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1. Introduction

In some recent papers [5] and [6] we introduced a quite general pseudo-linearization principle
concerning the existence and stabilization, as t → ∞, of the solutions of the nonlinear abstract
Cauchy problem

(ACP )

½
du
dt
(t) +Au(t) 3 F (u) in X,

u(0) = u0.
(1)

on a Banach spaceX in a neighborhood of some equilibrium point w ∈ D(A)∩D(F ) such thatAw 3
F (w). Such a principle generalize the classical linearization principle concerning the case in which
both operators A and B are differentiable operators (it is required then that the first eigenvalue of
the linear operator y → DA(w)y −DF (w)y have a negative real part). The generalization comes
from the fact that quite often the nonlinear operator A is not differentiable near some equilibrium
points and so the classical linearization principle is not applicable. Here F : D(F ) ⊆ X−→X

represents the operator associated to a real continuous function f : D(f) ⊂ R −→ R.
The main motivation to keep A nonlinear after the process of linearization in the above papers

was the study the stabilization of the uniform oscillations for the complex Ginzburg-Landau equation
by means of some global delayed feedback. In fact, due to the important role of a controlling term,
in [5] and [6] we considered the more sophisticated case in which F depends also of some delayed
term F = F (u, ut(.)), where ut(θ) = u(t + θ), θ ∈ [−τ, 0] for some τ > 0, but we shall avoid
the presence of such a term for the sake of the simplicity in the exposition. It is a curious fact
that even if the complex Ginzburg-Landau equation is formulated in terms of a linear (vectorial)
diffusion operator A the usual representation for the unknown as z(x, t) = ρ(x, t)eiφ(x,t) leads the
original system to a coupled nonlinear system of equations for ρ and φ which can be formulated
again in the form dz

dt
(t) + eAz 3 eF (z) but with a nonlinear (and not everywhere differentiable)

operator eA.
Many other examples can be appealed to justify the philosophy of keeping A non-linear after

linearizing the rest of the terms of the equation. For instance, this is the case whenA is multivalued,
or nondifferentiable or a degenerate quasilinear operator. We point out that some relevant examples
of nonlinear equations of the type (ACP ) arise in the most different contexts (see, for instance,
Díaz and Hetzer [10] for one example in Climatology).
The main conclusion of the pseudolinearization principle was formulated in terms of the con-

dition that the operator y → Ay − DF (w)y belongs to A(ω∗ : X), for some ω∗ ∈ C with
Reω∗ = γ∗ < 0 where the class of operators A(ω : X) = {A : DX(A) ⊂ X → P(X),such
that A+ ωI is a m-accretive operator} (see Brezis [3] for the case of X = H a Hilbert space and
Bénilan, Crandall and Pazy [2], Vrabie [14] for the case of a general Banach space).
The main goal of this communication is to present some connections between the above principle

and the so called “method of quasi-linearization” introduced by R. Bellman and R. Kalaba in [1]
in order to prove the existence of solutions of nonlinear parabolic semilinear problems with A a
second order linear elliptic operator and f written as f = fcv+fcn with fcv convex and fcn concave
by means of some iteration schemes.
In our approach, in contrast with other results in the literature (see, for instance, Laksmikan-

tham and Vatsala [12] and Carl and Laksmikantham [4]), we shall avoid any assumption on the
second derivative of function f. To do that we shall combine an iterative scheme with some ap-
proximation arguments (we replace f by a regular approximation fk) of the type




duk+1

dt
+Auk+1 3 fk(uk) + (fk

cv)u(uk)(uk+1 − uk) + (fk
cn)u(uk)(uk+1 − uk) in X,

duk+1

dt
+Auk+1 3 fk(uk) + (f

k
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk) in X,

uk+1(0) = u0, uk+1(0) = u0.

We prove that this method can be extended beyond the linear assumption on A and, which is
perhaps more useful, we formulate and prove this principle in the abstract framework of T-accretive
operators in the Banach latticeX = Lp(Ω) for some p ∈ [1,+∞] or X = C(Ω), where Ω is a regular
open bounded set of RN allowing to get, as applications the case of quasilinear or fully nonlinear
parabolic equations. It is also applicable to some multivalued equations, as the obstacle problem
(something proposed in Laksmikantham [11]).
Notice that, like in our pseudolinearization principle, the above system of uncoupled equations

replace the nonlinear term F (u(t)) by linear (zero order terms) as [(fk
cv)u(uk) + (f

k
cn)u(uk)]uk+1

and [(fk
cv)u(uk) + (f

k
cn)u(uk)]uk+1.

As a matter of fact the quasilinearization method was introduced by Bellman in order to get the
approximation of the solution of semilinear equations by means of a quadratic (sometimes called
as rapid) convergence. We can prove something similar for concrete quasilinear equations. Details
and further results will be given in Casal and Díaz [7].

