some very old works in Differential Geometry ([60]).

A different problem which locks quite similar to the previous ones (since it
deals with a multivalued operator) but for which the above abstract results does
not apply directly is the multivalued hyperbolic dry friction type problem as, for
instance,

Uy — Ugg + Bue) 20 in (0,1) x (0, +00),
w(t,0) =u(t,1) =0 t >0,
u(0,.) = ug(.) t >0,
w(0,.) = vo(’) in (0,1),
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where now /3 denotes the maximal monotene graph of R2? given by
Blu) ={1} if u> 0, §(0) = [—1,1] and Blu) ={-1}ifu <0 (13)

This problem was already considered by Haim Brezis in his paper [21]. Later, he
proposed to his student A. Haraux (as one of the main thesis goals) the study of
the dynamics of solutions of this problem. Haraux [54] proved that u(t,z) — ((z)
in H}(0,1) as t — --oo, with ¢ verifying —1 < (4 < 1 and then (at the beginnings
of the seventies) Brezis proposed the conjecture that the equilibrium position ¢
is reached after a finite time (stabilization in finite time). Although some partial
results in this direction were obtained by H. Cabannes [34] (for some special initial
data 1o and vg) the case of arbitrary initial data seems to be still an open problem.

Motivated by this, and also suggested by the numerical approach of solutions,
some easier formulations were considered in the literature, as, for instance, the
spatially discretized vibrating string via a finite differences. The resulting system
also arises in the study of the vibration of N-particles of equal mass m. In fact, it
was by passing to the limit in the number of particles (in absence of any friction)
how the wave equation was obtained in 1746 by Jean Le Rond D’Alembert.

If we denote the located positions, along the interval (0,1) of the z axis,
by z:(t) and we assume that each particle is connected to its neighbors by two
harmonic springs of strength %, then the equations of motion can be written as
the vectorial problem

P) { mx(t) + kAX(E) + ugB() + ppGx(2) 2 0,
X(O) = X0, X(O) = Vo,

where x(t) := (21(t), 22(2), ..., 25 (2))T (here h™ means the transposed vector of
h), A is the symmetric positive definite matrix of RN*N given by
2 -1 ... 0
-1 2 -1
A= .o =1 2 -1}
o ... -1 2

and B RN — P(RY) (respectively G :RY — R} denotes the (multivalued) max-
imal monotone operator (respectively the Lipschitz continuous function) given by
Blyr,...,un)=(01),.. . Blun))T (resp. Gl .., yw) = (aun), - 9(uw))):
The term pp3(#;(£)) represents the Coulomb friction and ppG represents other
type of frictions such as, for instance, the one due to the viscosity of an surrounding
fluid. We point out that this type of friction arises very often in the applications
and that its consideration was already proposed by Lord Rayleigh (see, e.g., [58]).
The study of the special case of a single oscillator, N = 1, without viscous
friction
mi + 2kx + psB(z) 2 0 (14)
can be found in many textbooks. The motion stops definitively after a finite time
T. < +oo (z(t) = @ for any ¢ > T. for some T € [—52,52]). As in the
case of the damped wave equation, it is not difficult to prove ([47]) that for any
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(%0, vo) € R?N| problem (Py) admits a unique weak solution z € C'([0, +c0) :
®Y) and that there exists a unique equilibrium state zo, € RY (i.e., satisfying
that Are € ((—52, 5217)7) such that | x(t) ||+ 2(t) — Zoo ||— 0 ast — 4o0.
The stabilization in a finite time, In absence of viscous friction (ug = 0) was
proved in Bamberger and Cabannes [7]. It was proved in [47] that the presence of
a viscous friction (with a suitable behavior of g near 0) may originate a qualitative
distinction among the orbits in the sense that the state of the system may reach
an equilibrium state in a finite time or merely in an asymptotic way (as t — +00),
according the initial data x{0) = xg and x(0) = vg. This dichotomy seems to be
new in the literature and contrasts with the phenomena of finite extinction time
for first order ODEs and parabolic PDEs. More precisely, the following was proved
in [47]: 1) if g(rjr <0 in some neighborhood of 0 then all solutions of (Py} stabilize
in a finite time, i) if g(r) = M with A > 2¢/Aimk/{(glg), where Ay denotes the
first eigenvalue of A then there exist solutions of (Py) which do not stabilize in
any finite time, and i) if N = 1, A = 1 € R and ¢'(0) < 2vVimk/(psu,) any
solution stabilize in finite time but if ¢/(0) > 2v/mk/(1gp,) there exist solutions
which do not stabilize in any finite time.

