On the Pseudo-Linearization and Quasi-Linearization Principles

A.C. Casal

Dept. de Matemática Aplicada, E.T.S. Arquitectura, Univ. Politécnica de Madrid alfonso.casal@upm.es

J.I. Díaz

Dept. de Matemática Aplicada, Fac. de Matemáticas, Univ. Complutense de Madrid
ji_diaz@mat.ucm.es

1. Introduction

In some recent papers [5] and [6] we introduced a quite general pseudo-linearization principle concerning the existence and stabilization, as $t \rightarrow \infty$, of the solutions of the nonlinear abstract Cauchy problem

$$
(A C P)\left\{\begin{array}{l}
\frac{d u}{d t}(t)+A u(t) \ni F(u) \quad \text { in } X, \tag{1}\\
u(0)=u_{0}
\end{array}\right.
$$

on a Banach space X in a neighborhood of some equilibrium point $w \in D(A) \cap D(F)$ such that $A w \ni$ $F(w)$. Such a principle generalize the classical linearization principle concerning the case in which both operators A and B are differentiable operators (it is required then that the first eigenvalue of the linear operator $y \rightarrow \mathrm{D} A(w) y-\mathrm{D} F(w) y$ have a negative real part). The generalization comes from the fact that quite often the nonlinear operator A is not differentiable near some equilibrium points and so the classical linearization principle is not applicable. Here $F: D(F) \subseteq X \longrightarrow X$ represents the operator associated to a real continuous function $f: D(f) \subset \mathbf{R} \longrightarrow \mathbf{R}$.

The main motivation to keep A nonlinear after the process of linearization in the above papers was the study the stabilization of the uniform oscillations for the complex Ginzburg-Landau equation by means of some global delayed feedback. In fact, due to the important role of a controlling term, in [5] and [6] we considered the more sophisticated case in which F depends also of some delayed term $F=F\left(u, u_{t}().\right)$, where $u_{t}(\theta)=u(t+\theta), \theta \in[-\tau, 0]$ for some $\tau>0$, but we shall avoid the presence of such a term for the sake of the simplicity in the exposition. It is a curious fact that even if the complex Ginzburg-Landau equation is formulated in terms of a linear (vectorial) diffusion operator A the usual representation for the unknown as $\mathbf{Z}(x, t)=\rho(x, t) e^{i \phi(x, t)}$ leads the original system to a coupled nonlinear system of equations for ρ and ϕ which can be formulated again in the form $\frac{d z}{d t}(t)+\widetilde{A} z \ni \widetilde{F}(z)$ but with a nonlinear (and not everywhere differentiable) operator \widetilde{A}.

Many other examples can be appealed to justify the philosophy of keeping A non-linear after linearizing the rest of the terms of the equation. For instance, this is the case when A is multivalued, or nondifferentiable or a degenerate quasilinear operator. We point out that some relevant examples of nonlinear equations of the type $(A C P)$ arise in the most different contexts (see, for instance, Díaz and Hetzer [10] for one example in Climatology).

The main conclusion of the pseudolinearization principle was formulated in terms of the condition that the operator $y \rightarrow A y-\mathrm{D} F(w) y$ belongs to $\mathcal{A}\left(\omega^{*}: X\right)$, for some $\omega^{*} \in \mathrm{C}$ with $\operatorname{Re} \omega^{*}=\gamma^{*}<0$ where the class of operators $\mathcal{A}(\omega: X)=\left\{A: D_{X}(A) \subset X \rightarrow \mathcal{P}(X)\right.$,such that $A+\omega I$ is a m-accretive operator\} (see Brezis [3] for the case of $X=H$ a Hilbert space and Bénilan, Crandall and Pazy [2], Vrabie [14] for the case of a general Banach space).

The main goal of this communication is to present some connections between the above principle and the so called "method of quasi-linearization" introduced by R. Bellman and R. Kalaba in [1] in order to prove the existence of solutions of nonlinear parabolic semilinear problems with A a second order linear elliptic operator and f written as $f=f_{c v}+f_{c n}$ with $f_{c v}$ convex and $f_{c n}$ concave by means of some iteration schemes.