2. Abstract results

Given Ω,a regular open bounded set of RN , we shall consider the abstract Cauchy problem
(ACP ) in the Banach lattice X = Lp(Ω) for some p ∈ [1,+∞] or X = C(Ω). The structural
assumptions on the operators we shall assume in this section are the following

(H1): A ∈ A+(ω : X), for some ω ∈ C, with A+(ω : X) = {A : D(A) ⊂ X → P(X),such that
A+ ωI is a m-T-accretive operator}. Moreover A satisfies the property (M ) of Bénilan [2].

(H2): The operator semigroup T (t) : D(A) → X, t ≥ 0, generated by A, is compact (see Vrabie
[14]).

(H3): u0 ∈ D(A) ∩L∞(Ω).

We shall assume that the nonlinear term F (u) is generated through a continuous real function
f : R → R satisfying that

(H4): f = fcv + fcn with fcv convex and fcn concave.

Notice that, in contrast with previous works on the quasilinearization process, we do not require
any assumption on the linearity of operator A neither on the differentiability of f (in the classical
sense).
We define the notion of sub and supersolution of the original abstract Cauchy problem (ACP ) :

A couple of functions u, u ∈ C([0, T ] : X)∩L∞((0, T )×Ω) are called sub (respect.) supersolutions
of (ACP ) if there exists g (respectively g) in L1(0, T : L∞(Ω)) with g ≤ 0 (respectively g ≥ 0)
such that u, u are mild solutions of the problem½

du

dt
(t) +Au(t) 3 f(u) + g in X,

u(0) = u0,

(respectively ½
du
dt
(t) +Au(t) 3 f(u) + g in X,

u(0) = u0,

in the case of u). Notice that here we are identifying the operator F (u) associated to f with the
own function f(u). We shall assume

(H5): there exists u, u sub and super solutions of (ACP ).

Finally, as we shall combine some ordering and some approximation arguments we shall need



(H6): the subdifferential operators ∂fcv and ∂(−fcv) are bounded on the set
I := [inf esst∈[0,T ],x∈Ωu(t, x), sup esst∈[0,T ],x∈Ωu(t, x)], i.e., |b| ≤ M for any b ∈ ∂fcv(r) or
b ∈ ∂(−fcn)(r), for any r ∈ I.

Remark. Since u, u are bounded functions then I is a compact interval of R. Moreover, by using
some well known results (see, e.g., Brezis [3]) it shown that assumption (H6) implies the existence
of a sequence of auxiliary functions fk ∈ C2(R) such that fk = fk

cv + fk
cn with fk

cv, f
k
cn ∈ C2(R),

fk
cv convex and f

k
cn concave for any k ∈ N, such that½
fk
cv % fcv, as k→∞, uniformly on any compact interval of I,
fk
cn & fcn, as k→∞, uniformly on any compact interval of I,

(2)

Moreover
°°(fk

cv)u(η), (f
k
cn)u(η)

°°
L∞(0,T :X0) ≤Mk ≤M , for the same M > 0 given in (H6), for any

η ∈ C([0, T ] : X) such that u ≤ η ≤ u.

Finally, since the main goal is the approximation of the solution we can consider the uniqueness
of solution question as an independent goal. So, we shall assume that

(H7): Problem (ACP ) has at most one mild solution.

Remark. This can be proved once we assume (H1) and some extra condition on f such as, f is
(globally) Lipschitz continuous (Casal and Díaz [7]).
In order to construct the iterative scheme we define the pseudo linearized (approximated) ab-

stract Cauchy system

(PLACS)k


duk+1

dt
+Auk+1 3 fk(uk) + (f

k
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk) in X,

duk+1

dt
+Auk+1 3 fk(uk) + (f

k
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk) in X,

uk+1(0) = u0, uk+1(0) = u0.

Theorem 1 Assume (H1)-(H7). Then, for any k ∈ N there exists (uk, uk) ∈ L∞((0, T )×Ω)2 mild
solutions of the system (PLACS) and with (u1, u1) = (u, u). Moreover, the sequences {uk}, {uk}
converge in C([0, T ] : X) to u ∈ L∞((0, T )×Ω) (unique) mild solution of (ACP ) and we have that
u ≤ u ≤ u.

We shall prove the result in several steps. i) Existence of (u2, u2).The (PLACS)2 is given by

(PLACS)2


du2

dt
+Au2 3 f1(u) + (f1cv)u(u)(u2 − u) + (f1cn)u(u)(u2 − u) in X,

du2

dt
+Au2 3 f1(u) + (f1cv)u(u)(u2 − u) + (f1cn)u(u)(u2 − u) in X,

u2(0) = u0, u2(0) = u0.

