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1 Introduction

In this communication we consider some simple Budyko-Sellers climate models
of the type

(P )

�
yt � (k(1� x2)yx)x = Ra(x; y; v)�Re(y; x; u) x 2 (�1; 1); t > 0;
y(x; 0) = y0(x) x 2 (�1; 1);

where k > 0; Ra(x; y; v) is a bounded increasing function on y (the absorbed
energy due to the co-albedo) of the and Re(y; x; u) is a strictly increasing func-
tion on y related to the Stefan-Boltzman radiation law with an emissivity u
which, varying in some positive interval. Here u and v are taken as control
variables (indicating the anthropogenerated actions on the rate of emissions on
the greenhouse gases). This kind of methods were introduced, independently, in
1969 by M.I. Budyko and W.D. Sellers. The models have a diagnostic character
and intended to understand the evolution of the global climate on a long time
scale.
For some purposes it is useful to assume the presence of possible localized

controls of the form u(t)�(l1;l2) and v(t)�(l1;l2) for some given latitude control
interval (l1; l2) � (�1; 1): We shall assume here that Ra(x; y; v) is closer to the
model proposed by Sellers and so Ra = u(t)�(l1;l2)QS(x)�(y) with � a Lipschitz
continuous, as for instance, �(y) = m if y < yi; �(y) = m + ( u�uiuw�ui )(M �m)
if yi � y � yw; �(y) = M if y > yw; where ui and uw are �xed temperatures
closed to �100C and m = �i and M = �w represent the coalbedo in the ice-
covered zone and the free-ice zone, respectively, 0 < �i < �w < 1. Moreover,
S(x) is the insolation function and Q is the so-called solar constant. We assume
S : [�1; 1] ! R, S 2 C0([�1; 1]), S1 � S(x) � S0 > 0 for any x 2 [�1; 1].
We also assume that Re = u(t)�(l1;l2)G(y)� f(x) with G : R! R a continuous
strictly increasing function such that G(0) = 0, limjsj!1 jG(s)j = +1 and
f 2 C0([�1; 1]).
Our main goal is to consider the problem of transfering the system from

a stationary state to another one. This type of problem was raised by J. von
Neumann in a general context ([14]: see also [13] and [10]). Our study have
two di¤erent parts: �rst we obtain a result on a connected branch of stationary
solutions (for instance, as function of parameter Q and in the absence of any
control: (l1; l2) = (�1; 1) and u(t) = v(t) � 1). In a second part we shall use
some techniques of the controllability theory of nonlinear systems of ODEs to
analyze the transfering question by means of suitable controls.
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As as mater of fact, we shall consider here only some simpli�ed versions of
problem (P ): We shall concentrate our attention in the discrete version of (P )
arising by a spatial di¤erence scheme discretization (for a discretization by �nite
elements see [3]). There are several possible discrete simpli�ed problems. For
instance, to avoid technicalities concerning the degenerate di¤usion, as in other
precedent papers ([6]), we can replace the degenerate linear di¤usion operator
by the usual uniforme di¤usion expression but then adding Neumann boundary
conditions

(PL)

8<: yt � kyxx = Ra(x; y; v)�Re(y; x; u) x 2 (�1; 1); t > 0;
yx(1; t) = yx(�1; t) = 0 t > 0;
y(x; 0) = y0(x) x 2 (�1; 1):

Then, a spatial di¤erence scheme discretization of problem (PL) can be gener-
ated in the usual way: given N 2 N, we de�ne h = 2=(N � 1) and we denote
by yi(t) to the approximation of y(�1 + ih; t): Then, we consider the discrete
algorithm

(Ph)

� �
y(t)�Ay(t) +Re(y(t); u(t))�Ra(y(t); v(t)) = 0;
y(0) = y0;

where y(t) := (y1(t); y2(t); :::; yN (t))
T , u(t); v(t) 2 R, with u(t) and v(t) ap-

pearing only in some coordinates associated to some m 2 N, 1 < m � N (the
discretized control interval (l1; l2) is here represented by an interval of length
(m� 1)h). Problem (PL) leads to the symmetric positive de�nite matrix AL of
RN�N given by

AL=
k

h2

0BBBB@
1 �1 0 ::: 0
�1 2 �1 0 :::
0 �1 2 �1 0
::: 0 �1 2 �1
0 ::: 0 �1 1

1CCCCA ;
Ra:f�1;�1+h; :::;+1g�RN�Rm ! RN is given byRa(x1; : : : ; xN ; y1; : : : ; yN ,
v1; : : : ; vN ) = (Ra(x1;y1; v1(t)); : : : ; Ra(xN;yN ; vN (t)))