In our approach, in contrast with other results in the literature (see, for instance, Laksmikantham and Vatsala [12] and Carl and Laksmikantham [4]), we shall avoid any assumption on the second derivative of function f. To do that we shall combine an iterative scheme with some approximation arguments (we replace f by a regular approximation f^{k}) of the type

$$
\left\{\begin{array}{l}
\frac{d \bar{u}_{k+1}}{d t}+A \bar{u}_{k+1} \ni f^{k}\left(\bar{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right) \quad \text { in } X, \\
\frac{d \underline{u}_{k+1}}{d t}+A \underline{u}_{k+1} \ni f^{k}\left(\underline{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right) \text { in } X, \\
\bar{u}_{k+1}(0)=u_{0}, \underline{u}_{k+1}(0)=u_{0}
\end{array}\right.
$$

We prove that this method can be extended beyond the linear assumption on A and, which is perhaps more useful, we formulate and prove this principle in the abstract framework of T-accretive operators in the Banach lattice $X=L^{p}(\Omega)$ for some $p \in[1,+\infty]$ or $X=C(\bar{\Omega})$, where Ω is a regular open bounded set of R^{N} allowing to get, as applications the case of quasilinear or fully nonlinear parabolic equations. It is also applicable to some multivalued equations, as the obstacle problem (something proposed in Laksmikantham [11]).

Notice that, like in our pseudolinearization principle, the above system of uncoupled equations replace the nonlinear term $F(u(t))$ by linear (zero order terms) as $\left[\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\right] \bar{u}_{k+1}$ and $\left[\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\right] \underline{u}_{k+1}$.

As a matter of fact the quasilinearization method was introduced by Bellman in order to get the approximation of the solution of semilinear equations by means of a quadratic (sometimes called as rapid) convergence. We can prove something similar for concrete quasilinear equations. Details and further results will be given in Casal and Díaz [7].

2. A bstract results

Given Ω,a regular open bounded set of R^{N}, we shall consider the abstract Cauchy problem $(A C P)$ in the Banach lattice $X=L^{p}(\Omega)$ for some $p \in[1,+\infty]$ or $X=C(\bar{\Omega})$. The structural assumptions on the operators we shall assume in this section are the following
(H1): $A \in \mathcal{A}_{+}(\omega: X)$, for some $\omega \in \mathrm{C}$, with $\mathcal{A}_{+}(\omega: X)=\{A: D(A) \subset X \rightarrow \mathcal{P}(X)$, such that $A+\omega I$ is a m-T-accretive operator $\}$. Moreover A satisfies the property (M) of Bénilan [2].
(H2): The operator semigroup $T(t): \overline{D(A)} \rightarrow X, t \geq 0$, generated by A, is compact (see Vrabie [14]).
(H3): $u_{0} \in \overline{D(A)} \cap L^{\infty}(\Omega)$.
We shall assume that the nonlinear term $F(u)$ is generated through a continuous real function $f: \mathrm{R} \rightarrow \mathrm{R}$ satisfying that
(H 4$): f=f_{c v}+f_{c n}$ with $f_{c v}$ convex and $f_{c n}$ concave.
Notice that, in contrast with previous works on the quasilinearization process, we do not require any assumption on the linearity of operator A neither on the differentiability of f (in the classical sense).

We define the notion of sub and supersolution of the original abstract Cauchy problem ($A C P$) : A couple of functions $\underline{u}, \bar{u} \in C([0, T]: X) \cap L^{\infty}((0, T) \times \Omega)$ are called sub (respect.) supersolutions of $(A C P)$ if there exists \underline{g} (respectively $\bar{g})$ in $L^{1}\left(0, T: L^{\infty}(\Omega)\right)$ with $\underline{g} \leq 0$ (respectively $\bar{g} \geq 0$) such that \underline{u}, \bar{u} are mild solutions of the problem

$$
\left\{\begin{array}{l}
\frac{d u}{d t}(t)+A \underline{u}(t) \ni f(\underline{u})+\underline{g} \quad \text { in } X, \\
\underline{u}(0)=u_{0}
\end{array}\right.
$$

(respectively

$$
\left\{\begin{array}{l}
\frac{d u}{d t}(t)+A \bar{u}(t) \ni f(\bar{u})+\bar{g} \quad \text { in } X, \\
\frac{u}{u}(0)=u_{0}
\end{array}\right.
$$

in the case of $\bar{u})$. Notice that here we are identifying the operator $F(u)$ associated to f with the own function $f(u)$. We shall assume
(H5): there exists \underline{u}, \bar{u} sub and super solutions of $(A C P)$.
Finally, as we shall combine some ordering and some approximation arguments we shall need
(H6): the subdifferential operators $\partial f_{c v}$ and $\partial\left(-f_{c v}\right)$ are bounded on the set
$I:=\left[\inf e s s_{t \in[0, T], x \in \Omega} \underline{u}(t, x), \sup e s s_{t \in[0, T], x \in \Omega} \bar{u}(t, x)\right]$, i.e., $|b| \leq M$ for any $b \in \partial f_{c v}(r)$ or $b \in \partial\left(-f_{c n}\right)(r)$, for any $r \in I$.