Another dynamical question raised by Haim Brezis concerns the study of the
damped oscillator

mi + p|&)* T E+ ke =0, (15)

when now o € {0,1). Here 4 and & > 0 are fixed parameters. In fact we can
simplify the above formulation to

F+ g i+ =0, (16)

by dividing by & and by introducing the rescaling #(f) = #/(@Dx()f) where
A = vm/Vk and B = 11/ (EG*/2m2/2) Notice that the z-rescaling fails for the
linear case @ = 1 since there is not any defined scale for £ and the equation
is merely reduced to & + A& 4+ z = 0 with 8 = u/(vkm), a parameter which
characterizes the dynamics. Notice also that the limit case o — 0 corresponds to
the Coulomb friction equation (14).

We recall that, even if the nonlinear term |&® ' & is not a Lipschitz con-
tinuous function of & | the existence and unigueness of solutions of the associate
Cauchy problem

® ){ i i) e rz=0 t>0,
« .’L(G) = 2, 1(0) - Up

is well known in the literature: see, e.g., Brezis [21]. The asymptotic behavior, for
t — o0, of solutions of the Coulomb and linear problems {Fy) and (P;) (limit cases
when a — 0 or ¢ — 1) was well known. In the second case the decay is exponential.
In the first one, as already mentioned, given xg and vy there exist a finite time
T = T{xg,v) and ¢ € [—1, 1] such that x(t) = ¢ for any t > T(zo,vg). When o €
(0,1) it was also well known that the solutions of (P,) verify {z(¢),Z(1)) — (0,0)
as t — oo (see, e.g., Haraux [54}). The question of to knowing if this convergence
is in fact an identity after a finite time was proposed by Brezis.
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This time the answer to his question (almost thirty years later) was not as
the one expected by him. In a series of papers ([45], [46] and [2]} it was shown that
the generic asymptotic behavior above described for the limit case (Fp) is only
exceptional for the sublinear case o € (0,1) since the generic orbits (z(t), &(¢))
decay to (0,0) in a infinite time and only two one-parameter families of them
decay to (0,0) in a finite time: in other words, when o — 0 the exceptional
hehavior becomes generic. For a different approach see [71].

We end by remarking that in some other nonlinear partial differential systems
it arises a feature very different from the case of scalar dissipative equations: the
vector solution has some components which stabilize in finite time, and others for
which this phenomenon does not occur. This property occurs, for instance, for the
linear heat equation with a multivalued nonlinear dynamical boundary condition
(for more details and other examples see [40]).

5. Special acknowledgements

If most of the papers ends with some acknowledgements, this presentation could
not finish without expressing here, in this special occasion, the deep recognition
and gratitude of many Spaniards mathematicians towards Haim Brezis by the
support and encouragements received from him since 1974. It was thanks to his
generous help as the panorama of the mathematics in Spain, specially in the field of
the nonlinear analysis, started to enjoy an activity and recognition nonexistent be-
fore. Fortunately, this was later extended to many other fields of the mathematics.

This singular contribution was officially recognized to him, in April 2000,
when he received with two days of difference the nomination as foreign member of
the Real Academia de Ciencias de Espaifia and the distinction as Doctor Honoris
Causa by the Universidad Auténoma de Madrid.

References

[1] L. Alvarez and J.I. Diaz: The waiting time property for parabolic problems trough
the nondiffusion of the support for the stationary problems, Rev. R. Acad. Clen.
Serie A Matem. (RACSAM) 97 (2003), 83-88.

[2} H. Amann and J.I. Dfaz, A note on the dynamics of an oscillator in the presence of
strong friction, Nonlinear Anal. 55 (2003), 209-216.

[3] F.Andreu, V. Caselles, J.I. Diaz and J.M. Mazén, Some Qualitative Properties for
the Total Variation, Journal of Functional Analysis, 188, 516-547, 2002.

[4] S.N. Antontsev, J.I. Diaz and S.1. Shmarev, Energy Methods for Free Boundary Prob-
lems: Applications to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear
Differential Equations and Their Applications, 48, Birkhiuser, Boston, 2002.

