On the Pseudo-Linearization and Quasi-Linearization Principles

A.C. Casal

Dept. de Matemática Aplicada, E.T.S. Arquitectura, Univ. Politécnica de Madrid alfonso.casal@upm.es

J.I. Díaz

Dept. de Matemática Aplicada, Fac. de Matemáticas, Univ. Complutense de Madrid ji diaz@mat.ucm.es

1. Introduction

In some recent papers [5] and [6] we introduced a quite general *pseudo-linearization principle* concerning the existence and stabilization, as $t \to \infty$, of the solutions of the nonlinear abstract Cauchy problem

$$(ACP) \begin{cases} \frac{du}{dt}(t) + Au(t) \ni F(u) & \text{in } X, \\ u(0) = u_0. \end{cases}$$
(1)

on a Banach space X in a neighborhood of some equilibrium point $w \in D(A) \cap D(F)$ such that $Aw \ni F(w)$. Such a principle generalize the *classical linearization principle* concerning the case in which both operators A and B are differentiable operators (it is required then that the first eigenvalue of the linear operator $y \to DA(w)y - DF(w)y$ have a negative real part). The generalization comes from the fact that quite often the nonlinear operator A is not differentiable near some equilibrium points and so the *classical linearization principle* is not applicable. Here $F : D(F) \subseteq X \longrightarrow X$ represents the operator associated to a real continuous function $f: D(f) \subset \mathbb{R} \longrightarrow \mathbb{R}$.

The main motivation to keep A nonlinear after the process of linearization in the above papers was the study the stabilization of the uniform oscillations for the *complex Ginzburg-Landau equation* by means of some global delayed feedback. In fact, due to the important role of a controlling term, in [5] and [6] we considered the more sophisticated case in which F depends also of some delayed term $F = F(u, u_t(.))$, where $u_t(\theta) = u(t + \theta), \ \theta \in [-\tau, 0]$ for some $\tau > 0$, but we shall avoid the presence of such a term for the sake of the simplicity in the exposition. It is a curious fact that even if the *complex Ginzburg-Landau equation* is formulated in terms of a linear (vectorial) diffusion operator A the usual representation for the unknown as $Z(x,t) = \rho(x,t)e^{i\phi(x,t)}$ leads the original system to a coupled nonlinear system of equations for ρ and ϕ which can be formulated again in the form $\frac{dz}{dt}(t) + \tilde{A}z \ni \tilde{F}(z)$ but with a nonlinear (and not everywhere differentiable) operator \tilde{A} .

Many other examples can be appealed to justify the philosophy of keeping A non-linear after linearizing the rest of the terms of the equation. For instance, this is the case when A is multivalued, or nondifferentiable or a degenerate quasilinear operator. We point out that some relevant examples of nonlinear equations of the type (ACP) arise in the most different contexts (see, for instance, Díaz and Hetzer [10] for one example in Climatology).

The main conclusion of the pseudolinearization principle was formulated in terms of the condition that the operator $y \to Ay - DF(w)y$ belongs to $\mathcal{A}(\omega^* : X)$, for some $\omega^* \in \mathbb{C}$ with $\operatorname{Re} \omega^* = \gamma^* < 0$ where the class of operators $\mathcal{A}(\omega : X) = \{A : D_X(A) \subset X \to \mathcal{P}(X), \text{such}$ that $A + \omega I$ is a *m*-accretive operator} (see Brezis [3] for the case of X = H a Hilbert space and Bénilan, Crandall and Pazy [2], Vrabie [14] for the case of a general Banach space).

The main goal of this communication is to present some connections between the above principle and the so called "method of quasi-linearization" introduced by R. Bellman and R. Kalaba in [1] in order to prove the existence of solutions of nonlinear parabolic *semilinear* problems with A a second order linear elliptic operator and f written as $f = f_{cv} + f_{cn}$ with f_{cv} convex and f_{cn} concave by means of some iteration schemes.