Remark. Since \underline{u}, \bar{u} are bounded functions then I is a compact interval of R . Moreover, by using some well known results (see, e.g., Brezis [3]) it shown that assumption (H6) implies the existence of a sequence of auxiliary functions $f^{k} \in C^{2}(\mathrm{R})$ such that $f^{k}=f_{c v}^{k}+f_{c n}^{k}$ with $f_{c v}^{k}, f_{c n}^{k} \in C^{2}(\mathrm{R})$, $f_{c v}^{k}$ convex and $f_{c n}^{k}$ concave for any $k \in \mathrm{~N}$, such that

$$
\left\{\begin{array}{ll}
f_{c v}^{k} \nearrow f_{c v}, & \text { as } k \rightarrow \infty, \tag{2}\\
f_{c n}^{k} \searrow f_{c n}, & \text { as } k \rightarrow \infty,
\end{array} \quad \text { uniformly on any compact interval of } I,\right.
$$

Moreover $\left\|\left(f_{c v}^{k}\right)_{u}(\eta),\left(f_{c n}^{k}\right)_{u}(\eta)\right\|_{L^{\infty}\left(0, T: X^{\prime}\right)} \leq M_{k} \leq M$, for the same $M>0$ given in (H6), for any $\eta \in C([0, T]: X)$ such that $\underline{u} \leq \eta \leq \bar{u}$.

Finally, since the main goal is the approximation of the solution we can consider the uniqueness of solution question as an independent goal. So, we shall assume that
(H7): Problem $(A C P)$ has at most one mild solution.
Remark. This can be proved once we assume (H1) and some extra condition on f such as, f is (globally) Lipschitz continuous (Casal and Díaz [7]).

In order to construct the iterative scheme we define the pseudo linearized (approximated) abstract Cauchy system
$(P L A C S)_{k}\left\{\begin{array}{l}\frac{d \bar{u}_{k+1}}{d t}+A \bar{u}_{k+1} \ni f^{k}\left(\bar{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right) \quad \text { in } X, \\ \frac{d \underline{u}_{k+1}}{d t}+A \underline{u}_{k+1} \ni f^{k}\left(\underline{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right) \quad \text { in } X, \\ \bar{u}_{k+1}(0)=u_{0}, \underline{u}_{k+1}(0)=u_{0} .\end{array}\right.$
Theorem 1 Assume (H1)-(H^{γ}). Then, for any $k \in \mathbf{N}$ there exists $\left(\underline{u}_{k}, \bar{u}_{k}\right) \in L^{\infty}((0, T) \times \Omega)^{2}$ mild solutions of the system $(P L A C S)$ and with $\left(\underline{u}_{1}, \bar{u}_{1}\right)=(\underline{u}, \bar{u})$. Moreover, the sequences $\left\{\underline{u}_{k}\right\},\left\{\bar{u}_{k}\right\}$ converge in $C([0, T]: X)$ to $u \in L^{\infty}((0, T) \times \Omega)$ (unique) mild solution of $(A C P)$ and we have that $\underline{u} \leq u \leq \bar{u}$.

We shall prove the result in several steps. i) Existence of $\left(\underline{u}_{2}, \bar{u}_{2}\right)$.The $(P L A C S)_{2}$ is given by

$$
(P L A C S)_{2} \begin{cases}\frac{d \bar{u}_{2}}{d t}+A \bar{u}_{2} \ni f^{1}(\bar{u})+\left(f_{c v}^{1}\right)_{u}(\underline{u})\left(\bar{u}_{2}-\bar{u}\right)+\left(f_{c n}^{1}\right)_{u}(\bar{u})\left(\bar{u}_{2}-\bar{u}\right) & \text { in } X, \\ \frac{d \underline{u}_{2}}{d t}+A \underline{u}_{2} \ni f^{1}(\underline{u})+\left(f_{c v}^{1}\right)_{u}(\underline{u})\left(\underline{u}_{2}-\underline{u}\right)+\left(f_{c n}^{1}\right)_{u}(\bar{u})\left(\underline{u}_{2}-\underline{u}\right) & \text { in } X, \\ \bar{u}_{2}(0)=u_{0}, \underline{u}_{2}(0)=u_{0} .\end{cases}
$$