The existence (and uniqueness) of solution of this uncoupled system comes from the fact that
A ∈ A+(ω : X), and that f1(u) − (f1cv)u(u)u − (f1cn)u(u)u, f1(u) − (f1cv)u(u)u − (f1cn)u(u)u ∈
L1(0, T : X) (recall that u, u are bounded and that f1 is continuous in R).
ii) Estimates on [u2 − u]+ and [u− u2]+ . By construction we get that

d(u2 − u)

dt
+Au2 −Au 3 a1(t, x)(u2 − u)− g + f1(u)− f(u),

where a1(t, x) = (f1cv)u(u(t, x)) + (f
1
cn)u(u(t, x)) and so, ka1kL∞((0,T )×Ω) ≤ M1. Since g ≥ 0 and

A+ ωI is a T-accretive operator we get the estimates

máxt∈[0,T ]
°°[u2(t, .)− u(t, .)]+

°°
L∞(Ω) ≤ e(ω+M1)TT |Ω|

°°°£f1 − f
¤
+

°°°
C(I)

,

máxt∈[0,T ]
°°[u2(t, .)− u(t, .)]−

°°
L∞(Ω) ≤ e(ω+M1)T (T |Ω|

°°°£f1 − f
¤
−

°°°
C(I)

+ kgkL1(0,T :L∞(Ω))).

The proof of the existence of u2 is analogous. In that case we get the estimates

máxt∈[0,T ]
°°[u(t, .)− u2(t, .)]+

°°
L∞(Ω) ≤ e(ω+M1)TT |Ω|

°°°£f − f1
¤
+

°°°
C(I)

,

máxt∈[0,T ]
°°[u(t, .)− u2(t, .)]−

°°
L∞(Ω) ≤ e(ω+M1)T (T |Ω|

°°°£f1 − f
¤
−

°°°
C(I)

+
°°g°°

L1(0,T :L∞(Ω))
).

Remark. If no regularization is needed, and so fk = f, then we get that u ≤ u2 and u2 ≤ u (Casal
and Díaz [7]).



iii) Proof of the inequality u2 ≤ u2. We have that

d(u2 − u2)

dt
+Au2 −Au2 3 [(f1cv)u(u) + (f1cn)u(u)](u2 − u2)− F1

with F1 = f1(u)−f1(u)+(f1cv)u(u)(u−u)+(f1cn)u(u)(u−u). But, from the convexity of f1cv we get
that for any u, v ∈ I, f1cv(u) ≥ f1cv(v)+ (f

1
cv)u(v)(u− v). Analogously, the concavity of f1cn implies,

for any u, v ∈ I, that f1cn(u) ≥ f1cn(v) + (f
1
cn)u(u)(u− v). Both properties imply that F1 ≥ 0 and

so, by the T-accretiveness we get the conclusion.
iv) Existence of (uk, uk) for k ∈ N, k > 1. It is analogous to the above step. For instance, the
forcing term (independent on uk+1) is now fk(uk)− (fk

cv)u(uk)uk − (fk
cn)u(uk)uk which, again, is

in L∞((0, T )×Ω).
v) Estimates on [uk+1 − uk]+ and

£
uk − uk+1

¤
+
. By construction and (H6) we get that

d(uk+1 − uk)

dt
+Auk+1 −Auk 3 ak(t, x)(uk+1 − uk) + Fk

with ak(t, x) = (fk
cv)u(uk) + (f

k
cn)u(uk) (and so kakkL∞((0,T )×Ω) ≤ Mk) and Fk = fk(uk) −

fk−1(uk−1)+ ak−1(t, x)(uk−uk−1). So, using the convexity of fk
cv and the concavity of f

k
cn we get

that Fk ≥ fk(uk)− fk−1(uk). Thus, by the T-accretiveness of A, we get that

máxt∈[0,T ]
°°[uk+1(t, .)− uk(t, .)]+

°°
L∞(Ω) ≤ e(ω+M1)TT |Ω|

°°°£fk − fk−1¤
+

°°°
C(I)

,

máxt∈[0,T ]
°°°£uk(t, .)− uk+1(t, .)

¤
+

°°°
L∞(Ω)

≤ e(ω+M1)TT |Ω|
°°°£fk−1 − fk

¤
+

°°°
C(I)

.

Remark. If no regularization is needed and so fk = fk−1 then we get that uk ≤ uk+1 and that
uk ≤ uk+1 (Casal and Díaz [7]).
vi) Proof of the inequality uk+1 ≤ uk+1. As in step iii) we have

d(uk+1−uk+1)

dt
+Auk+1 −Auk+1 3 [(fk

cv)u(uk) + (f
k
cn)u(uk)](uk+1 − uk+1)− Fk,

Fk = fk(uk)− fk(uk) + [(f
k
cv)u(uk−1) + (f1cn)u(uk−1)](uk − uk−1).