In our approach, in contrast with other results in the literature (see, for instance, Laksmikantham and Vatsala [12] and Carl and Laksmikantham [4]), we shall avoid any assumption on the second derivative of function f. To do that we shall combine an iterative scheme with some approximation arguments (we replace f by a regular approximation f^k) of the type

$$\begin{cases} \frac{d\overline{u}_{k+1}}{dt} + A\overline{u}_{k+1} \ni f^k(\overline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\overline{u}_{k+1} - \overline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\overline{u}_{k+1} - \overline{u}_k) & \text{in } X, \\ \frac{d\underline{u}_{k+1}}{dt} + A\underline{u}_{k+1} \ni f^k(\underline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\underline{u}_{k+1} - \underline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\underline{u}_{k+1} - \underline{u}_k) & \text{in } X, \\ \overline{u}_{k+1}(0) = u_0, \ \underline{u}_{k+1}(0) = u_0. \end{cases}$$

We prove that this method can be extended beyond the linear assumption on A and, which is perhaps more useful, we formulate and prove this principle in the abstract framework of *T*-accretive operators in the Banach lattice $X = L^p(\Omega)$ for some $p \in [1, +\infty]$ or $X = C(\overline{\Omega})$, where Ω is a regular open bounded set of \mathbb{R}^N allowing to get, as applications the case of quasilinear or fully nonlinear parabolic equations. It is also applicable to some multivalued equations, as the obstacle problem (something proposed in Laksmikantham [11]).

Notice that, like in our pseudolinearization principle, the above system of uncoupled equations replace the nonlinear term F(u(t)) by linear (zero order terms) as $[(f_{cv}^k)_u(\underline{u}_k) + (f_{cn}^k)_u(\overline{u}_k)]\overline{u}_{k+1}$ and $[(f_{cv}^k)_u(\underline{u}_k) + (f_{cn}^k)_u(\overline{u}_k)]\underline{u}_{k+1}$.

As a matter of fact the quasilinearization method was introduced by Bellman in order to get the approximation of the solution of semilinear equations by means of a quadratic (sometimes called as *rapid*) convergence. We can prove something similar for concrete quasilinear equations. Details and further results will be given in Casal and Díaz [7].

2. Abstract results

Given Ω , a regular open bounded set of \mathbb{R}^N , we shall consider the abstract Cauchy problem (ACP) in the Banach lattice $X = L^p(\Omega)$ for some $p \in [1, +\infty]$ or $X = C(\overline{\Omega})$. The structural assumptions on the operators we shall assume in this section are the following

- (H1): $A \in \mathcal{A}_+(\omega : X)$, for some $\omega \in \mathbb{C}$, with $\mathcal{A}_+(\omega : X) = \{A : D(A) \subset X \to \mathcal{P}(X)$, such that $A + \omega I$ is a m-T-accretive operator $\}$. Moreover A satisfies the property (M) of Bénilan [2].
- (H2): The operator semigroup $T(t) : \overline{D(A)} \to X, t \ge 0$, generated by A, is compact (see Vrabie [14]).

(H3):
$$u_0 \in \overline{D(A)} \cap L^{\infty}(\Omega)$$
.

We shall assume that the nonlinear term F(u) is generated through a continuous real function $f : \mathbb{R} \to \mathbb{R}$ satisfying that

(H4): $f = f_{cv} + f_{cn}$ with f_{cv} convex and f_{cn} concave.

Notice that, in contrast with previous works on the quasilinearization process, we do not require any assumption on the linearity of operator A neither on the differentiability of f (in the classical sense).

We define the notion of sub and supersolution of the original abstract Cauchy problem (ACP): A couple of functions $\underline{u}, \overline{u} \in C([0,T]:X) \cap L^{\infty}((0,T) \times \Omega)$ are called sub (respect.) supersolutions of (ACP) if there exists \underline{g} (respectively \overline{g}) in $L^1(0,T:L^{\infty}(\Omega))$ with $\underline{g} \leq 0$ (respectively $\overline{g} \geq 0$) such that $\underline{u}, \overline{u}$ are *mild solutions* of the problem

$$\begin{cases} \frac{d\underline{u}}{dt}(t) + A\underline{u}(t) \ni f(\underline{u}) + \underline{g} & \text{in } X, \\ \underline{u}(0) = u_0, \end{cases}$$

(respectively

$$\begin{cases} \frac{du}{dt}(t) + A\overline{u}(t) \ni f(\overline{u}) + \overline{g} & \text{in } X, \\ \overline{u}(0) = u_0, \end{cases}$$

in the case of \overline{u}). Notice that here we are identifying the operator F(u) associated to f with the own function f(u). We shall assume

(H5): there exists $\underline{u}, \overline{u}$ sub and super solutions of (ACP).