The existence (and uniqueness) of solution of this uncoupled system comes from the fact that $A \in \mathcal{A}_{+}(\omega: X)$, and that $f^{1}(\bar{u})-\left(f_{c v}^{1}\right)_{u}(\underline{u}) \bar{u}-\left(f_{c n}^{1}\right)_{u}(\bar{u}) \bar{u}, f^{1}(\underline{u})-\left(f_{c v}^{1}\right)_{u}(\underline{u}) \underline{u}-\left(f_{c n}^{1}\right)_{u}(\bar{u}) \underline{u} \in$ $L^{1}(0, T: X)$ (recall that \bar{u}, \underline{u} are bounded and that f^{1} is continuous in R).
ii) Estimates on $\left[\bar{u}_{2}-\bar{u}\right]_{+}$and $\left[\underline{u}-\underline{u}_{2}\right]_{+}$. By construction we get that

$$
\frac{d\left(\bar{u}_{2}-\bar{u}\right)}{d t}+A \bar{u}_{2}-A \bar{u} \ni a_{1}(t, x)\left(\bar{u}_{2}-\bar{u}\right)-\bar{g}+f^{1}(\bar{u})-f(\bar{u}),
$$

where $a_{1}(t, x)=\left(f_{c v}^{1}\right)_{u}(\underline{u}(t, x))+\left(f_{c n}^{1}\right)_{u}(\bar{u}(t, x))$ and so, $\left\|a_{1}\right\|_{L^{\infty}((0, T) \times \Omega)} \leq M_{1}$. Since $\bar{g} \geq 0$ and $A+\omega I$ is a T-accretive operator we get the estimates

$$
\begin{gathered}
\operatorname{má}_{t \in[0, T]}\left\|\left[\bar{u}_{2}(t, .)-\bar{u}(t, .)\right]_{+}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T} T|\Omega|\left\|\left[f^{1}-f\right]_{+}\right\|_{C(I)}, \\
\operatorname{máx}_{t \in[0, T]}\left\|\left[\bar{u}_{2}(t, .)-\bar{u}(t, .)\right]_{-}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T}\left(T|\Omega|\left\|\left[f^{1}-f\right]_{-}\right\|_{C(I)}+\|\bar{g}\|_{L^{1}\left(0, T: L^{\infty}(\Omega)\right)}\right)
\end{gathered}
$$

The proof of the existence of \underline{u}_{2} is analogous. In that case we get the estimates

$$
\begin{gathered}
\operatorname{má}_{t \in[0, T]}\left\|\left[\underline{u}(t, .)-\underline{u}_{2}(t, .)\right]_{+}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T} T|\Omega|\left\|\left[f-f^{1}\right]_{+}\right\|_{C(I)}, \\
\operatorname{máx}_{t \in[0, T]}\left\|\left[\underline{u}(t, .)-\underline{u}_{2}(t, .)\right]_{-}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T}\left(T|\Omega|\left\|\left[f^{1}-f\right]_{-}\right\|_{C(I)}+\|\underline{g}\|_{L^{1}\left(0, T: L^{\infty}(\Omega)\right)}\right) .
\end{gathered}
$$

R emark. If no regularization is needed, and so $f^{k}=f$, then we get that $\underline{u} \leq \underline{u}_{2}$ and $\bar{u}_{2} \leq \bar{u}$ (Casal and Díaz [7]).
iii) Proof of the inequality $\underline{u}_{2} \leq \bar{u}_{2}$. We have that

$$
\frac{d\left(\bar{u}_{2}-\underline{u}_{2}\right)}{d t}+A \bar{u}_{2}-A \underline{u}_{2} \ni\left[\left(f_{c v}^{1}\right)_{u}(\underline{u})+\left(f_{c n}^{1}\right)_{u}(\bar{u})\right]\left(\bar{u}_{2}-\underline{u}_{2}\right)-F_{1}
$$