Using the convexity of fk
cv and the concavity of f

k
cn we have that Fk ≥ 0 and so, by the T-

accretiveness, we get the wanted comparison.
End of the proof of Theorem 1. The sequences {uk} and {uk} are uniformly bounded in L∞((0, T )×
Ω). In consequence, using assumption (H6), the sequences {fk(uk) + (fk

cv)u(uk)(uk+1 − uk) +
(fk

cn)u(uk)(uk+1 − uk)} and {fk(uk) + (f
k
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk)} are also

uniformly bounded in L∞((0, T )× Ω). Thus, by the assumption (H2) there exists U,U such that
{uk} → U and {uk} → U (strongly) in C([0, T ] : X) (and, at least, weakly in L∞((0, T ) ×
Ω)). Finally, {fk(uk) + (f

k
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk)} → f(U) and {fk(uk) +

(fk
cv)u(uk)(uk+1 − uk) + (f

k
cn)u(uk)(uk+1 − uk)}→ f(U) and so U,U ∈ L∞((0, T )×Ω)2 are mild

solutions of (ACP ) which must coincide due the assumption (H7). From steps i)-vi), passing to
the limit, we get that u ≤ u ≤ u.¥
Remark. If no regularization is needed, and so fk = f , then it is easy to see (Casal and Díaz [7])
that u ≤ u2 ≤...≤ uk ≤...≤ u ≤...≤ uk ≤ u2 ≤ u.
Remark. Some abstract results of a difference nature (in which A is a regular function, and so, of
difficult application to PDEs) can be found in Section 4.6 of the book [12] (see also the references
cited there).
Remark. More general functions f(t, x, u) can be also considered (Casal and Díaz [7]). For instance,
it is possible to improve Theorem 1 by assuming the existence of φ convex and ψ concave such
that f = fcv + fcn with fcv +φ convex and fcn +ψ concave. In that case, we assume merely that
A+ φ+ ψ is a m-T-accretive operator on X. The method can be applied to systems of nonlinear
PDEs as well as to PDEs with some delayed terms (see some iterative schemes in Pao [13], Casal,
Díaz and Stich [8] and Casal and Díaz [7]).
Many different examples are possible ([7]). For instance, we can consider
Example 1. A : D(A) → P(L1(Ω)) given by Au = −div(|∇φ(u)|p−2∇φ(u)) + β(u) with

D(A) = {φ(u) ∈ W 1,1(Ω), u(x) ∈ D(β), a.e. x ∈ Ω, Au ∈ L1(Ω), −
¯̄̄
∂φ(u)
∂n

¯̄̄p−2
∂φ(u)
∂n

∈ γ(φ(u)) on

∂Ω} where p > 1, φ is continuous and increasing, and β, γ are maximal monotone graphs of R2
(not necessarily associated to differentiable functions). We recall that the obstacle problem can be



formulated in this framework by taking as β the maximal monotone graph of R2 given by β(r) = φ

(the empty set) if r < 0, β(0) = (−∞, 0] and β(r) = {0} if r > 0 (see, e.g. Díaz [9]).
Example 2. Many different operators A, satisfying the above conditions, can be taken on

the space X = C(Ω). A first class of operators concerns the operator in divergence form given in
Example 1 when we assume that φ(u) = u. Another class of operators concerns some fully non
linear operators of the type A : D(A) → C(Ω) with Au = σ(−∆u) with D(A) = {u ∈ C2(Ω) :
σ(−∆u) ∈ C2(Ω), u = 0 on ∂Ω} where σ is a continuous strictly increasing function (see, e.g. Díaz
[9]).
One of the reasons argued by Bellman to introducing this method for semilinear equations is the

quadratic (sometimes called as rapid) convergence. We can prove something similar for concrete
quasilinear equations:

Theorem 2 ([7]). Let A be as in the Example 1 with p ≥ 2, φ(u) = u, β = 0 and γ corresponding
to Dirichlet boundary conditions and assume (H3)-(H7). Then

máxt∈[0.T ] ku(t)− uk(t)k2L2(Ω) + ku− ukkpLp(0,T :W 1,p
0 (Ω)

≤
C(ku− uk−1k2L2((0,T )×Ω) +

°°u− uk−1
°°2
L2((0,T )×Ω)),

máxt∈[0.T ] ku(t)− uk(t)k2L2(Ω) + ku− ukkpLp(0,T :W 1,p
0 (Ω)

≤
C(ku− uk−1k2L2((0,T )×Ω) +

°°u− uk−1
°°2
L2((0,T )×Ω)).
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