T andRe:f�1;�1+h; :::;+1g�
RN�Rm ! RN Re(x1; : : : ; xN ; y1; : : : ; yN , u1; : : : ; uN ) = (Re(x1;; y1(t); u1(t)); : : : ; Re(xN;yN (t); uN (t)))T ,
where we used the following notation: uj(t) � 1 if j is not one of the m coordi-
nates where the control is located and uj(t) � u(t) otherwise (and analogously
for vj(t)) and xi = �1 + (j � 1)h.
A di¤erent discrete approximation of problem (P ), which maintains the pe-

culiar deneracy of the di¤usion leads also to the formulation (Ph) but with a
di¤erent symmetric matrix AD of RN�N

AD=
k

h2

0BBBB@
0 0 0 ::: 0

�(1� x22) 2(1� x22) �(1� x22) 0 :::
0 ::: ::: ::: 0
::: 0 �(1� x2N�1) 2(1� x2N�1) �(1� x2N�1)
0 ::: 0 0 0

1CCCCA ;
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which results from the identity (k(1� x2)yx)x = k(1� x2)yxx� 2kxyx when we
neglect the transport term 2kxyx: Note that in that case the �rst and the last
equations of (Ph) are uncoupled.
Although our results are true for a general value of N 2 N, for the sake of

simplicity in the exposition, here we shall only consider the case of N = 3 and
m = 1 leading to the vectorial formulation

(PQ)

� �
y(t) = f(y(t); u(t); v(t); Q);
y(0) = y0

with f :R3 � R� R� R! R3 given by (when A = AN )

f(y; u; v;Q) =

0@ k
h2 (y2 � y1) +QS(�1)�(y1)� G(y1) + f(�1)

k
h2 (y3 � 2y2 + y1) + vQS(0)�(y2)� uG(y2) + f(0)

k
h2 (�y3 + y2) +QS(1)�(y3)� G(y3) + f(1)

1A
and (when A = AD)

f(y; u; v;Q) =

0@ QS(�1)�(y1)� G(y1) + f(�1)
k(y3 � 2y2 + y1) + vQS(0)�(y2)� uG(y2) + f(0)

QS(1)�(y3)� G(y3) + f(1)

1A :
2 A connected set of stationary solutions de-

pending on Q

In this section we shall assume the absence of any control: (l1; l2) = (�1; 1) and
u(t) = v(t) � 1. Our main goaI is to adapt the results of [7] and ([2])) to show
that the set of stationary solutions (y1; Q) 2 R3 � R, i.e. satisfying

(P1Q ) f(y1; 1; 1; Q) = 0;

is very large (depending on the parameter Q). We make the additional assump-
tions
(Hf1) there exist Cf > 0 such that f(xi) � �Cf
(H�) � is Lipschitz increasing function and there exists 0 < m < M and

� > 0 such that �(r) = fmg for any r 2 (�1;�10 � �) and �(r) = fMg for
any r 2 (�10 + �;+1).
We note that since the matriz A is symmetric (and, at least, semde�nite

positve) the strict monotonicity and the coercivedness assumed on G implies
the existence of a unique ym (respect.yM ) solution of the problem ((P1Q )m)
(respect.(P1Q )M ) given by (P

1
Q ) but replacing �(yi) by m (respect. by M). In

the rest of the section we shall use several comparison arguments on R3: Here
we shall use the following notation

y =

0@ y1
y2
y3

1A � y =

0@ y1
y2
y3

1A if and only if y1 � y1; y2 � y2 and y3 � y3:
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Analogously, the use of the strict inequality < among vectors means that the
strict inequality holds among all the components of the vectors. Finally, if � 2 R
the notation � � y means that � � (y)i for i = 1; 2; 3:
We start by proving the existence of at least three solutions for suitable Q

(in the line of [7]).
Theorem 1. Let ym(respect.yM ) be the (unique) solutions of the problem

(P1Q )m (respect. (P1Q )M ).Then: i) for any Q > 0 there is a minimal solution
y (resp. a maximal solution y) of (P1Q ). Moreover any other solution y must
satisfy

ym � y � y � y � yM (1)

G�1(QS0m+min f) � (ym)i � G�1(QS1m� Cf ); (2)

G�1(QS0M +min f) � (yM )i � G�1(QS1M � Cf ) for i = 1; 2; 3: (3)

If we assume, in addition,

(HCf ) G(�10� �) + Cf > 0 and
G(�10 + �)�min f
G(�10� �) + Cf

� S0M

S1m

and de�ne

Q1 =
G(�10� �) + Cf

S1M
Q2 =

G(�10 + �)�min f
S0M

(4)