[5] J. Auchmuty and R. Beals, Variational solutions of some nonlinear free boundary
problems, Arch. Raf. Mech. Anal. 43, (1971), 255-271

[6] C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica,
Annali di Mat. Pura ed Appl. 92 (1972), 107-127.



H. Brezis Contributions on the Location of Free Boundaries 231

[7] A. Bamberger and H. Cabannes, Mouvements d’'une corde vibrante soumise & un
frottement solide, C. R. Acad. Se. Paris, 292 (1981}, 699-705.

i8] C. Bandle, R.P. Sperb and 1. Stakgold, Diffusion and reaction with monotone kinet-
ics, Nonlinear Analysis, TMA, 8, (1984), 321-333.

[9] C. Bandle and J.I. Dfaz, Inequalities for the Capillary Problem with Volume Con-
straint. In Nonlinear Problems in Applied Meathematics: In Honor of Ivar Stakgold
on his 70th Birthday (T.S. Angell et al. ed.), SIAM, Philadelphia, 1995.

[10] Ph. Benilan, H. Brezis and M.G. Crandall, A semilinear equation in LYRY), Ann.
Scuola Norm. Sup. Pisa 4, 2 (1975), 523-555.

[11] A. Bensoussan and J.L. Lions, On the support of the solution of some variational
inequalities of evolution, J. Math. Soc. Japan, 28 (1976), 1-17.

[12] A. Bensoussan, H. Brezis and A. Friedman, Estimates on the free boundary for quasi
variational inequalities. Comm. PDEs 2 (1977), no. 3, 297-321.

[13] H. Berestycki and H. Brezis, On a free boundary problem arising in plasma physics,
Nonlinear Analysis, 4 (1980), 415-436.

[14] A. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving the problem
RAIRO Anal. Numér., 13 (1979), no. 4, 207-312.

[15] L. Berkowitz and H. Pollard, A non classical variational problem arising from an
optimal filter problem, Arch. Rat. Mech. Anal., 26 (1967), 281-304.

[16] L. Bers, Mathematical aspects of subsonic and transient gas dynamics, Chapman and
Hall, London, 1958.

[17] J.F. Bourgat and G. Duvaut, Numerical analysis of flow with or without wake past
a symmetric two-dimensional profile without incidence, Int. Journal for Num. Math.
In Bng. 11 (1977), 975-993.

[18] H. Brezis, Sclutions of variational inequalities with compact support. Uspekhi Mat.
Nauk., 129, (1974) 103-108.

[19) H. Brezis, Selutions & support compact d’'inequations variationelles, Séminaire
Leray, Collége de France, 1973-74, pp. IILI-1IL.6

[20] H. Brezis, A new method in the study of subsonic flows, In, Partial Differential
equations and related topics, J. Goldstein, ed., Lecture Notes in Math. Vol. 446,
Springer, 1977, 50-64.

[21] H. Brézis, Problémes unilatéraux, J. Math. Pures Appl. 51, (1972), 1-168 .

[22] H. Brezis, Opérateurs mazimauz monotenes et semigroupes de contractions dans les
espaces de Hilbert, North-Holland, Amsterdam 1972.

(23] H. Brezis, Monotone operators, nonlinear semigroups and applications. Proceedings
of the International Congress of Muathematicians (Vancouver, B. C., 1974), Vol. 2,
Canad. Math. Congress, Montreal, Que., 1975, 249-255.

[24] H. Brezis, The dam problem revisted, in Free Boundary Problems, Proc. Symp.
Montecatini, A. Fasano and M. Primicerio eds., Pitman, 1983.

[25] H. Brezis and J.1I. Diaz (eds.), Mathematics and Environment, Proceedings of the
meeting between the Académie des Sciences and the Real Academia de Ciencias,
Paris, 23-24 May, 2002. Special volume of Rev. R. Aced. Cien.Serie A Matem.
(RACSAM) 96, n° 2, (2003).



232 J.1. Diaz

[26] H. Brezis and G. Duvaut, Ecoulements avec sillages autour d’un profil symmétrique
sans incidence, C.R. Acad. Sci., 276 {1973), 875-878.

[27] H. Brezis and A. Friedman, Estimates on the support of solutions of parabolic vari-
ational inequalities, Illinois J. Math., 20 (1976), 82-97.

[28] H. Brezis, D. Kinderlehrer and (. Stampacchia, Sur une nouvelle formulation du
probleme de écoulement & travers une digue, C.R. Acad. Sci. Paris, 287 (1978),
711-714.