Finally, as we shall combine some ordering and some approximation arguments we shall need

(H6): the subdifferential operators ∂f_{cv} and $\partial (-f_{cv})$ are bounded on the set

 $I := [\inf ess_{t \in [0,T], x \in \Omega} \underline{u}(t,x), \sup ess_{t \in [0,T], x \in \Omega} \overline{u}(t,x)], \text{ i.e., } |b| \leq M \text{ for any } b \in \partial f_{cv}(r) \text{ or } b \in \partial (-f_{cn})(r), \text{ for any } r \in I.$

Remark. Since $\underline{u}, \overline{u}$ are bounded functions then I is a compact interval of \mathbb{R} . Moreover, by using some well known results (see, e.g., Brezis [3]) it shown that assumption (H6) implies the existence of a sequence of auxiliary functions $f^k \in C^2(\mathbb{R})$ such that $f^k = f_{cv}^k + f_{cn}^k$ with $f_{cv}^k, f_{cn}^k \in C^2(\mathbb{R})$, f_{cv}^k convex and f_{cn}^k concave for any $k \in \mathbb{N}$, such that

$$\begin{cases} f_{cv}^k \nearrow f_{cv}, \text{ as } k \to \infty, & \text{uniformly on any compact interval of } I, \\ f_{cn}^k \searrow f_{cn}, \text{ as } k \to \infty, & \text{uniformly on any compact interval of } I, \end{cases}$$
(2)

Moreover $\|(f_{cv}^k)_u(\eta), (f_{cn}^k)_u(\eta)\|_{L^{\infty}(0,T:X')} \leq M_k \leq M$, for the same M > 0 given in (H6), for any $\eta \in C([0,T]:X)$ such that $\underline{u} \leq \eta \leq \overline{u}$.

Finally, since the main goal is the approximation of the solution we can consider the uniqueness of solution question as an independent goal. So, we shall assume that

(H7): Problem (ACP) has at most one mild solution.

Remark. This can be proved once we assume (H1) and some extra condition on f such as, f is (globally) Lipschitz continuous (Casal and Díaz [7]).

In order to construct the iterative scheme we define the *pseudo linearized (approximated) ab*stract Cauchy system

$$(PLACS)_{k} \begin{cases} \frac{d\overline{u}_{k+1}}{dt} + A\overline{u}_{k+1} \ni f^{k}(\overline{u}_{k}) + (f^{k}_{cv})_{u}(\underline{u}_{k})(\overline{u}_{k+1} - \overline{u}_{k}) + (f^{k}_{cn})_{u}(\overline{u}_{k})(\overline{u}_{k+1} - \overline{u}_{k}) & \text{in } X, \\ \frac{d\underline{u}_{k+1}}{dt} + A\underline{u}_{k+1} \ni f^{k}(\underline{u}_{k}) + (f^{k}_{cv})_{u}(\underline{u}_{k})(\underline{u}_{k+1} - \underline{u}_{k}) + (f^{k}_{cn})_{u}(\overline{u}_{k})(\underline{u}_{k+1} - \underline{u}_{k}) & \text{in } X, \\ \overline{u}_{k+1}(0) = u_{0}, \ \underline{u}_{k+1}(0) = u_{0}. \end{cases}$$

Theorem 1 Assume (H1)-(H7). Then, for any $k \in \mathbb{N}$ there exists $(\underline{u}_k, \overline{u}_k) \in L^{\infty}((0,T) \times \Omega)^2$ mild solutions of the system (PLACS) and with $(\underline{u}_1, \overline{u}_1) = (\underline{u}, \overline{u})$. Moreover, the sequences $\{\underline{u}_k\}, \{\overline{u}_k\}$ converge in C([0,T]:X) to $u \in L^{\infty}((0,T) \times \Omega)$ (unique) mild solution of (ACP) and we have that $\underline{u} \leq u \leq \overline{u}$.