with $F_{1}=f^{1}(\bar{u})-f^{1}(\underline{u})+\left(f_{c v}^{1}\right)_{u}(\underline{u})(\underline{u}-\bar{u})+\left(f_{c n}^{1}\right)_{u}(\bar{u})(\underline{u}-\bar{u})$. But, from the convexity of $f_{c v}^{1}$ we get that for any $u, v \in I, f_{c v}^{1}(u) \geq f_{c v}^{1}(v)+\left(f_{c v}^{1}\right)_{u}(v)(u-v)$. Analogously, the concavity of $f_{c n}^{1}$ implies, for any $u, v \in I$, that $f_{c n}^{1}(u) \geq f_{c n}^{1}(v)+\left(f_{c n}^{1}\right)_{u}(u)(u-v)$. Both properties imply that $F_{1} \geq 0$ and so, by the T-accretiveness we get the conclusion.
iv) Existence of ($\underline{u}_{k}, \bar{u}_{k}$) for $k \in \mathbf{N}, k>1$. It is analogous to the above step. For instance, the forcing term (independent on $\left.\bar{u}_{k+1}\right)$ is now $f^{k}\left(\bar{u}_{k}\right)-\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right) \bar{u}_{k}-\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right) \bar{u}_{k}$ which, again, is in $L^{\infty}((0, T) \times \Omega)$.
v) Estimates on $\left[\bar{u}_{k+1}-\bar{u}_{k}\right]_{+}$and $\left[\underline{u}_{k}-\underline{u}_{k+1}\right]_{+}$. By construction and (H6) we get that

$$
\frac{d\left(\bar{u}_{k+1}-\bar{u}_{k}\right)}{d t}+A \bar{u}_{k+1}-A \bar{u}_{k} \ni a_{k}(t, x)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)+F_{k}
$$

with $a_{k}(t, x)=\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)$ (and so $\left.\left\|a_{k}\right\|_{L^{\infty}((0, T) \times \Omega)} \leq M_{k}\right)$ and $F_{k}=f^{k}\left(\bar{u}_{k}\right)-$ $f^{k-1}\left(\bar{u}_{k-1}\right)+a_{k-1}(t, x)\left(\bar{u}_{k}-\bar{u}_{k-1}\right)$. So, using the convexity of $f_{c v}^{k}$ and the concavity of $f_{c n}^{k}$ we get that $F_{k} \geq f^{k}\left(\bar{u}_{k}\right)-f^{k-1}\left(\bar{u}_{k}\right)$. Thus, by the T-accretiveness of A, we get that

$$
\begin{aligned}
& \operatorname{máx}_{t \in[0, T]}\left\|\left[\bar{u}_{k+1}(t, .)-\bar{u}_{k}(t, .)\right]_{+}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T} T|\Omega|\left\|\left[f^{k}-f^{k-1}\right]_{+}\right\|_{C(I)}, \\
& \operatorname{máx}_{t \in[0, T]}\left\|\left[\underline{u}_{k}(t, .)-\underline{u}_{k+1}(t, .)\right]_{+}\right\|_{L^{\infty}(\Omega)} \leq e^{\left(\omega+M_{1}\right) T} T|\Omega|\left\|\left[f^{k-1}-f^{k}\right]_{+}\right\|_{C(I)} .
\end{aligned}
$$

Remark. If no regularization is needed and so $f^{k}=f^{k-1}$ then we get that $\underline{u}_{k} \leq \underline{u}_{k+1}$ and that $\bar{u}_{k} \leq \bar{u}_{k+1}$ (Casal and Díaz [7]).
vi) Proof of the inequality $\underline{u}_{k+1} \leq \bar{u}_{k+1}$. As in step iii) we have

$$
\begin{gathered}
\frac{d\left(\bar{u}_{k+1}-\underline{u}_{k+1}\right)}{d t}+A \bar{u}_{k+1}-A \underline{u}_{k+1} \ni\left[\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\right]\left(\bar{u}_{k+1}-\underline{u}_{k+1}\right)-F_{k}, \\
F_{k}=f^{k}\left(\bar{u}_{k}\right)-f^{k}\left(\underline{u}_{k}\right)+\left[\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k-1}\right)+\left(f_{c n}^{1}\right)_{u}\left(\bar{u}_{k-1}\right)\right]\left(\underline{u}_{k}-\bar{u}_{k-1}\right) .
\end{gathered}
$$