[29] H. Brezis and E. Lieb, Minimum action solutions of some vector field equations,
Comm. Math. Phys., 96 (1984), 97-113.

[30] H. Brezis and L. Nirenberg, Removable singularities for nonlinear elliptic equations,
Topol. Methods Nonlinear Anal., 9 {1997), 201-219.

[31] H. Brezis and G. Stampacchia, Une nouvelle méthode pour I'étude d’écoulements
stationnaires, C. R. Acad. Sci., 276 {1973), 129-132.

[32] H. Brezis and G. Stampacchia, The Hodograph Method in Fluid-Dynamics in the
Light of Variational Inequalities, Arch. Hai. Mech.Anal., 61 (1976), 1-18.

[33] J. Bruch and M. Dormiani, Flow past a symmetric two-dimensional profile with a
wake in a channel, in Nonlinear Problems, vol. 2, C. Taylor, O.R. Oden, E. Hinton
eds., Pineridge Press, Swanzea, UK, 1987,

[34] H. Cabannes, Mouvement d’une corde vibrante soumise a un frottement solide, C.
R. Acad. Sci. Paris Ser. A-B 287 (1978), 671-673.

[35] J. Carrillo and M. Chipot, On the Dam Froblem, J. Diff. Eq. 45 (1982), 234-271.

[36] G. Diaz, J.I. Diaz, Finite extinction time for a class of non linear parabolic equations,
Comm. in Partial Differential Equations, 4 {(1979) No 11, 1213-1231.

[37] J.1. Diaz, Técnica de supersoluciones locales para problemas estacionarios no lineales.
Aplicacidn ol estudio de flujos subsdnicos. Memorias de la Real Academia de Ciencias
Exactas, Fisicas y Naturales. Serie de Ciencias Exactas, Tomo X VI, 1982.

(38] J.1. Diaz, Nonlinear Partiol Differentiol Equations and Free Boundaries. Research
Notes in Mathematics, 106, Pitman, London 1985.

[39] J.I. Diaz, Anulacién de soluciones para operadores acretivos en espacios de Banach.
Aplicaciones a ciertos problemas parabdlicos no lineales. Rev. Real. Acad. Ciencias
Ezactas, Fisicas y Naturales de Madrid, Tomo LXXIV (1980), 865-880.

[40] J.I. Diaz, Special finite time extinction in nonlinear evolution systems: dynamic
boundary conditions and Coulomb friction type problems. To appear in Nonlinear
Elliptic and Parabolic Problems: A Special Tribute to the Work of Herbert Amann,
Zurich, June, 28-30, 2004 (M. Chipot, J. Escher eds.).

[41] J.I. Diaz and A. Dou, Sobre flujos subsénicos alrededor de un obsticulo simétrico.
Coliectanea Mathematica, (1983), 142-160.

[42] J.I. Diaz and J. Herndndez, On the existence of a free boundary for a class of reaction
diffusion systems, STAM J. Math. Anal 15,N° 4, (1984), 670-685.

[43] J.I. Diaz and M.A. Herrero, Proprietés de support compact pour certaines équations
elliptiques et paraboliques non linéaires. C.R. Acad. Sc. Paris, 286, Série I, (1978),
815-817.



H. Brezis Contributions on the Location of Free Boundaries 233

[44] J.1. Diaz and M.A. Herrero, Estimates on the support of the solutions of some non
linear elliptic and parabolic problems. Proceedings of the Royal Society of Edinburgh,
98A (1981), 249-258.

[45] J.I. Diaz and A. Lifidn, On the asymptotic behavior of solutions of a damped oscil-
lator under a sublinear friction term: from the exceptional to the generic behaviors.
In Proceedings of the Congress on non linear Problems (Fez, May 2000}, Lecture
Notes in Pure and Applied Mathematics (A. Benkirane and A. Touzani. eds.), Mar-
cel Dekker, New York, 2001, 163-170.

{46} J.1. Dfaz and A. Lifidn, On the asymptotic behaviour of sotutions of a damped oscilla-
tor under a sublinear friction term, Rev. R. Acad. Cien. Serie A Matem. (RACSAM),
95 (2001), 155-160.

[47] J.I. Diaz and V. Millot, Coulomb friction and oscillation: stabilization in finite time
for a system of damped oscillators. CD-Rom Actas XVIII CEDYA / VIII CMA,
Servicio de Publicaciones de la Univ. de Tarragona 2003.