We shall prove the result in several steps. i) Existence of $(\underline{u}_2, \overline{u}_2)$. The $(PLACS)_2$ is given by

$$(PLACS)_{2} \begin{cases} \frac{d\overline{u}_{2}}{dt} + A\overline{u}_{2} \ni f^{1}(\overline{u}) + (f^{1}_{cv})_{u}(\underline{u})(\overline{u}_{2} - \overline{u}) + (f^{1}_{cn})_{u}(\overline{u})(\overline{u}_{2} - \overline{u}) & \text{in } X, \\ \frac{d\underline{u}_{2}}{dt} + A\underline{u}_{2} \ni f^{1}(\underline{u}) + (f^{1}_{cv})_{u}(\underline{u})(\underline{u}_{2} - \underline{u}) + (f^{1}_{cn})_{u}(\overline{u})(\underline{u}_{2} - \underline{u}) & \text{in } X, \\ \overline{u}_{2}(0) = u_{0}, \ \underline{u}_{2}(0) = u_{0}. \end{cases}$$

The existence (and uniqueness) of solution of this uncoupled system comes from the fact that $A \in \mathcal{A}_{+}(\omega : X)$, and that $f^{1}(\overline{u}) - (f^{1}_{cv})_{u}(\underline{u})\overline{u} - (f^{1}_{cn})_{u}(\overline{u})\overline{u}, f^{1}(\underline{u}) - (f^{1}_{cv})_{u}(\underline{u})\underline{u} - (f^{1}_{cn})_{u}(\overline{u})\underline{u} \in L^{1}(0, T : X)$ (recall that $\overline{u}, \underline{u}$ are bounded and that f^{1} is continuous in R). ii) Estimates on $[\overline{u}_{2} - \overline{u}]_{+}$ and $[\underline{u} - \underline{u}_{2}]_{+}$. By construction we get that

$$\frac{d(\overline{u}_2 - \overline{u})}{dt} + A\overline{u}_2 - A\overline{u} \ni a_1(t, x)(\overline{u}_2 - \overline{u}) - \overline{g} + f^1(\overline{u}) - f(\overline{u}),$$

where $a_1(t,x) = (f_{cv}^1)_u(\underline{u}(t,x)) + (f_{cn}^1)_u(\overline{u}(t,x))$ and so, $||a_1||_{L^{\infty}((0,T)\times\Omega)} \leq M_1$. Since $\overline{g} \geq 0$ and $A + \omega I$ is a T-accretive operator we get the estimates

$$\begin{split} \min & \max_{t \in [0,T]} \left\| \left[\overline{u}_2(t,.) - \overline{u}(t,.) \right]_+ \right\|_{L^{\infty}(\Omega)} \le e^{(\omega + M_1)T} T \left| \Omega \right| \left\| \left[f^1 - f \right]_+ \right\|_{C(I)}, \\ \min & \max_{t \in [0,T]} \left\| \left[\overline{u}_2(t,.) - \overline{u}(t,.) \right]_- \right\|_{L^{\infty}(\Omega)} \le e^{(\omega + M_1)T} (T \left| \Omega \right| \left\| \left[f^1 - f \right]_- \right\|_{C(I)} + \left\| \overline{g} \right\|_{L^1(0,T:L^{\infty}(\Omega))}). \end{split}$$

The proof of the existence of \underline{u}_2 is analogous. In that case we get the estimates

$$\begin{split} \min_{t \in [0,T]} \left\| \left[\underline{u}(t,.) - \underline{u}_{2}(t,.) \right]_{+} \right\|_{L^{\infty}(\Omega)} &\leq e^{(\omega + M_{1})T} T \left| \Omega \right| \left\| \left[f - f^{1} \right]_{+} \right\|_{C(I)}, \\ \max_{t \in [0,T]} \left\| \left[\underline{u}(t,.) - \underline{u}_{2}(t,.) \right]_{-} \right\|_{L^{\infty}(\Omega)} &\leq e^{(\omega + M_{1})T} (T \left| \Omega \right| \left\| \left[f^{1} - f \right]_{-} \right\|_{C(I)} + \left\| \underline{g} \right\|_{L^{1}(0,T:L^{\infty}(\Omega))}). \end{split}$$

Remark. If no regularization is needed, and so $f^k = f$, then we get that $\underline{u} \leq \underline{u}_2$ and $\overline{u}_2 \leq \overline{u}$ (Casal and Díaz [7]).