Q3 =
G(�10� �) + Cf

S1m
Q4 =

G(�10 + �)�min f
S0m

: (5)

then: ii) if 0 < Q < Q1 (repect.Q > Q4) then (P1Q ) has a unique solution
y = ym, (ym)i < �10, (repect.y = yM , (yM )i > �10) and

G�1(min f) � lim
Q&0

inf kyk1 � lim
Q&0

sup kyk1 � G�1(�Cf );

iii) if Q2 < Q < Q3, then (P1Q ) has at least three solutions, yi, i = 1; 2; 3 with
y1 = yM , y2 = ym, and y1 � y3 � y2: Idea of the Proof. i) and ii) are
consequence of the fact that the comparison principle holds for problems (P1Q )m,
(P1Q )M (since the systems are of cooperative type) and then the method of sub
and supersolutions can be applied (see e.g. Pao [15]).The proof of iii) is divided
into several steps. First, we construct two constant subsolutions Vi and two
constant supersolutions Ui such that

V2 < U2 < �10� � < �10 + � < V1 < U1; (6)

proving the existence of, at least, two solutions of (P1Q ). The existence of a
third solution of (P1Q ) is obtained by a topological �xed point argument. Let
us show the convergence of the mentioned solution of (P1Q ) to a third solution
of (PQ;f ). For � < �0 (a certain positive parameter) U1, U2 are supersolutions
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of (P1Q ) and V1, V2 are subsolutions of (P1Q ). So, arguing as in i) we obtain
two solutions y1 and y2 of (P1Q ) such that

�10 + �+ �0M < V1 � y1 � U1

V2 � y2 � U2 < �10� �:

In order to prove that (P1Q ) has a third solution u3 di¤erent to u
�
1 and u

�
2 we

apply a result due to Amann [1] (which is justi�ed since the operator F(z) :=
(A+ vG)�1(uQS(�)�(z) + f) is compact on the space E = R3):

Now we can show that it is possible to associate a bifurcation diagram for the

special case of f(xi) = �Cf , G(�10��)+C > 0 and
G(�10 + �) + C
G(�10� �) + C � S2M

S1m
:

Theorem 2 If we denote by � the set of pairs (Q;y) 2 R+ � R3, where y
veri�es (P1Q ) then � contains an unbounded connected component containing
the point (0;G�1(�C)):
Proof. We claim that the following result, due to Rabinowitz [16], can be

applied to our case: �Let E a Banach space. If F : IR � E ! E is compact
and F (0; u) � 0, then � contains a pair of unbounded components C+ and C�
in IR+ � E, IR� � E respectively and C+ \ C� = f(0; 0)g�. In order to do
that we consider the translation of y given by z := y � G�1(�C). Obviously,
v is a solution of (P1Q ) with Ĝ(�) = G(� + G�1(�C)) + C and �̂(�) = �(� +

G�1(�C)). We de�ne �̂ in an analogous way to �. Let E = R3 and de�ne
F(z) := (A+ vG)�1(uQS(�)�(z) + f) is compact on the space E = R3. On the
other hand, if Q = 0 problem (P1Q ) has a unique solution v = 0, so F (0; 0) = 0.

In conclusion �̂ contains two unbounded components Ĉ+ and Ĉ� on IR+ �R3
and IR� � R3 respectively and Ĉ+ \ Ĉ� = f(0; 0)g. Since � is a translation
of �̂ then � contains two unbounded components C+ and C� on IR+� R3 and
IR� � R3 respectively and that C+ \ C� = f(0;G�1(�C))g. Since Q � 0 in
the studied model, we are interested in C+. In order to establish the behaviour
of C+, we also recall that for every q > 0 there exists a constant L = L(q) such
that if 0 � Q � q then every solution yQ of (P1Q ) veri�es kyQk1 � L(q). Since
the principal component is unbounded its projection over the Q-axis is [0;1).
On the other hand, if Q is large enough (P1Q ) has a unique solution yQ and this
solution is greater than G�1(QS0M � C). Since limjsj!1 jG(s)j = +1, then
the unbounded branch C+ containing (0;G�1(�C)) should go to (1;1).
Remark 1. In the continuous problem it is well known that there are many

other solutions which does not belongs to the branch C+ of the above proof
(see [8]). In some special cases (for instance, the zero-dimensional model: k = 0
and constant coe¢ cients) it is possible to characterize the di¤erent parts of the
brach correspoponding to stable (and unstable) solutions.
Remark 2. Under symmetry conditions on S(x) and f(x) the branch C+

is formed by symmetry stationary solutions (y)1 = (y)3.
Remark 3. It is not di¢ cult to make a similar study about a branch of

solutions when Q is �xed but which is taken as a variable parameter is the
emmisivity u:
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3 Connecting stationary solutions by means of
controls