Using the convexity of $f_{c v}^{k}$ and the concavity of $f_{c n}^{k}$ we have that $F_{k} \geq 0$ and so, by the Taccretiveness, we get the wanted comparison.
End of the proof of Theorem 1. The sequences $\left\{\underline{u}_{k}\right\}$ and $\left\{\bar{u}_{k}\right\}$ are uniformly bounded in $L^{\infty}((0, T) \times$ $\Omega)$. In consequence, using assumption (H6), the sequences $\left\{f^{k}\left(\bar{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)+\right.$ $\left.\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)\right\}$ and $\left\{f^{k}\left(\underline{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)\right\}$ are also uniformly bounded in $L^{\infty}((0, T) \times \Omega)$. Thus, by the assumption (H2) there exists \underline{U}, \bar{U} such that $\left\{\underline{u}_{k}\right\} \rightarrow \underline{U}$ and $\left\{\bar{u}_{k}\right\} \rightarrow \bar{U}$ (strongly) in $C([0, T]: X)$ (and, at least, weakly in $L^{\infty}((0, T) \times$ $\Omega)$. Finally, $\left\{f^{k}\left(\bar{u}_{k}\right)+\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\bar{u}_{k+1}-\bar{u}_{k}\right)\right\} \rightarrow f(\bar{U})$ and $\left\{f^{k}\left(\underline{u}_{k}\right)+\right.$ $\left.\left(f_{c v}^{k}\right)_{u}\left(\underline{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)+\left(f_{c n}^{k}\right)_{u}\left(\bar{u}_{k}\right)\left(\underline{u}_{k+1}-\underline{u}_{k}\right)\right\} \rightarrow f(\underline{U})$ and so $\underline{U}, \bar{U} \in L^{\infty}((0, T) \times \Omega)^{2}$ are mild solutions of (ACP) which must coincide due the assumption (H7). From steps i)-vi), passing to the limit, we get that $\underline{u} \leq u \leq \bar{u} . \neq$
R emark. If no regularization is needed, and so $f^{k}=f$, then it is easy to see (Casal and Díaz [7]) that $\underline{u} \leq \underline{u}_{2} \leq \ldots \leq \underline{u}_{k} \leq \ldots \leq u \leq \ldots \leq \bar{u}_{k} \leq \bar{u}_{2} \leq \bar{u}$.
Remark. Some abstract results of a difference nature (in which A is a regular function, and so, of difficult application to PDEs) can be found in Section 4.6 of the book [12] (see also the references cited there).
R emark. More general functions $f(t, x, u)$ can be also considered (Casal and Díaz [7]). For instance, it is possible to improve Theorem 1 by assuming the existence of ϕ convex and ψ concave such that $f=f_{c v}+f_{c n}$ with $f_{c v}+\phi$ convex and $f_{c n}+\psi$ concave. In that case, we assume merely that $A+\phi+\psi$ is a m-T-accretive operator on X. The method can be applied to systems of nonlinear PDEs as well as to PDEs with some delayed terms (see some iterative schemes in Pao [13], Casal, Díaz and Stich [8] and Casal and Díaz [7]).

Many different examples are possible ([7]). For instance, we can consider
Example 1. $A: D(A) \rightarrow \mathcal{P}\left(L^{1}(\Omega)\right)$ given by $A u=-\operatorname{div}\left(|\nabla \phi(u)|^{p-2} \nabla \phi(u)\right)+\beta(u)$ with $D(A)=\left\{\phi(u) \in W^{1,1}(\Omega), u(x) \in D(\beta)\right.$, a.e. $x \in \Omega, A u \in L^{1}(\Omega),-\left|\frac{\partial \phi(u)}{\partial n}\right|^{p-2} \frac{\partial \phi(u)}{\partial n} \in \gamma(\phi(u))$ on $\partial \Omega\}$ where $p>1, \phi$ is continuous and increasing, and β, γ are maximal monotone graphs of \mathbf{R}^{2} (not necessarily associated to differentiable functions). We recall that the obstacle problem can be
formulated in this framework by taking as β the maximal monotone graph of \mathbf{R}^{2} given by $\beta(r)=\phi$ (the empty set) if $r<0, \beta(0)=(-\infty, 0]$ and $\beta(r)=\{0\}$ if $r>0$ (see, e.g. Díaz [9]).