iii) Proof of the inequality $\underline{u}_2 \leq \overline{u}_2$. We have that

$$\frac{d(\overline{u}_2 - \underline{u}_2)}{dt} + A\overline{u}_2 - A\underline{u}_2 \ni [(f_{cv}^1)_u(\underline{u}) + (f_{cn}^1)_u(\overline{u})](\overline{u}_2 - \underline{u}_2) - F_1$$

with $F_1 = f^1(\overline{u}) - f^1(\underline{u}) + (f^1_{cv})_u(\underline{u})(\underline{u} - \overline{u}) + (f^1_{cn})_u(\overline{u})(\underline{u} - \overline{u})$. But, from the convexity of f^1_{cv} we get that for any $u, v \in I$, $f^1_{cv}(u) \ge f^1_{cv}(v) + (f^1_{cv})_u(v)(u-v)$. Analogously, the concavity of f^1_{cn} implies, for any $u, v \in I$, that $f^1_{cn}(u) \ge f^1_{cn}(v) + (f^1_{cv})_u(u)(u-v)$. Both properties imply that $F_1 \ge 0$ and so, by the T-accretiveness we get the conclusion.

iv) Existence of $(\underline{u}_k, \overline{u}_k)$ for $k \in \mathbb{N}$, k > 1. It is analogous to the above step. For instance, the forcing term (independent on \overline{u}_{k+1}) is now $f^k(\overline{u}_k) - (f^k_{cv})_u(\underline{u}_k)\overline{u}_k - (f^k_{cn})_u(\overline{u}_k)\overline{u}_k$ which, again, is in $L^{\infty}((0,T) \times \Omega)$.

v) Estimates on $[\overline{u}_{k+1} - \overline{u}_k]_+$ and $[\underline{u}_k - \underline{u}_{k+1}]_+$. By construction and (H6) we get that

$$\frac{d(\overline{u}_{k+1} - \overline{u}_k)}{dt} + A\overline{u}_{k+1} - A\overline{u}_k \ni a_k(t, x)(\overline{u}_{k+1} - \overline{u}_k) + F_k$$

with $a_k(t,x) = (f_{cv}^k)_u(\underline{u}_k) + (f_{cn}^k)_u(\overline{u}_k)$ (and so $||a_k||_{L^{\infty}((0,T)\times\Omega)} \leq M_k$) and $F_k = f^k(\overline{u}_k) - f^{k-1}(\overline{u}_{k-1}) + a_{k-1}(t,x)(\overline{u}_k - \overline{u}_{k-1})$. So, using the convexity of f_{cv}^k and the concavity of f_{cn}^k we get that $F_k \geq f^k(\overline{u}_k) - f^{k-1}(\overline{u}_k)$. Thus, by the T-accretiveness of A, we get that

$$\begin{split} & \max_{t \in [0,T]} \left\| \left[\overline{u}_{k+1}(t,.) - \overline{u}_{k}(t,.) \right]_{+} \right\|_{L^{\infty}(\Omega)} \le e^{(\omega + M_{1})T} T \left| \Omega \right| \left\| \left[f^{k} - f^{k-1} \right]_{+} \right\|_{C(I)}, \\ & \max_{t \in [0,T]} \left\| \left[\underline{u}_{k}(t,.) - \underline{u}_{k+1}(t,.) \right]_{+} \right\|_{L^{\infty}(\Omega)} \le e^{(\omega + M_{1})T} T \left| \Omega \right| \left\| \left[f^{k-1} - f^{k} \right]_{+} \right\|_{C(I)}. \end{split}$$

Remark. If no regularization is needed and so $f^k = f^{k-1}$ then we get that $\underline{u}_k \leq \underline{u}_{k+1}$ and that $\overline{u}_k \leq \overline{u}_{k+1}$ (Casal and Díaz [7]).

vi) Proof of the inequality $\underline{u}_{k+1} \leq \overline{u}_{k+1}$. As in step iii) we have

$$\frac{\frac{d(\overline{u}_{k+1}-\underline{u}_{k+1})}{dt} + A\overline{u}_{k+1} - A\underline{u}_{k+1} \ni [(f_{cv}^k)_u(\underline{u}_k) + (f_{cn}^k)_u(\overline{u}_k)](\overline{u}_{k+1} - \underline{u}_{k+1}) - F_k,}{F_k = f^k(\overline{u}_k) - f^k(\underline{u}_k) + [(f_{cv}^k)_u(\underline{u}_{k-1}) + (f_{cn}^1)_u(\overline{u}_{k-1})](\underline{u}_k - \overline{u}_{k-1}).}$$

Using the convexity of f_{cv}^k and the concavity of f_{cn}^k we have that $F_k \ge 0$ and so, by the T-accretiveness, we get the wanted comparison.