We consider the problem of transferring the system from a stationary state to
another one (when Q = Q0 is �xed) but now by means of suitable choices of the
controls u(t) and v(t). In fact, we shall consider here only the case of a single
control v(t) and when both solutions are in the same connected component
(the branch C+). For the sake of simplicity, we shall consider the connection
bettween an arbitrary (possibly unstable) symmetric state (y0; v0Q0) to a �nal
stable symmetric one (yf ; vfQ0), both in the principal branch C+. The case
when v(t) is �xed and the only control is u(t) follows the same arguments.
Finally, the case of two controls u(t) and v(t) is even easier. We start with the
uniforme di¤usion case A = AN with Neumann boundary conditions
Theorem 3. i) Assume A = AN ; u(t) � 1 and that the control v(t)

acts globaly in space ((l1; l2) = (�1; 1)). Let (yf ; Q0vf ) be a stable symmetric
stationary solution in the branch C+. Then, for any other symmetric state
(y0; v0Q0) in C+ there exists a time T > 0 and a piece-wise continuous control
v 2 L1(0; T ) with v(0) = v0 and v(T ) = vf such that the solution y(t) of the
problem (PQ0) with initial datum y0 veri�es that y(T ) = yf . ii) In the case
of a localized control ( (l1; l2)  (�1; 1)) the same conclusion holds when, in
addition, (y0; v0Q0) and (yf ; vfQ0) are closed enough.
Proof. As in We divide the proof of i) in two di¤erent steps. In the �rst step,

given an small � > 0 we connect (y0; v0Q0) with a point (yf ; Q0vf ) by means
of the branch of stationary solutions C+ and so, by means of a parametrization
(y�(�); Q(�)) with Q(�) = (1 � �)v0Q0 + �vfQ0 for � 2 [0; 1]: Obviously, this
orbit does not need to be a solution of (PQ0

) but, given " > 0; we can construct
the function [0; 1="] ! R3 � R given by (y"(t); v"(t)) = ((y�("t); Q("t)) which
is "almost" a solution since �y(t) = f(y(t); 1; v(t); Q) = O("):
Then, since (yf ; vfQ0) is stable we can assume that y"(T") (with T" = 1=")
is near yf . The second step consists in to connect y"(T") with yf by means
of a control bv(t) for t 2 [T"; T ]; for some T > T". This can be donne thanks
to well-known results (see, e.g. [12], [17]) since the Kalman�s condition for the
linearized equation, near (yf ; vfQ0) holds. Note that due to the symmetry
assumption we can reduce the system (PQ0

) to a system of only two equations
leading to a linearization

�
y(t) = Cy(t) +Bu(t)

where C= ryf(yf ; vfQ0) and B = ruf(yf ; vfQ0); and so the Kalman�s condi-
tion Range(B;CB) = 2 holds. ii) For a lozalized control v(t) appearing only in
the second equation of (PQ0

) the argument of connecting branch of stationary
solutions C+ may fail but at least we can apply the local controllabilidad results
for nonliear equations since the Kalman�s condition holds.
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Remark 4. It is a courious fact that, in the case of the original 3-system
(PQ0); the necessary and su¢ cient condition in order to have the Kalman�s
condition for the linearized equation allows to see that there are other solutions
(not necessarely symmetric) which does not satisfy it.

We end this section with the consideration of the degenerate case A = AD.
As indicated before, now the �rst and third equations of (PQ0) are uncoupled
and so the problem (neither its linearizations) can be locally controllable. Nev-
ertheless, we can state some result on a relaxed notion of controllability given
in terms of the reachability set:
Theorem 4. i) Assume A = AD; u(t) � 1 and that the control v(t)

acts globaly in space ((l1; l2) = (�1; 1)). Let (yf ; Q0vf ) be a stable symmetric
stationary solution in the branch C+. Then, for any other symmetric state
(y0; v0Q0) in C+ and for any " > 0 there exists a time T � > 0 and a piece-
wise continuous control v 2 L1(0; T �) with v(0) = v0 and v(T �) = vf such
that the solution y(t) of the problem (PQ0

) with initial datum y0 veri�es thaty(T �)� yf � ". ii) In the case of a localized control ( (l1; l2)  (�1; 1)) the
same conclusion holds when, in addition, (y0; v0Q0) and (yf ; vfQ0) are closed
enough.
Proof. It is enough to apply the arguments of the proof of Theorem 3 replac-

ing the local controllability condition for (PQ0
) by the fact that the reachability

set is open since the Lie bracket condition is satis�ed.
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