Example 2. Many different operators A, satisfying the above conditions, can be taken on the space $X=C(\bar{\Omega})$. A first class of operators concerns the operator in divergence form given in Example 1 when we assume that $\phi(u)=u$. Another class of operators concerns some fully non linear operators of the type $A: D(A) \rightarrow C(\bar{\Omega})$ with $A u=\sigma(-\Delta u)$ with $D(A)=\left\{u \in C^{2}(\bar{\Omega})\right.$: $\sigma(-\Delta u) \in C^{2}(\bar{\Omega}), u=0$ on $\left.\partial \Omega\right\}$ where σ is a continuous strictly increasing function (see, e.g. Díaz [9]).

One of the reasons argued by Bellman to introducing this method for semilinear equations is the quadratic (sometimes called as rapid) convergence. We can prove something similar for concrete quasilinear equations:

Theorem 2 ([7]). Let A be as in the Example 1 with $p \geq 2, \phi(u)=u, \beta=0$ and γ corresponding to Dirichlet boundary conditions and assume (H3)-(H7). Then

$$
\left\{\begin{array}{c}
\operatorname{máx}_{t \in[0 . T]}\left\|u(t)-\bar{u}_{k}(t)\right\|_{L^{2}(\Omega)}^{2}+\left\|u-\bar{u}_{k}\right\|_{L^{p}\left(0, T: W_{0}^{1, p}(\Omega)\right.}^{p} \leq \\
C\left(\left\|u-\bar{u}_{k-1}\right\|_{L^{2}((0, T) \times \Omega)}^{2}+\left\|u-\underline{u}_{k-1}\right\|_{L^{2}((0, T) \times \Omega)}^{2}\right), \\
\operatorname{máx}_{t \in[0 . T]}\left\|u(t)-\underline{u}_{k}(t)\right\|_{L^{2}(\Omega)}^{2}+\left\|u-\underline{u}_{k}\right\|_{L^{p}\left(0, T: W_{0}^{1, p}(\Omega)\right.}^{p} \leq \\
C\left(\left\|u-\bar{u}_{k-1}\right\|_{L^{2}((0, T) \times \Omega)}^{2}+\left\|u-\underline{u}_{k-1}\right\|_{L^{2}((0, T) \times \Omega)}^{2}\right) .
\end{array}\right.
$$

A cknowledgements. Partially supported by the project MTM2004-07590-C03-01 of the DGISGPI (Spain). J.I. Díaz is member of the RTN HPRN-CT-2002-00274 of the EU.

P alabras clave: Ecuaciones Abstractas No Lineales, Linealización
Clasificación para el Cedya 2005: item del congreso donde se engloba la conferencia: EDPs

Bibliografía

[1] R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, American Elsevier, New York, 1965.
[2] Ph. Bénilan, M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Book in preparation.
[3] H. Brezis, Opérateurs Maximaux Monotones, North Holland, Amsterdam, 1973.
4] S. Carl, V. Lakshmikantham, Generalized quasilinearizarion and semilinear parabolic problems, Nonlinear Analysis, 48(2002), 947-960.
5] A. C. Casal and J. I. Díaz, On the principle of pseudo-linearized stability: application to some delayed parabolic equations, to appear in Nonlinear Analysis
[6] A. C. Casal and J. I. Díaz, On the complex Ginzburg-Landau equation with a delayed feedback, to appear in Mathematical Models and Methods in Applied Sciences.
[7] A. C. Casal and J. I. Díaz, Article in preparation.
8] A. C. Casal, J. I. Díaz and M. Stich, On some Delayed Nonlinear Parabolic Equations Modelling CO Oxidation. In Proceedings of the Congress Differential Equations and Dynamical Systems, Ontario, July, 2005. To appear.
[9] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol.I. Elliptic equations. Research Notes in Mathematics n ${ }^{\circ}$ 106, Pitman, London, 1985.
10] J.I. Díaz and G. Hetzer, A Functional Quasilinear Reaction-Diffusion Equation Arising in Climatology. In Equations aux dérivées partielles et applications. Articles dédiés à J.-L. Lions, Elsevier, Paris, pp. 461-480, 1998.

11] V. Lakshmikantham, Monotone Approximations and Rapid Convergence. In Ten Mathematical Essays on Approximation in Analysis and Topology, J. Ferrera et al.eds., Elsevier, 2005, 125-149.

12] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer, Dordrecht, 1998.

13] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.
14] I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second edition, Pitman Monographs, Longman, Essex, 1995.