End of the proof of Theorem 1. The sequences $\{\underline{u}_k\}$ and $\{\overline{u}_k\}$ are uniformly bounded in $L^{\infty}((0,T) \times \Omega)$. In consequence, using assumption (H6), the sequences $\{f^k(\overline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\overline{u}_{k+1} - \overline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\overline{u}_{k+1} - \overline{u}_k)\}$ and $\{f^k(\underline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\underline{u}_{k+1} - \underline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\underline{u}_{k+1} - \underline{u}_k)\}$ are also uniformly bounded in $L^{\infty}((0,T) \times \Omega)$. Thus, by the assumption (H2) there exists $\underline{U}, \overline{U}$ such that $\{\underline{u}_k\} \to \underline{U}$ and $\{\overline{u}_k\} \to \overline{U}$ (strongly) in C([0,T] : X) (and, at least, weakly in $L^{\infty}((0,T) \times \Omega)$). Finally, $\{f^k(\overline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\overline{u}_{k+1} - \overline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\overline{u}_{k+1} - \overline{u}_k)\} \to f(\overline{U})$ and $\{f^k(\underline{u}_k) + (f^k_{cv})_u(\underline{u}_k)(\underline{u}_{k+1} - \underline{u}_k) + (f^k_{cn})_u(\overline{u}_k)(\overline{u}_{k+1} - \overline{u}_k)\} \to f(U)$ and so $\underline{U}, \overline{U} \in L^{\infty}((0,T) \times \Omega)^2$ are mild solutions of (ACP) which must coincide due the assumption (H7). From steps i)-vi), passing to the limit, we get that $\underline{u} \leq u \leq \overline{u}.\mathbf{x}$

Remark. If no regularization is needed, and so $f^k = f$, then it is easy to see (Casal and Díaz [7]) that $\underline{u} \leq \underline{u}_2 \leq ... \leq \underline{u}_k \leq ... \leq u \leq ... \leq \overline{u}_k \leq \overline{u}_2 \leq \overline{u}$.

Remark. Some abstract results of a difference nature (in which A is a regular function, and so, of difficult application to PDEs) can be found in Section 4.6 of the book [12] (see also the references cited there).

Remark. More general functions f(t, x, u) can be also considered (Casal and Díaz [7]). For instance, it is possible to improve Theorem 1 by assuming the existence of ϕ convex and ψ concave such that $f = f_{cv} + f_{cn}$ with $f_{cv} + \phi$ convex and $f_{cn} + \psi$ concave. In that case, we assume merely that $A + \phi + \psi$ is a m-T-accretive operator on X. The method can be applied to systems of nonlinear PDEs as well as to PDEs with some delayed terms (see some iterative schemes in Pao [13], Casal, Díaz and Stich [8] and Casal and Díaz [7]).

Many different examples are possible ([7]). For instance, we can consider

Example 1. $A: D(A) \to \mathcal{P}(L^1(\Omega))$ given by $Au = -div(|\nabla \phi(u)|^{p-2} \nabla \phi(u)) + \beta(u)$ with $D(A) = \{\phi(u) \in W^{1,1}(\Omega), u(x) \in D(\beta), \text{ a.e. } x \in \Omega, Au \in L^1(\Omega), -\left|\frac{\partial \phi(u)}{\partial n}\right|^{p-2} \frac{\partial \phi(u)}{\partial n} \in \gamma(\phi(u)) \text{ on } \partial\Omega\}$ where p > 1, ϕ is continuous and increasing, and β, γ are maximal monotone graphs of \mathbb{R}^2 (not necessarily associated to differentiable functions). We recall that the obstacle problem can be

formulated in this framework by taking as β the maximal monotone graph of R^2 given by $\beta(r) = \phi$ (the empty set) if r < 0, $\beta(0) = (-\infty, 0]$ and $\beta(r) = \{0\}$ if r > 0 (see, e.g. Díaz [9]).