[48] J.I. Diaz and J. Mossino, Isoperimetric inequalities in the parabolic obstacle prob-
lems. Journal de Mathématiques Pures et Appligueds, T1 (1992), 233-266.

[49] J.I. Diaz and JM. Rakotoson, On a nonlocal stationary free boundary problem
arising in the confinement of a plasma in a Stellarator geometry, Archive for Rational
Mechanics and Analysis, 134 {1996), 53-95.

[50] J.I. Dias and L. Veron, Existence, uniqueness and qualitative properties of the so-
lutions of some first order quasilinear equations, Indiana University Mathematics
Journal, 32, No3, {1983), 319-361.

[51] C. Ferrari and F. Tricomi, Aerodinamica transonice, Cremonese, Rome,1962.

(52} A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York,
1982.

[53] R. Glowinski, J.L. Lions and R. Tremolieres, Analyse Numérique des Inéquations
Variationnelles, 2 volumes, Dunod, Parfs, 1976.

[54] A. Haraux, Comportement & l'infini pour certains systémes dissipatifs non linéaires,
Prac. Roy. Soc. Edinburgh, Sect. A 84A (1979}, 213-234.

[55] R.A. Hummel, The Hodograph Method for Convex Profiles, Ann. Scuole Norm. Sup.
Pisa 9 IV, (1982), 341-363.

[56] D. Kinderlehrer and G. Stampacchia: An introduction to variational inequalities and
their applications. Academic Press, New York 1980 (SIAM, Philadelphia, PA, 2000).

[57] P. Pucci and J. Serrin, The strong maximum principle revisted, J. Diff. Equations,
196 (2004), 1-66.

[58] J.W. Rayleigh, B. Strutt, The theory of sound, Dover Publications, New York, 2d
ed., 1945.

i59] R. Redheffer, On a nonlinear functional of Berkovitz and Pollard, Arch. Rat. Mech.
Anal. 50 (1973), 1-9.

[60] B. Riemann: Tiber die Fliche vom kleinsten Inhalt bei gegebener Begrenzung, Abh.
Kénigl. Ges. d. Wiss. Gottingen, Mathem. CL 13 {1867}, 3-52.

[61] J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland, Ams-
terdam, 1987,



234 J.I. Diaz

[62] E. Sandier and S. Serfaty, A rigorous derivation of a free-boundary problem arising
in superconductivity, Ann. Sct. Ecole Norm. Sup. 4, 33, (2000), 561-592.

[63] L. Santos, Variational convergences of a flow with a wake in a channel past a profile,
Bolletino U.M.I., 7, 2-B, (1988), 783-792.

[64] L. Santos, Variational limit of compressible to incompressible fluid. In Fnergy Meth-
ods in Continvum Mechanics, S.N. Antontsev, J.I. Diaz and S.I. Shmarev eds.,
Kluwer, Dordrecht, 1996, 126-144.

i65] J. Serrin: Mathematical Principles of Classical Fluid Mechanics, in Hondbuch der
Physik, 8, Springer-Verlag, Berlin 1959, 125-263.

[66] E. Shimborsky, Variational Methods Applied to the Study of Symmetric Flows in
Laval Nozzles, Comm. PDEs, 4 {1979), 41-77.

[67] E. Shimborsky, Variational Inequalities arising in the theory of two-dimensional po-
tential flows, Nonlinear Anal., 5 (1981), 434-444.

[68] G. Stampacchia, Le disequazioni variazionali nella dinamica dei fluidi, In Metodi
Valuativi nella fisica-matemdtica, Accad. Naz. Lincei, Anno CCCLXXII, Quaderno
217, (1975), 169-180.

[69] F. Tomarelli, Hodegraph method and variational inequalities in fluid-dynamics, Inst.
Nat. Alte Mat. Vol I-IT, Roma, 1980, 565-574.

[70] J.L. Vézquez: A strong maximum principle for some quasilinear elliptic equations,
Appl. Math. Optim. 12 (1984), 191-202.

[71] J.L. Vazquez, The nonlinearly damped oscillator, ESAIM Control Optim. Calc. Var.
9 (2003), 231-246.

J.I. Diaz

Departamento de Matemdtica Aplicada
Facultad de Matematicas
Univiversidad Complutense de Madrid
E-28040 Madrid, Spain

e-mail: ji_diaz@mat.ucm.es