Example 2. Many different operators A, satisfying the above conditions, can be taken on the space $X = C(\overline{\Omega})$. A first class of operators concerns the operator in divergence form given in Example 1 when we assume that $\phi(u) = u$. Another class of operators concerns some fully non linear operators of the type $A : D(A) \to C(\overline{\Omega})$ with $Au = \sigma(-\Delta u)$ with $D(A) = \{u \in C^2(\overline{\Omega}) : \sigma(-\Delta u) \in C^2(\overline{\Omega}), u = 0 \text{ on } \partial\Omega\}$ where σ is a continuous strictly increasing function (see, e.g. Díaz [9]).

One of the reasons argued by Bellman to introducing this method for semilinear equations is the quadratic (sometimes called as *rapid*) convergence. We can prove something similar for concrete quasilinear equations:

Theorem 2 ([7]). Let A be as in the Example 1 with $p \ge 2$, $\phi(u) = u$, $\beta = 0$ and γ corresponding to Dirichlet boundary conditions and assume (H3)-(H7). Then

$$\begin{cases} \max_{t \in [0,T]} \|u(t) - \overline{u}_{k}(t)\|_{L^{2}(\Omega)}^{2} + \|u - \overline{u}_{k}\|_{L^{p}(0,T;W_{0}^{1,p}(\Omega)}^{p} \leq \\ C(\|u - \overline{u}_{k-1}\|_{L^{2}((0,T) \times \Omega)}^{2} + \|u - \underline{u}_{k-1}\|_{L^{2}((0,T) \times \Omega)}^{2}), \\ \max_{t \in [0,T]} \|u(t) - \underline{u}_{k}(t)\|_{L^{2}(\Omega)}^{2} + \|u - \underline{u}_{k}\|_{L^{p}(0,T;W_{0}^{1,p}(\Omega)}^{p} \leq \\ C(\|u - \overline{u}_{k-1}\|_{L^{2}((0,T) \times \Omega)}^{2} + \|u - \underline{u}_{k-1}\|_{L^{2}((0,T) \times \Omega)}^{2}). \end{cases}$$

Acknowledgements. Partially supported by the project MTM2004–07590–C03–01 of the DG-ISGPI (Spain). J.I. Díaz is member of the RTN HPRN–CT–2002–00274 of the EU.

Palabras clave: Ecuaciones Abstractas No Lineales, Linealización Clasificación para el Cedya 2005: item del congreso donde se engloba la conferencia: EDPs

Bibliografía

- R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems, American Elsevier, New York, 1965.
- [2] Ph. Bénilan, M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Book in preparation.
- [3] H. Brezis, Opérateurs Maximaux Monotones, North Holland, Amsterdam, 1973.
- S. Carl, V. Lakshmikantham, Generalized quasilinearization and semilinear parabolic problems, Nonlinear Analysis, 48(2002), 947-960.
- [5] A. C. Casal and J. I. Díaz, On the principle of pseudo-linearized stability: application to some delayed parabolic equations, to appear in *Nonlinear Analysis*
- [6] A. C. Casal and J. I. Díaz, On the complex Ginzburg-Landau equation with a delayed feedback, to appear in Mathematical Models and Methods in Applied Sciences.
- [7] A. C. Casal and J. I. Díaz, Article in preparation.
- [8] A. C. Casal, J. I. Díaz and M. Stich, On some Delayed Nonlinear Parabolic Equations Modelling CO Oxidation. In Proceedings of the Congress Differential Equations and Dynamical Systems, Ontario, July, 2005. To appear.
- [9] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol.I. Elliptic equations. Research Notes in Mathematics n^o 106, Pitman, London, 1985.
- [10] J.I. Díaz and G. Hetzer, A Functional Quasilinear Reaction-Diffusion Equation Arising in Climatology. In Équations aux dérivées partielles et applications. Articles dédiés à J.-L. Lions, Elsevier, Paris, pp. 461-480, 1998.
- [11] V. Lakshmikantham, Monotone Approximations and Rapid Convergence. In Ten Mathematical Essays on Approximation in Analysis and Topology, J. Ferrera et al.eds., Elsevier, 2005, 125-149.
- [12] V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Kluwer, Dordrecht, 1998.
- [13] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, 1992.
- [14] I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Second edition, Pitman Monographs, Longman, Essex, 1995.